Carbohydrate Research 356 (2012) 142-151

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/carres

Light fluorous synthesis of glucosylated glycerol teichoic acids

W.F.J. Hogendorf^a, A. Kropec^b, D.V. Filippov^a, H.S. Overkleeft^a, J. Huebner^b, G.A. van der Marel^{a,*}, J.D.C. Codée^{a,*}

^a Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands

^b Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany

ARTICLE INFO

ABSTRACT

Article history: Received 20 January 2012 Accepted 24 February 2012 Available online 6 March 2012

Keywords: Teichoic acid Fluorous Glycerol Glucose Phosphate Phosphoramidite

We here describe the synthesis of glucosylated teichoic acid (TA) fragments using two complementary fluorous scaffolds. The use of a perfluorooctylpropylsulfonylethyl (F-Pse) linker in combination with (glucosyl)glycerol phosphoramidite building blocks allows for the assembly of TA fragments with a terminal phosphate mono-ester, whereas the use of a perfluorooctylsuccinyl spacer delivers TA oligomers featuring a terminal alcohol functionality. These complementary linker systems have been developed because the nature of the TA chain terminus can play a role in the biological activity of the synthetic TAs. A novel α -glucosylated glycerolphosphoramidite building block is introduced to allow for a robust light fluorous synthetic protocol.

© 2012 Elsevier Ltd. All rights reserved.

arbohydrat

1. Introduction

The cell walls of pathogenic and non-pathogenic Gram-positive bacteria are characterized by a thick peptidoglycan layer, in which polyanionic glycopolymers are present. An important class of these cell surface polymers is comprised by the teichoic acids (TAs), which can be divided in wall teichoic acids (WTAs), covalently linked to the peptidoglycan layer and lipoteichoic acids (LTAs), which are anchored in the bacterial membrane. The repeating units of both types of TA are generally alditol (glycerol, ribitol) phosphates of which the hydroxyl functions are randomly equipped with carbohydrate or p-alanine residues. TAs perform vital functions as exemplified by their role in membrane integrity and

* Corresponding authors.

permeability and their task as scaffold for various extracytoplasmic enzymes.¹ TAs also mediate extracellular interactions and are recognized by the mammalian adaptive and innate immune system, thus functioning as antigenic structures and immunostimulatory ligands for Toll-like receptors, respectively.² To establish structure-activity relationships of teichoic acids we started a programme aimed at the development of synthetic strategies to generate well-defined TA structures to help elucidate their mode of action at the molecular level.³

Enterococcus faecalis is a commensal, Gram-positive bacterium, responsible for many hospital related infections and represents a significant health threat especially to immunocompromised patients. The advent of strains resistant against multiple antibiotics is a strong stimulus for the development of alternative prophylactic and therapeutic strategies.⁴ *E. faecalis* LTA has been shown to be a target of protective antibodies, and as such it represents a potential candidate for future vaccine development.⁵ To identify potent

E-mail addresses: marel_g@chem.leidenuniv.nl (G.A. van der Marel), jcodee@ chem.leidenuniv.nl (J.D.C. Codée).

^{0008-6215/\$ -} see front matter \circledcirc 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.carres.2012.02.023

Figure 1. Lead structures 1 and 2.

antigenic fragments of the microheterogenic E. faecalis TA we developed an automated solid phase synthesis approach, in which well-defined TA fragments were assembled on a commercially available DNA synthesizer using suitably protected glycerol phosphoramidite building blocks.^{3b} Through this methodology we generated a small library of TA fragments, which allowed us to identify two potent antigenic TA structures in an opsonophagocytic killing inhibition assay (OPIA). In this assay compounds are screened for their ability to inhibit the complement-assisted killing of bacteria though opsonic antibodies.⁵ These two compounds, **1** and **2** (Fig. 1), are characterized by the presence of an α -glucosyl substituent on either of the two terminal glycerolphosphate residues. Notably, this type of substitution is common in Bacillus sub*tilis*^{1c,6} and several *Staphylococcus* species^{1c,7} but has not been encountered in native E. faecalis LTA. To further investigate these antigenic lead compounds we required an amount of these structures, larger than automated solid phase synthesis could provide us with and therefore we set out to develop a complementary synthesis strategy based on the use of 'light fluorous' chemistry.^{3c,8}

