

Carbohydrate Research 268 (1995) 57-71

CARBOHYDRATE RESEARCH

Isothiocyanates and cyclic thiocarbamates of α, α' -trehalose, sucrose, and cyclomaltooligosaccharides $\stackrel{\text{trehalose}}{\rightarrow}$

José Manuel García Fernández ^a, Carmen Ortiz Mellet ^a, José Luis Jiménez Blanco ^a, José Fuentes Mota ^{a,*}, Andrée Gadelle ^b, Annie Coste-Sarguet ^b, Jacques Defaye ^{b,*}

^a Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 553, E-41071 Sevilla, Spain

^b CNRS and CEA, Département de Recherche Fondamentale sur la Matière Condensée / SESAM, Centre d'Etudes de Grenoble, F-38054 Grenoble, France

Received 11 July 1994; accepted 15 September 1994

Abstract

6,6'-Dideoxy-6,6'-diisothiocyanato- α, α' -trehalose (4), 6-deoxy-6-isothiocyanato- α -D-fructofuranose β -D-fructopyranose 1,2':2,1'-dianhydride (11), 6,6'-dideoxy-6,6'-diisothiocyanatosucrose (16), and per(6-deoxy-6-isothiocyanato)-cyclomaltohexaose (23), -cyclomaltoheptaose (27), and -cyclomaltooctaose (31) have been prepared in high yield by reaction of the corresponding amino sugars with thiophosgene. In the absence of base, all isothiocyanates were stable and could be stored and acetylated without decomposition. In the presence of triethylamine, 6,6'-dideoxy-6,6'diisothiocyanato- α, α' -trehalose underwent intramolecular cyclisation involving HO-4 to give the corresponding bis(cyclic thiocarbamate). The product of cyclisation at a single glucopyranosyl unit was obtained in the treatment of the above diisothiocyanate with mixed (H⁺, HO⁻) ion-exchange resin. Under identical reaction conditions, 6,6'-dideoxy-6,6'-diisothiocyanatosucrose yielded exclusively the product of intramolecular cyclisation at the D-glucopyranosyl moiety, while derivatives of α -D-fructofuranose β -D-fructopyranose 1,2':2,1'-dianhydride and cyclomaltooligosaccharides remained unchanged.

Keywords: Sugar isothiocyanates; Trehalose; Difructose dianhydrides; Sucrose; Cyclomaltooligosaccharides

[★] Presented, in part, at the 7th European Carbohydrate Symposium, Cracow, Poland, August 22–27, 1993, Abstr. IL A 05 and A 116.

^{*} Corresponding authors.

1. Introduction

Sugar isothiocyanates [1] have proved to be useful synthons in the preparation of a variety of N- and *neo*-N-glycoconjugates [2] such as nucleosides [1,3], N-glycosyl compounds [1,4], or N-glycopeptides [5–7]. In addition, the high reactivity of the isothiocyanate functionality [8,9] towards nucleophiles and its ability to undergo reductive or oxidative transformations allow an easy access to other functional groups including amide, thiourea, thiocarbamate, dithiocarbamate, thioformamide [10], isonitrile [11], dichloroisonitrile [12], and isocyanate derivatives [12], which may be used for further transformations. However, to avoid undesired side-reactions, protection of the hydroxyl groups is normally required. This limitation has also been an important drawback in the use of sugar isothiocyanates in enzymology [13].

In previous papers [14–17], we have studied the synthesis and reactivity of unprotected monosaccharides bearing an isothiocyanate group at a non-anomeric position. A main conclusion of this work is that, whereas reducing derivatives from 6-deoxy-6-isothiocyanatoaldoses undergo spontaneous cyclisation through the furanose form to give five-membered cyclic thiocarbamates, nonreducing derivatives having the pyranose form anchored, e.g., alkyl 6-deoxy-6-isothiocyanatoglycopyranosides, are stable compounds. It was then expected that nonreducing oligosaccharide isothiocyanates might also be stable, thus allowing them to be used in the functionalisation of compounds of biological and economic significance such as α, α' -trehalose, sucrose, and cyclomaltooligosaccharides.

2. Results and discussion

Reaction of either 6,6'-diamino-6,6'-dideoxy- α , α '-trehalose hydrochloride (3) [18], 6-amino-6-deoxy- α -D-fructofuranose β -D-fructopyranose 1,2':2,1'-dianhydride (10) [19], 6,6'-diamino-6,6'-dideoxysucrose (15) [20], or the hexakis(6-amino-6-deoxy)cyclomaltohexaose (22) [21], heptakis(6-amino-6-deoxy)cyclomaltoheptaose (26) [22], and octakis(6-amino-6-deoxy)cyclomaltooctaose (30) hydrochlorides with thiophosgene, in the presence of calcium carbonate, afforded the unprotected deoxyisothiocyanates 4, 11, 16, 23, 27, and 31 in 78-97% yield. In order to improve the availability of amine 3, and by analogy with the preparation of 10, a three-step synthesis was devised involving direct iodination of α, α' -trehalose with iodine-triphenylphosphine in N,N-dimethylformamide $(\rightarrow 1)$ [23] followed by nucleophilic displacement with azide anion $(\rightarrow 2)$ and Staudinger reduction [24] of the resulting azide (\rightarrow 3). The latter amination process was also used for the preparation of 15 from 6,6'-dideoxy-6,6'-diiodosucrose (13) [19]. Per(6-amino-6-deoxy)cyclomaltooligosaccharides 22, 26, and 30 were similarly prepared from the corresponding per(6-deoxy-6-iodo) derivatives 20 and 24, and the unknown octakis(6-deoxy-6-iodo)cyclomaltooctaose (28), which was obtained from cyclomaltooctaose using the iodine-triphenylphosphine-N,N-dimethylformamide reagent.

Attempts to isolate 6,6'-dideoxy-6,6'-diisothiocyanato- α , α' -trehalose (4) from the mixture of 3 with thiophosgene, by treatment with mixed (H⁺, HO⁻) ion-exchange resin, resulted in a concomitant partial intramolecular cyclisation involving HO-4 to give

i) CSCl₂, CaCO₃, r.t. ii) Et₃N, DMF, 80°C.

Scheme 1.

the unsymmetrical 6-amino-6,6'-dideoxy-6'-isothiocyanato- α , α' -trehalose 6,4-(cyclic thiocarbamate) (6) in 10% yield. Base-catalysed formation of bicyclic tetrahydrooxazine-2-thiones from methyl 6-deoxy-6-isothiocyanato-D-glycopyranosides has been recently reported [14,15], and a similar reaction seems to occur to some extent in contact with the resin. The diisothiocyanate 4 could, however, be isolated as the sole product in 89% yield after gel-permeation chromatography (GPC) of the crude mixture (Scheme 1).

It is noteworthy that no formation of intermolecular polymeric or cyclic thioureas, or other intramolecular reaction compound, was observed during the reaction of 3 with thiophosgene, whereas such side-reactions frequently take place during the synthesis of α, ω -diisothiocyanatoalkanes from the corresponding diamines [25]. This selectivity is probably related to the rigid conformational bias of the sugar molecule, and the results obtained from sucrose and cyclodextrin derivatives as reported below provide further examples.

