ORGANIC LETTERS

2004 Vol. 6, No. 11 1777–1779

Efficient Methodology for the Synthesis of 2-C-Branched Glyco-amino Acids by Ring Opening of 1,2-Cyclopropanecarboxylated Sugars

Perali Ramu Sridhar, K. Chinna Ashalu, and S. Chandrasekaran*

Department of Organic Chemistry, Indian Institute of Science, Bangalore, India scn@orgchem.iisc.ernet.in

Received March 21, 2004

ABSTRACT

An efficient methodology for the synthesis of 2-C-branched glyco-amino acid derivatives by diastereoselective ring opening of 1,2-cyclopropanecarboxylated sugars in good yields is reported.

The past decade has seen several methods being introduced for the stereocontrolled cyclopropanation of glycals.¹ 1,2-Cyclopropanated sugars undergo ring opening to give 2-C-branched sugars when subjected to solvolysis in the presence of a stoichiometric amount of mercury(II) salts,² strong acid,³ or halonium ions.⁴ Recently, Madsen et al.,⁵ synthesized 2-C-branched carbohydrate derivatives using a Zeise reagent ([Pt(C₂H₄)Cl₂]₂) catalyzed ring opening of 1,2-cyclopropanated sugars with *O*-nucleophiles. Their results prompted us to use 1,2-cyclopropanecarboxylated sugars as synthons for the synthesis of glyco-amino acids (GAAs),⁶ utilizing their ability to undergo, in the presence of a protic solvent, electrophilic ring opening assisted by the adjacent oxygen

Toward this end, tri-O-benzyl-D-glucal 1 was treated with methyl diazoacetate (MDA) in dichloromethane with catalytic rhodium acetate (rt, 90 min) to furnish the 1,5-anhydro-2-deoxy-1,2-*C*-(*exo*-carbomethoxymethylene)-3,4,6-tri-*O*benzyl-α-D-glucitol 29 in 59% yield. Treatment of 2 with NIS/MeOH (28 °C, 8 h) afforded methyl-3,4,6-tri-O-benzyl-2-deoxy-2-C-(iodomethyl acetate)- β -D-glucopyranoside 3 in 75% yield as a single diastereomer⁷ in which two new stereocenters were introduced in a single reaction (Scheme 1). Further reaction of 3 with NaN₃/DMF (28 °C, 24 h) afforded azide 4 in 96% yield. The reduction of azide 4 to the amine was unsuccessful under various hydrogenation conditions when 5% Pd/C was used as the catalyst. Reduction did occur satisfactorily using Ph₃P/THF/H₂O (Staudinger reaction conditions), the amine 5 typically being isolated in 95% yield. It is interesting to note that our benzyltriethylammonium tetrathiomolybdate reduction methodology8 was

to furnish a 2-deoxy-2-C-branched glycoside with defined C-2 stereochemistry, inherently present in the cyclopropane-carboxylate.

⁽¹⁾ For a recent review on the preparation and ring opening of cyclopropanated carbohydrates, see: Cousins, G. S.; Hoberg. J. O. *Chem. Soc. Rev.* **2000**, *29*, 165.

⁽²⁾ Scott, R. W.; Heathcock, C. H. *Carbohydr. Res.* **1996**, *291*, 205.
(3) (a) Kim, C.; Hoang, R.; Theodorakis, E. A. *Org. Lett.* **1999**, *1*, 1295.
(b) Hoberg, J. O.; Lcaffey, D. J. *Tetrahedron Lett.* **1996**, *37*, 2533.

^{(4) (}a) Ramana, C. V.; Nagarajan, M. Carbohydr. Lett. 1998, 3, 117.
(b) Ramana, C. V.; Nagarajan, M. Synlett 1997, 763. (c) Bertinato, P.;
Sorensen, E. J.; Meng, D.; Danishefsky, S. J. J. Org. Chem. 1996, 61, 8000.
(5) (a) Beyer, J.; Madsen, R. J. Am. Chem. Soc. 1998, 120, 12137. (b)

Beyer, J.; Skaanderup, R.; Madsen, R. *J. Am. Chem. Soc.* **2000**, 122, 9575.

(6) A glyco-amino acid (GAA) is a saccharide attached to a single amino acid by any kind of covalent bond. McDevitt, J. P. Jr.: Lansbury, P. T. *J.*

acid by any kind of covalent bond. McDevitt, J. P., Jr.; Lansbury, P. T. J. Am. Chem. Soc. **1996**, 118, 3818.

⁽⁷⁾ The ¹³C NMR spectra of compound **3** showed only 13 lines in addition to the aromatic signals.

⁽⁸⁾ Sridhar, P. R.; Prabhu, K. R.; Chandrasekaran, S. J. Org. Chem. 2003, 68, 5261.

Scheme 1. General Strategy for the Synthesis of a Gluco-amino Acid from 3.4.6-Tri-*O*-benzyl-D-glucal

also effective for converting **4** into **5** (CH₃CN,))))), 28 °C, 6 h, 94%) (Scheme 1).