2. Results and discussion

We have recently disclosed that perfluorooctylpropylsulfonylethanol (F-Pse) can be used effectively as a phosphate protecting

group and concomitantly serve as a fluorous linker in the solution phase synthesis of TA fragments.^{3c,8g} Therefore we initially explored the synthesis of hexamer 10, a phosphorylated analogue of TA-fragment 1, using this linker-system. Thus, F-Pse 3 was elongated in a stepwise manner (Scheme 1) with glycerol phosphoramidite $\mathbf{4}^{3a}$ in a four-step elongation process, in which: (1) The phosphoramidite was coupled with the alcohol using dicyanoimidazole (DCI) as an activator in acetonitrile. (2) The resulting phosphite intermediate was oxidized using I₂ in a mixture of THF/H₂O/ pyridine. (3) From the elongated fragment the 4,4'-dimethoxytrityl (DMT) ether was cleaved using dichloroacetic acid (DCA) and triethylsilane (TES) in DCM. (4) Fluorous solid phase extraction (F-SPE) was employed to separate the fluorous products from the non-fluorous side products. Before the F-SPE purification the mixture was partitioned between acetonitrile/water (80/20) and hexane to remove the bulk of TES and DMT-H to simplify the F-SPE purification, as described previously.^{3c} Repeating this process four times led to pentamer 5 which was then elongated with benzylidene protected glucosylglycerol phosphoramidite 6 under the agency of DCI and oxidized. As the 4,6-O-benzylidene moiety is unstable towards DCA/TES, detritylation of the intermediate hexamer was effected using the milder PPTS/MeOH cocktail.3a,9 The presence of the lipophilic carbohydrate moiety did not influence the F-SPE purification and the target compound was obtained uneventfully in 74% yield. At this stage an aminospacer was introduced to allow the conjugation of the target structure to, for instance, a carrier protein. Condensation of hexamer 7 and phosphoramidite 8 was followed by oxidation and F-SPE to give the fully protected construct 9 in 86% yield. Deprotection of hexamer 9 started by removal of the cyanoethyl (CE) and F-Pse groups by overnight treatment with aqueous ammonia at 40 °C. The semi-protected intermediate was separated from the eliminated fluorous scaffold (perfluorooctylpropylsulfonylethene) using a Et₂O/H₂O extraction. Subsequently, the benzylidene moiety, benzyl ethers and benzyl carbamate function were all removed by means of hydrogenolysis (Pd/H_2) , leading to the target hexamer **10** in 98% vield. Surprisingly, in sharp contrast to its close analogue 1. hexamer **10** proved to be inactive in the OPIA inhibition assay, indicating that the presence of the terminal phosphate is detrimental to the antigenicity of the synthetic TA fragment.¹⁰

To allow the light-fluorous assembly of TA fragments without a terminal phosphate moiety we set out to probe a hydroxyl

Scheme 1. Assembly of TA-fragment 10.

Scheme 2. Synthesis of phosphoramidite 18 and perfluorooctylpropyl succinyl linked glycosyl glycerol 20.