In the absence of base, the diisothiocyanate 4 was a stable compound which could be transformed quantitatively into the corresponding hexaacetate 5 by treatment with acetic anhydride in pyridine. In the presence of triethylamine in N, N-dimethylformamide solution, 4 was converted quantitatively into the bis(cyclic thiocarbamate) 8 (Scheme 1). On treatment of 8 with acetic anhydride in pyridine, the corresponding peracetate 9 was obtained. No difference of reactivity towards acetylation between the NH and OH groups was observed, in agreement with reported results for methyl glycopyranoside derivatives [15].

6-Deoxy-6-isothiocyanato- α -D-fructofuranose β -D-fructopyranose 1,2':2,1'-dianhydride (11), obtained in 97% yield from the corresponding amine 10, proved to be more stable towards intramolecular thiocarbamate formation as compared to methyl 6-deoxy-6-isothiocyanatoglycopyranosides [15] and the corresponding α, α' -trehalose derivative 4. Thus, 11 was recovered unchanged after heating in N,N-dimethylformamide at 80°C for 1 h in the presence of an excess of triethylamine (Scheme 2). The stability of an isothiocyanate group at C-6 of a fructofuranosyl unit was confirmed by

Scheme 2.

comparing the reactivity of the two isothiocyanato groups in 6,6'-dideoxy-6,6'-diisothiocyanatosucrose (16). Upon triethylamine treatment, only the NCS group of the glucopyranosyl moiety underwent intramolecular cyclisation to give the 6,4-(cyclic thiocarbamate) 18 in 90% yield (Scheme 2).

Per(6-deoxy-6-isothiocyanato)cyclomaltooligosaccharides 23, 27, and 31 were found to be stable under similar basic conditions, and formation of per[6,3-(cyclic thiocarbamate)] derivatives did not occur even after prolonged heating with triethylamine in N, N-dimethylformamide (Scheme 3).

i) NaN₃, Me₂SO, 80 °C ii) (n-Bu)₃P, dioxane, MeOH, r.t./ NH₄OH iii) CSCI₂, CaCO₃.

Scheme 3.

The structures of the new sugar isothiocyanates 4, 11, 16, 23, 27, and 31 and of the cyclic thiocarbamate derivatives 6, 8, and 18 were confirmed by analytical and spectroscopic data as well as by data for the peracetylated derivatives. Thus, compounds 4, 5, 11, 12, 16, 17, 23, 27, and 31 showed the characteristic IR absorption at ~ 2100 cm⁻¹ and ¹³C NMR signals at δ 129.0–137.0 for the isothiocyanate groups [15]. Both absorptions were absent in the corresponding spectra of the bis(cyclic thiocarbamate) derivatives 8 and 9, which instead showed a signal at 185–187 ppm in their ¹³C NMR spectra for the thiocarbonyl carbon atom and the expected UV $\pi \rightarrow \pi^*$ absorption at 250–280 nm for 2-thioxotetrahydro-1,3-O,N-heterocycles [15,26]. Both spectroscopic features were found in the mixed isothiocyanate–cyclic thiocarbamate derivatives 6, 7, 18, and 19.

The ¹H (Table 1) and ¹³C NMR spectra (Table 2) of the α , α' -trehalose derivatives 4, 5, 8, and 9 showed signals for equivalent D-glucopyranosyl moieties, in agreement with the proposed structures. The ${}^{3}J_{H,H}$ coupling constants around the pyranose rings indicated that they adopt the expected ${}^{4}C_{1}(D)$ conformation in both diisothiocyanate (4,5) and bis(cyclic thiocarbamate) derivatives (8,9). No deshielding effect was observed for the resonance of H-4 in the peracetate 9 as compared to the unprotected derivative 8, in agreement with the involvement of O-4 in the tetrahydrooxazine ring. In the case of compound 6, and its peracetate 7, the ¹H (Table 1) and ¹³C (Table 2) NMR spectra showed two different sets of signals which could be correlated with those for the corresponding diisothiocyanate (4 or 5) and bis(cyclic thiocarbamate) derivatives (8 or 9), supporting the presence of both functionalities in the molecule.

The structure of the 6-deoxy-6-isothiocyanato- α -D-fructofuranose β -D-fructopyranose dianhydride (11) and its peracetate 12 was confirmed by comparison of their NMR spectra (Tables 1 and 2) with data for the parent diffuctose dianhydride [27] and related derivatives [19]. The values for the resonances of the anomeric carbon atoms C-2,2' (103.2, 96.7 and 101.7, 94.6 ppm, respectively) can be considered as a fingerprint of the α -D-fructofuranose β -D-fructopyranose 1,2' : 2,1'-dianhydride structure, while the resonances for C-6 (47.1 and 46.2 ppm, respectively) appear at higher field as compared to the unsubstituted or acetylated dianhydride [27], in agreement with the presence of the isothiocyanate group at the primary position.

The ¹³C NMR data for the sucrose derivatives 16–19 are given in Table 2. A strong deshielding effect was observed for the resonance of C-4 in compounds 18 and 19 as compared to the corresponding diisothiocyanates 16 and 17 ($\Delta\delta$ 9.1 and 7.6, respectively), in agreement with the presence of the C-6–NH–C(=S)–O-4 bridge at the D-glucopyranosyl moiety. On the other hand, virtually no changes were observed in the resonances of the D-fructofuranosyl carbon atoms. The ¹H NMR spectra (Table 1) for the peracetates 17 and 19 fully agreed with the proposed structures.

The cyclomaltooligosaccharide derivates 23, 27, and 31 showed signals in their ¹H (Table 1) and ¹³C NMR spectra (Table 2) for a single type of α -D-glucopyranosyl subunit, according to the six-, seven-, and eight-fold symmetry expected for the respective per(6-deoxy-6-isothiocyanato) derivatives. The signal at δ 129.9–129.7 in their ¹³C NMR spectra confirmed the presence of the isothiocyanate functionality, and the highfield shift of the resonance of C-6 as compared to the parent cyclomaltooligosaccharides [28,29] was indicative of the substitution at the primary positions.

