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Abstract: 4,4-Difluoro-ltx,25-dihydroxyvitamin D 3 was synthesized from ergosterol and analysis of its 19F 

NMR showed it to be a useful probe to analyze the receptor-bound A-ring conformation of vitamin D. 
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Biological responses mediated by lc~,25-(OH)2D 3 1 are regulated at the level of gene expression by 

binding of the vitamin D receptor (VDR)-ligand complex to the target gene [1]. It is now well documented 

that the transactivation function of members of a nuclear receptor super family is highly dependent on the 

conformation of a small C-terminal part of the receptor's ligand binding domain (AF2) [2] and three- 

dimensional structure of the ligand is critical to determine the conformation of AF2. Because of the flexible 

nature of vitamin D that can adopt a number of conformations around the side chain, seco-B-ring and A-ring, 

we are focusing our primary attention on the conformation-function relationship of vitamin D. A series of 

studies using rationally designed conformationally-restricted analogs have led us to propose the active side 

chain conformation of vitamin D [3]. To directly investigate the A-ring conformation binding to the VDR, we 

proposed the use of 19F NMR with fluorinated vitamin D as a probe and have been synthesizing various 

fluorinated A-ring analogs [4]. The A-ring has been known to adopt two chair conformations (Scheme 1), the 

ct- and 13-form, according to ~H NMR and X-ray analysis [5], but it has not been known which conformation is 

responsible for VDR binding. By monitoring the signal of fluorine substituents on the A-ring, we can analyze 

the conformation of the A-ring in the vitamin D-VDR complex without interference from proton signals. 
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This paper reports the successful synthesis of 4,4-difluorovitamin D analogs 2 and 3 as suitable probes 
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designed for the ~gF NMR study. The low-temperature t9F NMR spectrum of 2 showed two well separated 

frozen conformations indicating 2 to be a useful probe to analyze the VDR-bound A-ring conformation of 

vitamin D. 

4,4-Difluorovitamin D 2 was synthesized starting with an enone 4a which was constructed from 

ergosterol (Scheme 2). Electrophilic fluorination of 4a under thermodynamic conditions yielded exclusively 

4,4-difluorinated 3-ketone, which upon reduction with NaBH 4 gave the desired 31~-OH compound 5a as the 

major (62%) product, together with a 3a-OH isomer 6a as a minor product (10%) [6]. Fluoroprovitamin D 

6a was converted to 4,4-difluorovitamin D 3 9a by photochemical means as usual. A Is-hydroxyl group was 

introduced by Hesse's method [7] via a 5Z-isomer 11 a, which was produced selectively via S O2-adduct 10a 

[8]. Oxidation of 1 l a  with selenium oxide yielded lc~-hydroxylated product 12a as the major product (33%), 

together with its C-1 epimer (9%). Dye-sensitized photo-isomerization and removal of the protecting groups 

gave 4,4-difluoro-kx,25-dihydroxyvitamin D 3 2 which showed unusually long wavelength absorption 

maximum in the UV spectrum (Xmax 271 nm) [9]. Analogous 4,4-difluorovitamin D 3 was synthesized 

similarly from an enone 4 b derived from 7-dehydrocholesterol [9]. 

a) ~, b) ~,, c, d)~, ~ 2  ^ 

4 F F  HO.v ~ i T B D M s ~ ' F  
5: R' = OH; R" = H 
6: R'= H; R"= OH 9 10 

f) g, h) a = MOM R' 

J- " 2 b = , , . .T. ,V~ R' 

7: R' = OH; R"= H 
v - OTBDMS HO ' ' ' v ' ~  OTBDMS 8: R' = H; R" = OH 
11 12 Scheme  2 

e) 
Ira. 

Conditions: a) (PhSO2)2NF, tBuOK, THF,-30 °C; NaBH4, EtOH, r.t., 62 % for 5a, 10 % for 6a; b) hv, Hg lamp, 
PhH-EtOH, 0 °C, 52 %; EtOH, r.t., 52 %; c) liq. SO2, reflux, 75 %; d) TBDMSOTf, Et3 N, Tol, -20 °C to r.t., 41%; 
e) octane, 100 °C, 76 %; f) SeO2, NMO, MeOH-CH2CI 2, reflux, 33 %; g) hv, halogen lamp, anthracene, PhH- 
EtOH, 0 °C, 98 %; h) CSA, MeOH, r.t., 90 %. 

In the 19F NMR spectra of both 4,4-difluorovitamins 2 and 3, two distinct conformers were observed at 

low temperature. The spectrum of 3, which lacks a 1 a-hydroxyl group, showed two fluorine signals, 413-F at 

8-113.6(dd, J = 2 3 2 , 1 2 H z )  and 4c~-F at S -109. 5 ppm (d, J = 232 Hz) at 25 'C (Fig. la)[10].  At-95~C, 

these peaks become separated into two pairs of doublets in an approximately 8:2 ratio: ~i -121.1, -108.1 (each d, 

J = 226 Hz) and - 119.8, -92.9 (each d, J = 236 Hz); 8:2 (Fig. la). We assigned the major component to the 

a-conformer and the minor to the 13-conformer on the basis of the ~H NMR of 3 at -95 ~C [6, 11 ]. There is a 

smaller fluorine chemical shift difference in the a-conformer (13.1 ppm) and a larger chemical shift difference 

in the 13-conformer (26.9 ppm). 

Two A-ring conformers were also well separated in the 19F NMR spectra of lct-hydroxylated 

fluorovitamin D 2 at even higher temperature (-80 'C) (Fig. lb), the ratio of the two conformers being 

approximately 1:1. Compared with the spectrum of 3, one pair of doublets [~5 - 120.2 and -92.0 (each d, J = 
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240 Hz)] with a larger chemical shift difference (28.2 ppm)was assigned to the 13-conformer and the other [~- 

119.9 and -108.2 (each d, J =  230 Hz)] with a smaller difference (11.7 ppm) to the a-conformer. The large 

conformer-based fluorine chemical shift difference will help clarify which A-ring conformer is involved in the 

VDR-ligand complex [12]. 

Figure. 1 a)'gFNMR (CD2CI=-CD3OD) of 3 b) 19F NMR (CD2CI=-CD3OD) of 2 
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Dynamic ~H NMR studies have also been conducted on 2, and the energy barrier for A-ring flipping was 

estimated to be 9.8 kcal mol j using the modified Eyring equation [13], which is slightly larger than that of 1 

(9.5 kcal mol q) [14], and smaller than that of the 4,4-dimethylvitamin D analog (11.0 kcal mol ~) [15]. The 

observed increase in the energy barrier for 2 compared to 1 is probably due to steric congestion both between 

the two fluorine atoms and the protons at C-2 and C-6. 

Binding affinity of fluorovitamin D 2 for VDR was evaluated using bovine thymus VDR. Though the 

affinity of 2 was considerably small (about 1%) relative to the natural ligand 1, the VDR-bound form is 

estimated to be still exclusive (B/F: ca. 109) on the basis of Kd of 1. 

In conclusion, we have observed, for the first time, two conformers of the vitamin D A-ring in the 19F 

NMR using newly synthesized 4,4-difluoro- 1,25-dihydroxyvitamin D 3 2. 19F NMR study of the VDR-ligand 

complex is progressing through the use of this compound. 
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