protecting fluorous linker. Inspired by contemporary DNA synthesis methods, a succinyl type linker was deemed suitable because of its stability towards coupling, oxidation and detritylation conditions.¹¹ The base lability of a fluorous succinyl linker allows the same deprotection strategy as employed in the synthesis of hexamer 10. At the same time we were interested in developing a more acid-stable glucosyl glycerol synthon. As described above, the benzylidene acetal is sensitive to standard detritylation conditions, necessitating the use of a carefully controlled procedure in the removal of the temporary DMT group. Introduction of the benzylidene glucosyl glycerol synthon early on in the synthesis therefore significantly affects the robustness of the assembly process. We therefore implemented tetra-O-benzyl glucosyl synthon 18 in our subsequent syntheses (Schemes 2 and 3). This building block was prepared as described in Scheme 2. We first explored the use of per benzylated glucosyl imidate **11a**¹² for the construction of the crucial α -glucosyl linkage. Condensation of this donor with glycerol acceptor 12 in DCM led to formation of product **13a** with poor selectivity ($\alpha/\beta = 2: 1$). The use of ether as co-solvent improved the α/β -ratio, but the anomeric mixture proved to be inseparable. To circumvent this problem, we explored the use of a glucosyl donor bearing a bulky Fmoc protecting group on the C6 hydroxyl, as these are known to favour the formation of the α -product.¹³ Coupling 6-O-Fmoc glucosyl imidate **11b** with glycerol 12 using Et₂O as a solvent, led to the formation of 13b in high selectivity ($\alpha/\beta \sim 10/1$). The major amount of β -glucoside was removed by column chromatography, affording glucoside 13b in 91% yield (containing <3% β -adduct, based on ¹H NMR analysis). Compound 13b was then treated with DBU in DCM, and benzylation of the intermediate alcohol 14 led to tetrabenzylglucosyl derivative 15 in 87% yield. In the next step the allyl ether was removed by iridium catalysed isomerization, followed by oxidative cleavage of the intermediate enol ether, giving alcohol 16 in 87% yield. Installation of the DMT ether and desilylation led to building block 17, which was transformed into the phosphoramidite synthon 18 using N,Ndiisopropyl-2-cyanoethyl-chlorophosphoramidite and Et₃N. Alternatively, **17** was reacted with succinic anhydride and Et_3N in DCM, giving succinyl ester **19** in 96% yield. Subsequently, **19** was coupled to perfluorooctylpropylamine, using BOP as a coupling agent and detritylated to give the crude fluorous glucosylglycerol **20**, which was purified by F-SPE to give the pure target compound in 90% yield. This molecule was elongated in a step-wise manner with glycerol phosphoramidite **5** using the chemistry described above leading to hexamer **25**. The aminohexylspacer was then introduced to give the fully protected hexamer **26**. Deprotection by 25% aqueous ammonia (1 h, rt), was followed by hydrogenolysis to give 40 mg of target compound **2** (92%).

To broaden the palette of TA fragments, and further explore the effectiveness of the light fluorous chemistry, we continued with the assembly of hexamer **29**, containing two glucosyl moieties (Scheme 4). Pentamer **24** was coupled to glucosylglycerol phosphoramidite **18**, resulting in bis-glucosylated hexamer **27** in 87%. Also this compound was uneventfully purified by F-SPE. After introduction of the spacer, the resulting hexamer **28** was deprotected using the aforementioned conditions, to yield the bis-glucosyl TA fragment **29** in 96% yield.

3. Conclusion

We have described the development of two complementary fluorous linker systems for the assembly of TA fragments. The first linker, perfluorooctylpropylsulfonylethyl, is used as a phosphate protecting group and allows the assembly of TA fragments featuring a terminal phosphate monoester. The second linker, a perfluorooctylpropyl succinyl system, is used as a hydroxyl protecting functionality and leads to the formation of TA structures terminating in an alcohol functionality. Light fluorous chemistry is an efficient means for the assembly of TA fragments and allows the construction of pure TA oligomers in multi milligram quantities, sufficient for most initial biochemical studies. Full immunochemical evaluation of the compounds is ongoing and will be reported in due course.

Scheme 3. Light fluorous assembly of 2.