Table 1 ¹ H NMR 6	lata for com	pounds 4-	9, 12, 17	and 19										
Compound	Chemica	ıl shifts (8												
	H-1	H-2	H-3	H-4	H-5	H-6a	H-6b	H-1′	H-2′	Н-3′	H-4′	H-5′	H-6'a	q,9-Н
4 a,d	5.25d	3.68dd	3.81t	3.42t	3.98ddd	3.90dd	3.82dd							
5 b,d	5.42d	5.18dd	5.52t	5.03t	4.17ddd	3.69dd	3.55dd							
6 a,d	5.21d	3.57dd	+4. 0	9m	4.27ddd	3.56t	3.28dd	5.28d	3.77dd	3.81t	3.42t	3.99ddd	3.90dd	3.82dd
7 b.e	5.34d	5.02dd	5.65t	4.14t	4.24ddd	3.88dd	3.56dd	5.36d	5.14dd	5.46t	4.96t	4.14ddd	3.65dd	3.51dd
8 c,d	4.93d	3.38dd	3.78t	3.83 t	4.25ddd	3.10t	3.23dd							
9 b,d	5.32d	5.03dd	5.65dd	4.14dd	4.23ddd	3.89dd	3.57dd							
12 ^{b,d}	3.99d		5.28d	4.75dd	3.53m	+3.2 ^c	4d	3.76d		5.55d	5.73dd	5.42ddd	3.43dd	3.30dd
	3.66d							3.71d						
17 b.c	5.74d	4.79dd	5.51t	4.96t	4.32ddd	3.73dd	3.68dd	4.40d		5.38d	4.16t	4.19dt	3.97dd	3.93dd
								4.31d						
19 b,e	5.68d	4.82dd	5.65t	4.08t	4.40dt	4.08dd	3.54dd	4.21s		5.41d	5.16dd	4.16m	+3.82	}m
								(2 H)						
	Coupling cc	onstants (H	(Z											
	$J_{1,2}$.	I _{2,3} .	J _{3,4}	J _{4,5} J	$I_{5,6a}$ $J_{5,}$,6b J _{6a} ,	,6b J _{1',}	2,	12',3'	J _{3',4'}	J _{4',5'}	J _{5',6'a}	I _{5',6'b}	J _{6'a,6'b}
4 a,d	3.8	9.9	9.8	9.8	3.5 5	.7 15.	2							
5 ^{b,d}	3.9	10.0	10.0	10.0	6.8 3	.4 14.	8							
6 ^{a,d}	3.8	9.5		9.4	6.3 10	11 11.	9 3.	8	9.3	9.3	9.3	2.8	5.4	13.2
7 b,e	3.7	10.2	9.7	9.4	7.5 5	.7 12.	5 3.	×,	10.0	9.7	9.4	7.2	3.0	14.8
8 c,d	3.6	9.4	9.3	9.3 1	10.7 6	.7 11.	2							
9 b,d	3.8	10.1	9.4	10.1	7.5 8	.9 12.	4							
12 ^{b,d}	$J_{ m la,1b}$ 11.6		1.1	4.8	3.7 3	Ľ	J _{1'1} 13.	a,1′b 4	. ,	10.6	3.4	1.8	1.3	13.1
17 b.e	J _{1,2}	10 J	C 01	10.7	315	0	0	r		20	20	ç	-	7 11
19 b.e	3.6	10.0	10.0	10.0	7.1 9	.5 12.	3	-		4.5	4.8	1	1	
^a In D_2O .	^b In CDCl ₃ .	^c In Me ₂ S	0-d ₆ . ^d	Vt 300 MHz	. ^e At 500 N	AHz								

Compound	Carbon											
	C-1	C-2	C-3	C-4	C-5	C-6	C-1′	C-2'	C-3/	C-4′	C-5'	C-6′
4 a,c	93.9	72.3 h	74.0	72.7 h	71.6	47.0						
5 b.e	93.1	69.2	69.7	69.7	68.6	45.9						
6 c,f	94.1	i 6.69	68.4	79.1	59.6	43.5	93.6	70.0 ⁱ	71.7	70.2 ⁱ	69.9 i	45.1
7 b,e	93.9	69.5	67.8	76.8	62.9	47.3	92.8	69.4	69.3	69.2	68.5	45.7
8 d,g	95.6	71.3	68.8	79.7	60.2	44.2						
9 b,e	94.4	69.8	67.7	76.9	63.2	47.5						
11 ^{a,e}	62.8	103.2	81.2	79.9	84.0	47.1	63.5	96.7	70.1	70.8	70.8	62.8
12 ^{b,e}	60.6	101.7	80.6	78.7	80.9	46.2	61.2	94.6	60.9	68.6	67.2	61.2
16 a.e	93.7	72.2 ^j	74.0	72.1 ^j	72.9	48.9	63.4	105.9	78.9	77.6	81.3	47.2
17 ^{b,f}	90.4	70.3	68.7	69.1	68.5	45.6	61.2	105.0	75.8	76.3	79.9	47.0
18 ^{a,c}	94.0	70.9	72.9	81.2	61.7	49.0	63.6	106.1	78.5	<i>T.T.</i>	81.5	47.1
19 ^{b,e}	90.9	70.2	699	76.7	63.1	47.7	61.8	104.6	75.5	76.0	79.7	47.1
23 ^{d,f}	101.9	71.4	72.4	83.5	68.9	46.2						
27 ^{d,g}	102.3	72.3	72.4	83.1	69.3	46.2						
31 ^{d,f}	102.2	72.3	72.3	82.6	69.4	46.2						

3
and
2,
ล์
-19,
16-
Ę
11,
49,
compounds
for
shifts
chemical
~ ~

63

3. Experimental

General methods. — Melting points were determined with a Gallenkamp apparatus and are uncorrected. Optical rotations were measured with a Perkin-Elmer 141 polarimeter using 10-mm cells. UV spectra were recorded with a Philips PU 8710 spectrophotometer. IR spectra were recorded on a Bomen Michelson MB-120 FTIR spectrophotometer. The ¹H (300 and 500 MHz) and ¹³C NMR spectra (50.3, 75.5, and 125.7 MHz) were obtained on Bruker AC-200 and Bruker 300 and 500 AMX spectrometers. Tetramethylsilane was used as internal standard. Assignments of ¹H signals were confirmed by COSY experiments. Gated decoupling and 2D HETCOR spectra were used for carbon signal assignments. Mass spectra were taken on a Kratos MS-80 RFA instrument. In the EI mode, operating conditions were: ionising energy, 35 eV; ionising current, 100 μ A; accelerating voltage, 4 kV; resolution, 1000 (10% valley definition). In the FAB mode, the primary beam consisted of Xe atoms with a maximum energy of 8 keV. The samples were dissolved in glycerol, thioglycerol, or *m*-nitrobenzyl alcohol, and the positive ions were separated and accelerated over a potential of 7 kV. Except when otherwise stated, NaI was added as cationising agent. TLC was performed on Silica Gel 30 F₂₅₄ (E. Merck) plates with visualisation by UV light and by charring with 10% H₂SO₄. Column chromatography was carried out on Silica Gel 60 (E. Merck, 230-400 mesh). Gel-permeation chromatography (GPC) was performed on a column $(29.5 \times 3.0 \text{ cm})$ of Bio-Gel P-2 by elution with H₂O-MeOH. The eluate was monitored by TLC $(1:1:1 n-BuOH-AcOH-H_2O)$; detection with orcinol-H₂SO₄). Microanalyses were performed by the "Instituto de Química Orgánica General" (CSIC) in Madrid and by the "Service Central de Microanalyse du CNRS" (Solaize). For unprotected derivatives, the analyses were run under Ar for samples prepared in sealed tubes after drying over P_4O_{10} . The term "conventional acetylation" means treatment with 1:1 Ac₂O-pyridine (10 mL for 1 g of sample) overnight. The mixture was then poured into ice-water and extracted with CH_2Cl_2 , and the organic layer washed with 1 M H_2SO_4 and satd aq NaHCO₃, dried (MgSO₄), filtered, and concentrated.