The aforementioned ring-opening of 1,2-cyclopropane-carboxylates could also be extended to the sugar derivatives. Thus, **6**, **10**, and **14** gave rise to the 2-C-branched gluco-amino acid derivatives **9**, **13**, and **17**, respectively, in good yields (65–85%) and with very high diastereoselectivity at

Table 1. Ring Opening of 1,2-Cyclopropanecarboxylated Sugar Derivatives: Synthesis of GAAs

6 BnO BnO COOMe 11 (72) 12 (94) BnO BnO COOMe 10 10 15 (85) 16 (98) BnO End	GAA (%) ^b	α:β ratio
1 BnO OBn 7 (65) ^a 8 (96) ^c BnO End of End		
2 BnO OBn 11 (72) 12 (94) BnO BnO OBn 10 10 15 (85) 16 (98) BnO OBn Bn	OMe	Only β
3 BnO 15 (85) 16 (98) BnO E	O OMe COOMe BnO NH ₂	α:β (3:7)
14	OOMe COOMe III NH ₂ 17 (92)	Onl y α
OH 4 DOW COOME 19 (65) 20 (98) BnOW BnOW BnOW BnOW BnOW BnOW BnOW BnOW	COOMe BnO NH ₂ 21 (95)	only β

^a TBDMS has been completely deprotected under NIS-mediated solvolytic ring opening of 1,2-cyclopropanecarboxylated sugar 6. ^b Isolated yield after column chromatography. ^c The free OH in 8 was acetylated prior to reduction of the azide.

Scheme 2

the newly formed C-1 and C-7 stereocenters (Table 1). The large coupling constant ($J \sim 8.8$ Hz) for the anomeric proton in all the ring-opened products showed that the sugar derivatives had a 1,2-trans configuration. The stereochemistry at C-2 was defined on the basis of the stereochemistry present in the 1,2-cyclopropanecarboxylated sugar precursors.

However, in the case of 1,5-anhydro-2-deoxy-1,2-C-(exo-carbomethoxymethylene)-3,4,6-tri-O-benzyl- α -D-galactol **10**, the ring-opened product gave a mixture of α , β -diastereomers in a ratio of 30:70¹⁰ (Table 1, entry 2). Treatment of compound **18** with NIS in anhydrous acetonitrile (4 Å molecular sieves) furnished the corresponding levoglucosan derivative **19** in good yield, which once again corroborated the 1,2-trans selectivity at the anomeric center. The iodide **19** was then converted to the azide **20** and this reduced under Staudinger reaction conditions or with tetrathiomolybdate to afford the levoglucosan-derived glyco-amino acid ester **21** in excellent yield (95%).

To ascertain the exact stereochemistry at C-7, the GAA derivative **17** was treated with phosgene (Et₃N/CH₂Cl₂, 0 °C, 3 h) to furnish the corresponding urea derivative **22** as a crystalline solid (Scheme 2), and it was subjected to X-ray crystallographic analysis. The crystal structure of compound **22** (Figure 1) was in accord with our stereochemical assignment for the ring-opened products.¹¹

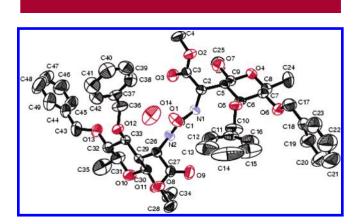


Figure 1. ORTEP diagram of compound 2212.

In conclusion, we have developed an effective method for the synthesis of 2-C-branched glyco-amino acid derivatives

Org. Lett., Vol. 6, No. 11, **2004**

by diastereoselective ring opening of 1,2-cyclopropanecarboxylated sugars. Further studies on the application of these new GAAs and the synthesis of glycopeptides by the above methodology are currently under investigation.

Acknowledgment. P.R.S. thanks the Council of Scientific and Industrial Research, India, for a senior research fellowship.

Supporting Information Available: ¹H and ¹³C NMR data for all the ring-opened products, azides, and GAA derivatives, ¹H ¹H COSY spectra for compounds **15**, **16**, and **17**, and crystallographic data for compound **22**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL049467V

Org. Lett., Vol. 6, No. 11, 2004

⁽⁹⁾ The high diastereoselectivity at the anomeric center may be attributed to the neighboring group (COOMe) participation.

⁽¹⁰⁾ Based on HPLC and ¹H NMR spectroscopy.

⁽¹¹⁾ The configuration of all GAA derivatives were assigned on the basis of the coupling constants and also the structure of compound 22.

⁽¹²⁾ One molecule of water was observed in the crystal structure. Crystal data for **22** (C₄₉H₆₂N₂O₁₄): $M_{\rm r}=908$, monoclinic, space group $P2_1$, a=12.1940 Å, b=19.8738 Å, c=17.5201 Å, $\beta=93.670(10)^\circ$, V=2499.75(27) Å³, Z=2, Mo K α radiation ($\lambda=0.710$ 73 Å), T=293(2) K; $R_1=0.0578$, w $R_2=0.115$ ($I>2\sigma(I)$); $R_1=0.102$, w $R_2=0.132$ (all data).