4. Experimental section

4.1. General

All chemicals (Acros, Fluka, Merck, Schleicher & Schuell, Sigma-Aldrich, Genscript) were used as received and reactions were carried out dry, under an argon atmosphere, at ambient temperature, unless stated otherwise. Column chromatography was performed on Screening Devices silica gel 60 (0.040-0.063 mm). TLC analysis was conducted on HPTLC aluminium sheets (Merck, silica gel 60, F245). Compounds were visualized by UV absorption (245 nm), by spraying with 20% H₂SO₄ in ethanol or with a solution of (NH₄)₆Mo₇O₂₄·4H₂O 25 g/l and (NH₄)₄Ce(SO₄)₄·2H₂O 10 g/l, in 10% aqueous H_2SO_4 followed by charring at +/- 140 °C. Some unsaturated compounds were visualized by spraying with a solution of KMnO₄ (2%) and K₂CO₃ (1%) in water. Optical rotation measurements $([\alpha]_D^{20})$ were performed on a Propol automated polarimeter (Sodium D-line, λ = 589 nm) with a concentration of 10 mg/ml (c = 1), unless stated otherwise. Infrared spectra were recorded on a Shimadzu FT-IR 8300. ³¹P, ¹H and ¹³C NMR spectra were recorded with a Bruker AV 400 (161.7, 400 and 125 MHz, respectively) or a Bruker DMX 600 (600 and 150 MHz, respectively). NMR spectra were recorded in CDCl₃ with a chemical shift (δ) relative to tetramethylsilane, unless stated otherwise. When D₂O was used, ¹H NMR spectra were recorded with chemical shift relative (δ) to HDO (4.755 ppm), ³¹P spectra were measured with chemical shift relative to 85% H₃PO₄ (external standard) and ¹³C

Scheme 4. Light fluorous assembly of 29.

NMR spectra were recorded with chemical shift relative to TMS (external standard). High resolution mass spectra (HRMS) were recorded by direct injection (2 μ l of a 2 μ M solution in water/ace-tonitrile; 50/50; v/v and either 0.1% formic acid or 10 mM ammonium formate for the oligomers) on a mass spectrometer (Thermo Finnigan LTQ Orbitrap) equipped with an electrospray ion source in positive mode (source voltage 3.5 kV, sheath gas flow 10, capillary temperature 275 °C) with resolution *R* = 60,000 at *m/z* 400 (mass range *m/z* = 150–2000) and dioctylphthalate (*m/z* = 391.28428) as a lock mass. The high resolution mass spectrometer was calibrated prior to measurements with a calibration mixture (Thermo Finnigan).

4.1.1. General procedure for phosphoramidite coupling, oxidation, detritylation and F-SPE

Starting alcohol was dissolved in ACN (0.1 M). DCI (0.25 M solution in CH₃CN, 2 equiv compared to phosphoramidite) was added, together with freshly activated MS 3 Å and the mixture was stirred under argon for 15 min. Phosphoramidite (0.175 M in ACN, 1.3–4.0 equiv) was added and the reaction was stirred until TLC analysis revealed full conversion of the starting material into a higher running spot (~1 h). Added were, respectively, H₂O (~1 ml) and I₂ (0.2 M in THF/pyr 4/1), and the mixture was stirred for an additional 5 min. The mixture was diluted with EtOAc (~50 ml) and washed with, respectively, satd aq Na₂S₂O₃ (~20 ml), 0.5 M KHSO₄ (~20 ml) and a 1/1 mixture of satd aq NaHCO₃ and brine (~20 ml). The organic layer was dried over Na₂SO₄ (s) and concentrated under reduced pressure. The residue was coevaporated once with

toluene (10 ml) before it was redissolved in DCM. Triethylsilane and dichloroacetic acid were added and the mixture was stirred until the bright orange colour fully disappeared (\sim 30 min). DCM $(\sim 40 \text{ ml})$ was added and the organic layer was washed with a 1/1 mixture of satd aq NaHCO₃ and brine (\sim 20 ml, check if pH >7), before it was dried over Na₂SO₄ and concentrated in vacuo. The residue was taken up in 4/1 ACN/H₂O (10 ml) and washed with hexane (50 ml). The hexane layer was extracted twice with 4/1 ACN/H₂O (2×10 ml) and the combined ACN/H₂O layers were concentrated under reduced pressure in a 100 ml pear shaped flask. The residue was taken up in 0.5 ml ACN and applied to a small column containing FluoroFlash[®] fluorous silica (4 g) which was preeluted with 1/1 ACN/H₂O. The column was eluted with 1/1 ACN/ H₂O until all the non-fluorous byproducts (DMTr, phosphates, DCI) were removed. Subsequently the fluorous product was eluted from the column with, respectively, CH₃CN and acetone.