6,6'-Dideoxy-6,6'-diiodo- α, α' -trehalose (1). — To a solution of anhydrous α, α' -trehalose [30] (8 g, 23.4 mmol) in dry DMF (200 mL) were added Ph₃P (30.65 g, 117 mmol) and I₂ (23.75 g, 93.6 mmol). The mixture was heated at 80°C for 1.5 h and then concentrated to ~ 1/3 of the starting volume. Methanol (300 mL) was added and the solution was adjusted to pH 9 by addition of solid NaOMe, stirred at room temperature for 30 min, and neutralised with Amberlite IR-120 (H⁺) resin. The resin was filtered off and washed with MeOH, and the combined filtrates were filtered through charcoal and concentrated to a residue which was triturated with water (250 mL). The residual Ph₃P and Ph₃PO were then removed by filtration. Evaporation of water yielded 1 (10 g, 77%) as an amorphous solid, $[\alpha]_D^{20} + 108.1^{\circ}$ (c 0.9, H₂O); FABMS (thioglycerol): m/z 585 ([M + Na]⁺); lit. [31] $[\alpha]_D^{25} + 109^{\circ}$ (c 0.39, H₂O).

6,6'-Diazido-6,6'-dideoxy- α , α '-trehalose (2).—To a solution of 1 (4.17 g, 7.43 mmol) in dry DMF (80 mL) was added NaN₃ (2.89 g, 44.58 mmol). The mixture was heated at 80°C for 16 h, then concentrated, and the residue acetylated (1:1 Ac₂O-pyridine, 50 mL, 5 h). The peracetylated product (4.78 g), which showed a single spot on TLC (1:1 EtOAc-petroleum ether), was deacylated (Zemplén) to give 2 (2.70 g, 93%);

mp 209–210°C (from MeOH); $[\alpha]_D^{20}$ +156.0° (*c* 1, H₂O); lit. [32] mp 209–211°C, $[\alpha]_D^{20}$ +158.0° (*c* 0.7, H₂O).

6,6'-Diamino-6,6'-dideoxy- α , α' -trehalose dihydrochloride (3).—To a stirred solution of the diazide 2 (3.07 g, 8.76 mmol) in a mixture of dioxane (90 mL) and MeOH (18 mL) was gradually added Ph₃P (16 g, 61.3 mmol) under N₂ at room temperature. After 1 h, concentrated NH₄OH (30%, 14 mL) was added and the solution was stirred for 16 h. The solvent was evaporated, the residue was triturated with water (100 mL), and the resulting suspension was adjusted to pH 4 by addition of 1 M and 0.1 M HCl. The residual Ph₃P and Ph₃PO were then filtered off and washed with H₂O (2 × 50 mL), and the combined aqueous filtrates were washed with toluene (2 × 50 mL) and freeze-dried to give 3 (3.20 g, 89%); mp 81–83°C (from MeOH–acetone); $[\alpha]_D^{20} + 164^\circ$ (c 1, H₂O); lit. [18] mp 82–83°C, $[\alpha]_D^{12} + 167^\circ$ (c 1, H₂O).

6,6'-Dideoxy-6,6'-diisothiocyanato- α, α' -trehalose (4).—To a mixture of the diamine 3 (3.39 g, 8.23 mmol) in 1 : 1 H₂O-acetone (50 mL) and CaCO₃ (4.94 g, 49.4 mmol) was added CSCl₂ (2.84 g, 1.9 mL, 24.7 mmol). The mixture was vigorously stirred for 4 h at room temperature, then filtered, and the filtrate concentrated to dryness. The residue, which showed a single spot on TLC (45:5:3 EtOAc-EtOH-H₂O), was dissolved in MeOH and passed through an IWT TMD-8 (H⁺, OH⁻) resin column (3 × 20 cm). TLC of the eluate then showed the presence of **8** as a minor compound having higher R_f (see later). Column chromatography using the above eluent yielded amorphous 4 (2.72 g, 78%) as the main reaction product; [α]_D²⁰ + 100.7° (*c* 1.4, MeOH); ν_{max}^{KBr} 3335 (OH) and 2099 cm⁻¹ (NCS); ¹H NMR (300 MHz, D₂O): Table 1; ¹³C NMR (75.5 MHz, D₂O): Table 2 and δ 185.1 (C=S) and 131.3 (NCS); FABMS (*m*-nitrobenzyl alcohol): m/z 447 (25%, [M + Na]⁺), 425 (40, [M + H]⁺). Anal. Calcd for C₁₄H₂₀N₂O₉S₂: C, 39.62; H, 4.75; N, 6.60; S, 15.11. Found: C, 39.41; H, 4.49; N, 6.24; S, 14.69.

In another experiment, the mixture arising from the treatment of 3 (0.6 g, 1.47 mmol) with CSCl₂ (0.49 g, 0.33 mL, 4.41 mmol), as described above, was filtered, concentrated, and purified by GPC to give the diisothiocyanate 4 (0.55 g, 89%) as the only reaction product.

2,3,4,2',3',4'-Hexa-O-acetyl-6,6'-dideoxy-6,6'-diisothiocyanato- α , α' -trehalose (5).—Acetylation of **4** (0.3 g, 0.7 mmol) yielded the corresponding hexaacetate **5** (0.43 g, 90%); mp 75–77°C (from CHCl₃–petroleum ether); $[\alpha]_D^{20}$ +113.8° (*c* 1.1, CHCl₃); ν_{max}^{KBr} 2099 (NCS), 1755 (CO), and 1217 cm⁻¹ (C–O–C); ¹H NMR (300 MHz, CDCl₃): Table 1 and δ 2.17, 2.14, and 2.07 (3 s, each 3 H, 3 OAc); ¹³C NMR (75.5 MHz, CDCl₃): Table 2 and δ 169.9, 169.5, 169.2 (C=O), and 136.1 (NCS); EIMS: *m*/*z* 676 (1%, M⁺⁻), 617 (1, M⁺ – AcO⁻), 616 (1, M⁺ – AcOH), 330 [15, (C₁₃H₁₆NO₇S)⁺]. Anal. Calcd for C₂₆H₃₂N₂O₁₅S₂: C, 46.15; H, 4.77; N, 4.14. Found: C, 46.12; H, 4.77; N, 4.24.

6-Amino-6,6'-dideoxy-6'-isothiocyanato- α, α' -trehalose 6,4-(cyclic thiocarbamate) (6).—Column chromatography of the mixture arising from the reaction of **3** with CSCl₂ and subsequent treatment with mixed (H⁺, HO⁻) ion-exchange resin (see above) afforded amorphous **6** (0.34 g, 10%) as the minor reaction product; $[\alpha]_D^{20} + 10.0^\circ$ (c 0.8, MeOH); λ_{\max}^{MeOH} 254 nm (ε_{mM} 3.3); ν_{\max}^{KBr} 3430, 3260 (OH, NH), 2112 (NCS), and 1559 cm⁻¹ (NH); ¹H NMR (300 MHz, D₂O): Table 1; ¹³C NMR (125.5 MHz, CD₃OD): Table 2 and δ 185.1 (C=S) and 131.3 (NCS); FABMS (thioglycerol): m/z 447 ([M + Na]⁺). Anal. Calcd for C₁₄H₂₀N₂O₉S₂: C, 39.62; H, 4.75; N, 6.60; S, 15.11. Found: C, 39.50; H, 4.42; N, 6.54; S, 14.95.

N-Acetyl-2,3,2',3',4'-penta-O-acetyl-6-amino-6,6'-dideoxy-6'-isothiocyanato-α, α'trehalose 6,4-(cyclic thiocarbamate) (7).—Conventional acetylation of **6** (0.2 g, 0.47 mmol) yielded the corresponding peracetate 7 (0.29 g, 93%) as an amorphous solid; $[\alpha]_D^{20}$ +12.0° (c 0.7, CH₂Cl₂); $\lambda_{max}^{CH_2Cl_2}$ 280 nm (ε_{mM} 18.4); ν_{max}^{KBr} 2087 (NCS), 1750 (CO ester), 1715 (CO amide), and 1215 cm⁻¹ (C–O–C); ¹H NMR (500 MHz, CDCl₃): Table 1 and δ 2.68 (s, 3 H, NAc), 2.17, 2.14, 2.09, 2.05, and 2.03 (5 s, each 3 H, 5 OAc); ¹³C NMR (75.5 MHz, CDCl₃): Table 2 and δ 186.9 (C=S), 173.4 (C=O amide), 169.5 (2 C), 169.2 (2 C), 169.1 (5 C=O ester), 135.7 (NCS), 25.8 (NCOCH₃), 20.5 (2 C), 20.3 (2 C), and 20.2 (5 OCOCH₃); FABMS (*m*-nitrobenzyl alcohol): m/z 699 (100%, [M + Na]⁺), 677 (15, [M + H]⁺). Anal. Calcd for C₂₆H₃₂N₂O₁₅S₂: C, 46.15; H, 4.77; N, 4.14; S, 9.47. Found: C, 45.87; H, 4.79; N, 4.08; S, 9.71.

6,6'-Diamino-6,6'-dideoxy- α , α' -trehalose 6,4:6',4'-bis(cyclic thiocarbamate) (8).— To a stirred solution of the diisothiocyanate 4 (0.5 g, 1.17 mmol) in dry DMF (50 mL) was added Et₃N (0.1 mL, 0.7 mmol), and the mixture was heated at 80°C for 30 min. TLC (3:1 CHCl₃-MeOH) showed the clean conversion of 4 into a single product. Evaporation of the solvent yielded 8 (0.47 g, 95%); mp > 240°C (dec, from MeOH); $[\alpha]_D^{20} - 67.9^\circ$ (c 0.5, Me₂SO); $\lambda_{max}^{Me_2SO}$ 259 nm (ε_{mM} 14.2); ν_{max}^{KBr} 3390, 3277 (OH, NH), and 1557 cm⁻¹ (NH); ¹H NMR (300 MHz, Me₂SO-d₆): Table 1; ¹³C NMR (50.3 MHz, Me₂SO-d₆): Table 2 and δ 185.2 (C=S); FABMS (*m*-nitrobenzyl alcohol): m/z 447 (80%, $[M + Na]^+$), 425 (100, $[M + H]^+$). Anal. Calcd for C₁₄H₂₀N₂O₉S₂: C, 39.62; H, 4.75; N, 6.60; S, 15.11. Found: C, 39.27; H, 4.41; N, 6.40; S, 14.61.

N,N'-Diacetyl-2,3,2',3'-tetra-O-acetyl-6,6'-diamino-6,6'-dideoxy- α , α' -trehalose 6,4:6',4'-bis(cyclic thiocarbamate) (9).—Conventional acetylation of 8 (0.2 g, 0.47 mmol) yielded the peracetate 9 (0.29 g, 92%); mp 197–199°C (from EtOH); $[\alpha]_D^{20}$ -92.0° (c 0.9, CHCl₃); $\lambda_{max}^{CH_2Cl_2}$ 279 nm (ε_{mM} 20.8); ν_{max}^{KBr} 1755 (CO ester), 1710 (CO amide), and 1213 cm⁻¹ (C–O–C); ¹H NMR (300 MHz, CDCl₃): Table 1 and δ 2.70 (s, 3 H, NAc), 2.13, and 2.07 (2 s, 6 H, 2 OAc); ¹³C NMR (75.5 MHz, CDCl₃): Table 2 and δ 187.2 (C=S), 173.6 (C=O amide), 169.6, 169.2 (2 C=O ester), 26.0 (NCOCH₃), 20.7, and 20.6 (2 OCOCH₃); FABMS (*m*-nitrobenzyl alcohol): m/z 699 (100%, [M + Na]⁺), 677 (80, [M + H]⁺). Anal. Calcd for C₂₆H₃₂N₂O₁₅S₂: C, 46.15; H, 4.77; N, 4.14. Found: C, 46.13; H, 4.98; N, 3.99.

6-Deoxy-6-isothiocyanato-α-D-fructofuranose β-D-fructopyranose 1,2' : 2,1'-dianhydride (11).—To a mixture of 6-amino-6-deoxy-α-D-fructofuranose β-D-fructopyranose 1,2' : 2,1'-dianhydride [19] (10; 0.45 g, 1.39 mmol) in 2:1 H₂O-acetone (5 mL) and CaCO₃ (0.42 g, 4.18 mmol) was added CSCl₂ (0.24 g, 0.165 mL, 2.09 mmol). The mixture was vigorously stirred for 2 h at room temperature, then filtered, and the filtrate concentrated to dryness. The residue, which showed a single spot on TLC (2:1 CHCl₃-MeOH), was subjected to column chromatography with the above eluent to give 11 (0.49 g, 97%) as an amorphous solid; $[\alpha]_D^{20} - 16.0^\circ$ (c 1, MeOH); ν_{max}^{KBr} 3381 (OH) and 2108 cm⁻¹ (NCS); ¹³C NMR (75.5 MHz, CD₃OD): Table 2 and δ 133.2 (NCS). Anal. Calcd for C₁₃H₁₉NO₉S: C, 42.74; H, 5.24; N, 3.83; S, 8.78. Found: C, 42.42; H, 5.13; N, 3.71; S, 8.62. 3,4-Di-O-acetyl-6-deoxy-6-isothiocyanato-α-D-fructofuranose 3,4,5-tri-O-acetyl-β-Dfructopyranose 1,2' : 2,1'-dianhydride (12).—Conventional acetylation of 11 (0.2 g, 0.54 mmol) yielded 12 (0.29 g, 94%) as an amorphous solid; $[\alpha]_D^{20} - 34.0^\circ$ (c 1, CHCl₃); $\nu_{max}^{KB_T}$ 2106 (NCS), 1751 (CO), and 1223 cm⁻¹ (C-O-C); ¹H NMR (300 MHz, CDCl₃): Table 1 and δ 1.82, 1.73, 1.72, 1.66, and 1.52 (5 s, each 3 H, 5 Me); ¹³C NMR (75.5 MHz, CDCl₃): Table 2 and δ 170.2, 170.1, 169.6, 169.5, 168.9 (5 C=O), 132.6 (NCS), 20.6, 20.5 (2 C), 20.3, and 20.2 (5 Me); FABMS (*m*-nitrobenzyl alcohol): m/z 599 (100%, [M + Na]⁺), 577 (15, [M + H]⁺). Anal. Calcd for C₂₃H₂₉NO₁₄S: C, 48.00; H, 5.08; N, 2.43; S, 5.57. Found: C, 48.07; H, 5.04; N, 2.44; S, 5.13.