4.1.2. Global deprotection and purification of oligomers

The fully protected oligomer was treated with a 9/1 mixture of 28% NH₄OH (aq)/1,4-dioxane at a concentration of 5 mg/ml at 40-45 °C overnight in a sealed flask or tube in case of 10. In the synthesis of oligomers 1 and 29, the corresponding protected hexamers (26 and 28, respectively) were treated with a 9/1 mixture of 28% NH₄OH (aq)/1,4-dioxane at a concentration of 5 mg/ml at room temperature for 2.5 h. Next, in all cases, the mixture was washed with Et₂O (equal volume) and the ether layer was extracted twice with H₂O. The aqueous layer was concentrated under reduced pressure after which NMR and HRMS analysis confirmed full conversion to the semiprotected intermediate. The intermediate was then treated with Pd (0)/H₂ in a slightly acidic (pH \sim 2.7) mixture of dioxane/water (1/4, containing \sim 1% AcOH). After stirring for three days the mixture was filtered and concentrated in vacuo. The residue was purified by size exclusion chromatography (Sephadex HW40, eluent: 0.15 M NH₄OAc). After repeated lyophilization, the purified product was eluted through a small column containing Dowex Na⁺ cation-exchange resin (type: 50WX4-200, stored on 0.5 M NaOH in H₂O, flushed with H₂O and MeOH before use). Lyophilization gave the fully deprotected oligomer of which the integrity and purity was confirmed by HRMS and NMR (¹H, ¹³C, ³¹P) analysis.

4.1.3. Glucosyl-2-O-benzylglycerol phosphate hexamer (7)

Glycerol phosphate pentamer 5 (286 mg, 139 µmol) and DCI (0.25 M solution in CH₃CN, 2.22 ml, 556 µmol) were dissolved in CH₃CN (2.0 ml) together with freshly activated MS 3 Å and stirred for 15 min under argon. Subsequently, glucosyl-glycerol phosphoramidite 6 (0.1 M in CH₃CN, 2.30 ml, 230 µmol) was added and the mixture stirred for 30 min at rt. H₂O (1.0 ml) was added after which the oxidation step was performed according to the general procedure. The crude intermediate was redissolved in a 1/1 mixture of DCM and MeOH (40 ml) and treated with PPTS (40 mg, 0.16 mmol) for 8 h under gentle stirring. The mixture was diluted with DCM (80 ml) and washed with a 1/1 mixture of satd aq NaH-CO3 and brine (50 ml). The organic layer was dried (Na2SO4) and concentrated in vacuo, after which the crude product was purified with FSPE, according to the general procedure. Glucosylated hexamer 7 (277 mg, 103 µmol, 74%) was obtained as a colourless oil. ³¹P NMR (161.7 MHz): $\delta = -1.9, -1.8$ (1P), -1.3 (2P), -1.1 to -0.9(3P); ¹H NMR (400 MHz): δ = 2.09–2.35 (m, 4H, F₁₇C₈CH₂CH₂CH₂CH₂ SO₂-, $F_{17}C_8CH_2CH_2CH_2SO_2$ -), 2.47–2.77 (m, 13H, $6 \times CH_2$ cyanoethyl, CH2-OH), 3.05-3.13 (m, 2H, F17C8CH2CH2CH2SO2-), 3.24-3.34 (m, 2H, -OCH₂CH₂SO₂-), 3.51-3.72 (m, 5H, H-2, H-4, H-6, CH₂ glycerol), 3.77–3.88 (m, 6H, 6 × CH glycerol), 3.98–4.34 (m, 37H, H-3, H-5, H-6', $11 \times CH_2$ glycerol, $6 \times CH_2$ cyanoethyl), 4.42– 4.50 (m, 2H, $-OCH_2CH_2SO_2-$), 4.56–4.65 (m, 10H, $5 \times CH_2$ Bn), 4.70 (d, 1H, J = 11.6 Hz, CHH Bn), 4.80 (d, 1H, J = 11.3 Hz, CHH Bn),