6,6'-Diazido-6,6'-dideoxysucrose (14).—To a solution of 6,6'-dideoxy-6,6'-diiodosucrose [19] (13; 4.17 g, 7.43 mmol) in dry DMF (80 mL) was added NaN₃ (2.89 g, 44.58 mmol). The mixture was heated at 80°C for 16 h, then concentrated, and the residue acetylated (1:1 Ac₂O-pyridine, 50 mL, 5 h). The peracetylated product (4.78 g), which showed one single spot on TLC (1:1 EtOAc-petroleum ether), was deacylated (Zemplén) to give the diazide 14 (2.70 g, 93%); $[\alpha]_D^{20} + 78^\circ$ (c 1, H₂O); lit. [20] $[\alpha]_D + 78.8^\circ$ (c 1, H₂O).

6,6'-Diamino-6,6'-dideoxysucrose (15).—Reduction of the diazide 14 (2.98 g, 8.76 mmol) with Ph₃P (16 g, 61.3 mmol), subsequent treatment with NH₄OH (30%, 14 mL), and concentration, following the procedure described above for the preparation of 2, gave a solid residue which was extracted with water (3 × 50 mL). The water phase was washed with toluene (2 × 50 mL) and freeze-dried to yield 15 (2.65 g, 89%) as an amorphous solid; $[\alpha]_{D}^{20}$ +49.0° (c 1, H₂O); lit. [20] $[\alpha]_{D}^{20}$ +51.6° (c 1.5, H₂O).

6,6'-Dideoxy-6,6'-diisothiocyanatosucrose (16).—To a mixture of the diamine 15 (0.63 g, 1.86 mmol) in 3:2 H₂O-acetone (8 mL) and CaCO₃ (1.11 g, 11.16 mmol) was added CSCl₂ (0.64 g, 0.44 mL, 5.58 mmol). The mixture was vigorously stirred for 20 min and then concentrated. The residue, which showed a single spot on TLC (45:5:3 EtOAc-EtOH-H₂O), was dissolved in MeOH (30 mL) and passed through an IWT TMD-8 (H⁺, OH⁻) resin column (1.5 × 12 cm). Evaporation of MeOH gave 16 (0.67 g, 83%) as a syrup; $[\alpha]_D^{20}$ +74.3° (*c* 1, MeOH); ν_{max}^{film} 3380 (OH) and 2122 cm⁻¹ (NCS); ¹³C NMR (75.5 MHz, CD₃OD): Table 2 and δ 133.3 and 133.2 (2 NCS); FABMS (thioglycerol): m/z 447 (15%, $[M + Na]^+$). Anal. Calcd for C₁₄ H₂₀N₂O₉S₂: C, 39.62; H, 4.75; N, 6.60; S, 15.11. Found: C, 39.34; H, 4.70; N, 6.51; S, 14.95.

2,3,4,1',3',4'-Hexa-O-acetyl-6,6'-dideoxy-6,6'-diisothiocyanatosucrose (17).—Conventional acetylation of **16** (0.2 g, 0.46 mmol) yielded the corresponding hexaacetate **17** (0.28 g, 93%) as a syrup; $[\alpha]_D^{20}$ + 72.7° (*c* 1.2, CHCl₃); ν_{max}^{film} 2114 (NCS), 1751 (CO), and 1221 cm⁻¹ (C-O-C); ¹H NMR (500 MHz, CDCl₃): Table 1 and δ 2.22, 2.15, 2.14, 2.13, 2.12, and 2.03 (6 s, each 3 H, 6 Me); ¹³C NMR (125.5 MHz, CDCl₃): Table 2 and δ 169.9, 169.8, 169.7 (2 C), 169.4, 169.1 (6 C=O ester), 133.3, 133.1 (2 NCS), 20.5, 20.4 (2 C), 20.3 (2 C), and 20.2 (6 Me). Anal. Calcd for C₂₆H₃₂N₂O₁₅S₂: C, 46.15; H, 4.77; N, 4.14; S, 9.48. Found: C, 46.35; H, 4.75; N, 4.04; S, 9.71.

6-Amino-6,6'-dideoxy-6'-isothiocyanatosucrose 6,4-(cyclic thiocarbamate) (18).—To a stirred solution of the diisothiocyanate 16 (0.9 g, 2.12 mmol) in dry DMF (10 mL) was added Et₃N (0.2 mL, 1.4 mmol). The mixture was heated at 80°C for 30 min and then concentrated to give 18 (0.80 g, 90%) as a syrup; $[\alpha]_D^{20}$ + 150.1° (c 1, MeOH); λ_{max}^{MeOH} 250 nm (ε_{mM} 14.2); ν_{max}^{film} 3345 (OH, NH), 2112 (NCS), 1659 and 1547 cm⁻¹ (NH); ¹³C NMR (75.5 MHz, CD₃OD): Table 2 and δ 187.9 (C=S) and 133.5 (NCS); FABMS (*m*-nitrobenzyl alcohol): m/z 447 (15%, $[M + Na]^+$), 425 (5, $[M + H]^+$). Anal. Calcd for C₁₄H₂₀N₂O₉S₂: C, 39.62; H, 4.75; N, 6.60; S, 15.11. Found: C, 39.51; H, 4.75; N, 6.85; S, 14.94.

N-Acetyl-2,3,1',3',4'-penta-O-acetyl-6-amino-6,6'-dideoxy-6'-isothiocyanatosucrose 6,4-(cyclic thiocarbamate) (19).—Conventional acetylation of 18 (0.15 g, 1.17 mmol) yielded the peracetate 19 (0.75 g, 95%) as a syrup; $[\alpha]_D^{20} - 26.3^{\circ}$ (c 1, CHCl₃); $\lambda_{max}^{CH_2Cl_2}$ 280 nm (ε_{mM} 10.4); ν_{max}^{film} 2104 (NCS), 1755 (CO), and 1223 cm⁻¹ (C-O-C); ¹H NMR (500 MHz, CDCl₃): Table 1 and δ 2.70 (s, 3 H, NAc), 2.21, 2.14 (2 s, each 3 H, 2 OAc), 2.12 (s, 6 H, 2 OAc), and 2.11 (s, 3 H, OAc); ¹³C NMR (75.5 MHz, CDCl₃): Table 2 and δ 187.1 (C=S), 173.5 (C=O amide), 170.0 (2 C), 169.9, 168.8, 168.6 (5 C=O ester), 133.5 (NCS), 25.7 (NCOCH₃) 20.4, 20.3 (2 C), and 20.2 (2 C) (6 OCOCH₃); FABMS (*m*-nitrobenzyl alcohol): m/z 699 (100%, [M + Na]⁺), 677 (75, [M + H]⁺). Anal. Calcd for C₂₆H₃₂N₂O₁₅S₂: C, 46.15; H, 4.77; N, 4.14. Found: C, 45.95; H, 4.38; N, 3.69.

Octakis(6-deoxy-6-iodo)cyclomaltooctaose (28).—To a stirred solution of Ph₃P (21 g, 80 mmol) in dry DMF (80 mL) was added I₂ (20.5 g, 80 mmol) in small portions. After 4 h, cyclomaltooctaose (4.32 g, 3.3 mmol) was added and the mixture was stirred for 18 h at 80°C, then concentrated to ~ half volume and cooled down to -5° C. The solution was made alkaline (pH 9-10) by addition of NaOMe (3 M, 30 mL), kept at room temperature for 30 min, and then poured into ice-water (1.5 L) under vigorous stirring. The resulting brownish precipitate was collected by filtration, washed abundantly with water, dried in the air, and suspended in CH_2Cl_2 (1 L). After vigorous stirring, the remaining insoluble material was filtered off, washed several times with CH_2Cl_2 , and dissolved in DMF (100 mL). The solution was concentrated, and the product reprecipitated by addition of MeOH. After filtration and washing with additional MeOH, **28** (6.24 g, 88%) was obtained; mp 230.8–231°C (dec); $[\alpha]_{\rm p}$ +72.8° (c 1.1, Me₂SO); ¹³C NMR (50.3 MHz, Me₂SO-d₆): δ 102.0 (C-1), 85.3 (C-4), 72.5, 71.9, 71.2 (C-2,3,5), and 9.27 (C-6); FABMS (glycerol-thioglycerol): m/z 2199 (100%, [M + Na]⁺), 2177 (21, $[M + H]^+$). Anal. Calcd for C₄₈H₇₂I₈O₃₂: C, 26.49; H, 3.33; I, 46.65. Found: C, 26.57; H, 3.48; I, 46.35.

Per(6-azido-6-deoxy)cyclomaltooligosaccharides (21, 25, and 29).—To a solution of the corresponding per(6-deoxy-6-iodo)cyclomaltooligosaccharide 20 [24,33], 24 [24,33], or 28 (2.5 g, 9.19 mequiv) in Me₂SO (25 mL), at 80°C, was added NaN₃ (2.5 g, 38.5 mmol) under stirring. After 24 h, the solvent was evaporated under low pressure, the residue was treated several times with H₂O, each time the suspension being centrifuged, and then decanted, until the aqueous phase was colourless. The azido compound was then suspended in water and freeze-dried, resulting in 21, 25, or 29.

Hexakis(6-azido-6-deoxy)cyclomaltohexaose (**21**; 1.52 g, 88%); $[\alpha]_D^{20} + 80^\circ$ (c 1.1, Me₂SO); lit. [21] $[\alpha]_D^{20} + 88^\circ$ (c 1.1, Me₂SO); FABMS (thioglycerol, KI): m/z 2284.3 (23%, $[M_2 + K]^+$), 2246.3 (24, $[M_2 + H]^+$), 1160.9 (100, $[M + K]^+$).

Heptakis(6-azido-6-deoxy)cyclomaltoheptaose (**25**; 1.71 g, 99%); $[\alpha]_D^{20} + 92.3^\circ$ (*c* 0.52, Me₂SO); lit. [34] $[\alpha]_D^{20} + 95.2^\circ$ (*c* 0.52, Me₂SO): FABMS (thioglycerol, KI): m/z 2658.7 (22%, $[M_2 + K]^+$), 1348.9 (100, $[M + K]^+$).

Octakis(6-azido-6-deoxy)cyclomaltooctaose (29; 1.70 g, 99%); mp 220-223°C (dec);

 $[\alpha]_{D}^{20}$ +91° (c 0.96, Me₂SO); ¹³C NMR (50 MHz, Me₂SO-d₆): δ 102.2 (C-1), 82.8 (C-4), 72.5 (2 C), 70.6 (C-2,3,5), 51.3 (C-6); FABMS (thioglycerol, KI): m/z 1535 (100%, $[M + K]^+$), 1497 (10, $[M + H]^+$). Anal. Calcd for C₄₈H₇₂N₂₄O₃₂: C, 38.50; H, 4.85; N, 22.45. Found: C, 38.38; H, 4.70; N, 22.56.

Per(6-amino-6-deoxy) cyclomaltooligosaccharide hydrochlorides (22, 26, and 30).— To a stirred solution of the corresponding per(6-azido-6-deoxy) cyclomaltooligosaccharides 21, 25, or 28 (1.8 g, 9.6 mequiv) in a mixture of dioxane (150 mL) and MeOH (30 mL) was added tri-*n*-butylphosphine (7 mL, 31 mmol) under N₂ at room temperature. After 1 h, concentrated NH₄OH (28%, 77 mL) was added slowly and the solution was stirred for 12 h under N₂. The solvents were evaporated and the residue was triturated with acetone. The solid material was collected, washed with acetone (2 × 100 mL), and dispersed with stirring in a mixture of EtOAc (150 mL), MeOH (250 mL), and aq HCl (10 M, 0.9 mL). The insoluble amino compound was filtered off, dissolved in water, and freeze-dried, resulting in 22, 26, or 30.

Hexakis(6-amino-6-deoxy)cyclomaltohexaose hydrochloride (**22**; 1.59 g, 87%); $[\alpha]_D^{20}$ + 110° (c 0.53, H₂O); lit. [21] $[\alpha]_D^{20}$ + 116° (c 0.53, H₂O).

Heptakis(6-amino-6-deoxy)cyclomaltoheptaose hydrochloride (**26**; 1.78 g, 98%); mp 182.4–182.8°C (from EtOH–H₂O); $[\alpha]_D^{20}$ + 128° (*c* 1, H₂O); lit. [22] mp 182–185°C, $[\alpha]_D^{20}$ + 131° (*c* 1, H₂O).

Octakis(6-amino-6-deoxy)cyclomaltooctaose hydrochloride (**30**; 1.51 g, 76%); mp 190–193°C (dec); $[\alpha]_D^{20} + 130°$ (c 0.86, H₂O); ¹³C NMR (125.7 MHz, D₂O): δ 100.0 (C-1), 80.4 (C-4), 71.4 (2 C), 67.2 (C-2,3,5), and 39.8 (C-6). Anal. Calcd for C₄₈H₉₃Cl₈N₈O₃₂: C, 36.52; H, 5.94; N, 7.13. Found: C, 36.27; H, 6.02; N, 6.89.

Per(6-deoxy-6-isothiocyanato)cyclomaltooligosaccharides (23, 27, and 31).—To a heterogeneous mixture of the corresponding per(6-amino-6-deoxy)cyclomaltooligosaccharide hydrochloride (0.15 g, 0.76 mequiv) in $1:1 \text{ H}_2\text{O}$ -acetone (5 mL) and CaCO₃ (0.3 g, 3 mmol) was added CSCl₂ (0.17 g, 0.12 mL, 1.52 mmol). The mixture was vigorously stirred for 4 h at room temperature, then the acetone was evaporated and additional water (15 mL) was added. The resulting suspension was adjusted to pH 4 by addition of 1 M and 0.1 M HCl and stirred for 30 min at room temperature. The insoluble isothiocyanato compound was then filtered off, washed successively with water, cold EtOH, and Et₂O, and dried.

Hexakis(6-deoxy-6-isothiocyanato)cyclomaltohexaose (**23**; 0.12 g, 82%); amorphous solid; mp > 225°C (dec); $[\alpha]_D^{20} + 20^\circ$ (c 1, Me₂SO); ν_{max}^{KBr} 3383 (OH) and 2101 cm⁻¹ (NCS); ¹³C NMR (125.5 MHz, Me₂SO-*d*₆): Table 2 and δ 129.7 (NCS); FABMS (thioglycerol): m/z 1241 (100%, [M + Na]⁺), 1219 (65, [M + H]⁺). Anal. Calcd for C₄₂H₅₄N₆O₂₄S₆: C, 41.37; H, 4.46; N, 6.89; S, 15.78. Found: C, 41.27; H, 4.49; N, 6.85; S, 15.69.

Heptakis(6-deoxy-6-isothiocyanato)cyclomaltoheptaose (27; 0.13 g, 89%); amorphous solid; mp > 255°C (dec); $[\alpha]_D^{20}$ + 46.0° (c 0.7, Me₂SO); ν_{max}^{KBr} 3380 (OH) and 2109 cm⁻¹ (NCS); ¹³C NMR (50.3 MHz, Me₂SO-d₆): Table 2 and δ 129.9 (NCS); FABMS (thioglycerol): KI, m/z 1460 (100%, $[M + K]^+$), 1422 (30, $[M + H]^+$); CsI, m/z 1554 (100%, $[M + Cs]^+$), 1422 (95, $[M + H]^+$). Anal. Calcd for C₄₉H₆₃N₇O₂₈S₇: C, 41.37; H, 4.46; N, 6.89; S, 15.78. Found: C, 41.40; H, 4.41; N, 6.51; S, 15.44.

Octakis(6-deoxy-6-isothiocyanato)cyclomaltooctaose (31; 0.12 g, 78%); mp > 240°C

(dec); $[\alpha]_D^{20} + 85^\circ$ (c 1.5, Me₂SO); ν_{max}^{KBr} 3383 (OH) and 2104 cm⁻¹ (NCS); ¹³C NMR (125.7 MHz, Me₂SO- d_6): Table 2 and δ 130.1 (NCS); FABMS (thioglycerol, KI): m/z 1663 (100%, $[M + K]^+$), 1625 (35, $[M + H]^+$). Anal. Calcd for C₅₆H₆₉N₈O₃₂S₈: C, 41.37; H, 4.46; N, 6.89; S, 15.78. Found: C, 41.16; H, 4.37; N, 6.52; S, 15.40.

Acknowledgments

We thank the Dirección General de Investigación Científica y Técnica for financial support (grant number PB 91/0617), the Junta de Andalucía for a doctoral fellowship to J.L.J.B., and the Ministerio de Educación y Ciencia of Spain for a postdoctoral fellowship to J.M.G.F.

References

- [1] For a review see: Z.J. Witczak, Adv. Carbohydr. Chem. Biochem., 44 (1986) 91-145.
- [2] N. Sharon, Pure Appl. Chem., 60 (1988) 1389-1394.
- [3] J. Fuentes, W. Moreda, C. Ortiz, I. Robina, and C. Welsh, Tetrahedron, 48 (1992) 6413-6424.
- [4] J. Fuentes Mota, M.A. Pradera Adrián, C. Ortiz Mellet, and J.M. García Fernández, Carbohydr. Res., 153 (1986) 318–324.
- [5] A. Ya. Khorlin, S.E. Zurabyan, and R.G. Macharadze, Carbohydr. Res, 85 (1980) 201-208.
- [6] H.G. Garg and R.W. Jeanloz, Adv. Carbohydr. Chem. Biochem., 43 (1985) 135-201.
- [7] W. Günther and H. Kunz, Angew. Chem., Int. Ed. Engl., 29 (1990) 1050-1051.
- [8] L. Drobnica, P. Kristián, and J. Augustín, in S. Patai (Ed.), The Chemistry of Cyanates and Their Thio Derivatives, Wiley, Chichester, 1977, Part 2, pp 1003-1221.
- [9] A.K. Mukerjee and R. Ashare, Chem. Rev., 91 (1991) 1-24.
- [10] M. Avalos, R. Babiano, C. García-Verdugo, J.L. Jiménez, and J.C. Palacios, *Tetrahedron Lett.*, 31 (1990) 2467–2470.
- [11] Z.J. Witczak, Tetrahedron Lett., 27 (1986) 155–158.
- [12] T. Hassel and H.P. Müller, Angew. Chem., Int. Ed. Engl., 26 (1987) 359-360.
- [13] W.D. Rees, J. Gliemann, and G.D. Holman, Biochem. J., 241 (1987) 857-862.
- [14] J.M. García Fernández, C. Ortiz Mellet, and J. Fuentes, Tetrahedron Lett., 33 (1992) 3931-3934.
- [15] J.M. García Fernández, C. Ortiz Mellet, and J. Fuentes, J. Org. Chem., 58 (1993) 5192-5199.
- [16] J. Fuentes Mota, J.L. Jiménez Blanco, C. Ortiz Mellet, and J.M. García Fernández, Carbohydr. Res., 257 (1994) 127-135.
- [17] J.M. García Fernández, C. Ortiz Mellet, J.L. Jiménez Blanco, and J. Fuentes, J. Org. Chem., 59 (1994) 1565-1572.
- [18] S. Umezawa, T. Tsuchiya, S. Nakada, and K. Tatsuta, Bull. Chem. Soc. Jpn., 40 (1967) 395-401.
- [19] J.M. García Fernández, A. Gadelle, and J. Defaye, Carbohydr. Res., 265 (1994) 249-269.
- [20] R. Khan, C.L. Bhardwaj, K.S. Mufti, and M.R. Jenner, Carbohydr. Res., 78 (1980) 185-189.
- [21] J. Boger, R.J. Corcorand, and J.-M. Lehn, Helv. Chim. Acta, 61 (1978) 2190-2218.
- [22] K. Tsujihara, H. Kurita, and M. Kawazu, Bull. Chem. Soc. Jpn., 50 (1977) 1567-1571.
- [23] A. Gadelle and J. Defaye, Angew. Chem., Int. Ed. Engl., 30 (1991) 78-80.
- [24] Yu.G. Gobolobov, I.N. Zhmurova, and L.F. Kasukhin, Tetrahedron, 37 (1982) 437-472.
- [25] H. Binder and J. Trittart, Z. Naturforsch., 28 (1973) 530-532.
- [26] E. Fujita and Y. Nagao, Adv. Heterocycl. Chem., 45 (1989) 1-36.
- [27] J. Defaye and J.M. García Fernández, Carbohydr. Res., 237 (1992) 223-247.
- [28] K. Bock, C. Pedersen, and H. Pedersen, Adv. Carbohydr. Chem. Biochem., 42 (1984) 193-225.
- [29] Y. Takahashi and T. Ogawa, Carbohydr. Res., 169 (1987) 127-149.
- [30] G. Birch, J. Chem. Soc., (1965) 3489-3490.

- [31] B. Castro, Y. Chapleur, and B. Gross, Bull. Soc. Chim. Fr., 11 (1973) 3034-3039.
- [32] G. Birch and A.C. Richardson, Carbohydr. Res., 8 (1968) 411-415.
- [33] H.H. Baer, A. Vargas Berenguel, Y.Y. Shu, J. Defaye, A. Gadelle, and F. Santoyo González, Carbohydr. Res., 228 (1992) 307-314.
- [34] Z. Szurmai, A. Liptak, and J. Szejtli, Staerke, 42 (1990) 447-449.