4.87 (d, 1H, *J* = 11.6 Hz, CH*H* Bn), 4.91 (d, 1H, *J* = 3.7 Hz, H-1), 4.95 (d, 1H, *J* = 11.3 Hz, CH*H* Bn), 5.55 (s, 1H, CH benzylidene), 7.25–7.40 (m, 38H, H_{arom}), 7.44–7.48 (m, 2H, H_{arom}); ¹³C NMR (100 MHz): δ = 13.3 (F₁₇C₈CH₂CH₂CH₂CO₂–), 19.2–19.5 (12 × CH₂ cyanoethyl), 29.2 (t, *J* = 22 Hz, F₁₇C₈CH₂CH₂CH₂SO₂–), 53.0, 53.1 (F₁₇C₈CH₂CH₂CH₂CH₂SO₂–, -OCH₂CH₂SO₂–), 60.9 (CH₂ glycerol), 61.3 (-OCH₂CH₂SO₂–), 62.0–62.4 (6 × CH₂ cyanoethyl), 62.8 (C-5), 65.4–66.0 (10 × CH₂ glycerol), 67.2 (CH₂ glycerol), 68.7 (C-6), 72.0–72.1 (5 × CH₂ Bn), 74.3 (CH₂ Bn), 75.0 (CH₂ Bn), 75.2–75.4 (5 × CH glycerol), 78.6–78.8 (C-2, C-3, CH glycerol), 82.0 (C-4), 98.6, 98.9 (C-1), 100.9 (CH benzylidene), 116.6–116.7 (6 × C_q cyanoethyl), 125.7 (CH_{arom}), 127.6–128.9 (CH_{arom}), 137.1–137.4 (7 × C_q Bn), 138.4 (C_q benzylidene); HRMS: C₁₁₁H₁₂₇F₁₇N₆O₃₈ P₆S + NH₄⁺ requires 2710.6403, found 2710.6393.

4.1.4. Glucosyl-2-O-benzylglycerol phosphate hexamer-amino hexyl spacer (9)

Hexamer 7 (272 mg, 101 µmol) was coupled to spacer phosphoramidite 8 (4 equiv), oxidized and purified (FSPE) using the general procedure as described above. Fully protected hexamer 9 (267 mg, 87.2 µmol, 86%) was obtained as a colourless oil. ³¹P NMR (161.7 MHz): $\delta = -1.9$, -1.8 (1P), -1.3 to -1.0 (6P); ¹H NMR (400 MHz): δ = 1.27–1.37 (m, 4H, 2 × CH₂ hexylspacer), 1.42–1.51 (m, 2H, CH₂ hexylspacer), 1.60–1.68 (m, 2H, CH₂ hexylspacer), 2.09–2.34 (m, 4H, F₁₇C₈CH₂CH₂CH₂CH₂SO₂-, F₁₇C₈CH₂CH₂CH₂SO₂-), 2.39–2.69 (m, 14H, $7 \times CH_2$ cyanoethyl), 3.05–3.17 (m, 4H, F₁₇C₈CH₂CH₂CH₂SO₂-, CH₂-N hexylspacer), 3.24-3.33 (m, 2H, -OCH₂CH₂SO₂-), 3.57-3.72 (m, 3H, H-2, H-4, H-6), 3.75-3.85 (m, 5H, 5 × CH glycerol), 3.94–4.33 (m, 44H, H-3, H-5, H-6', CH glycerol, $12 \times CH_2$ glycerol, $7 \times CH_2$ cyanoethyl, CH_2 –O hexylspacer), 4.43-4.50 (m, 4H, -OCH2CH2SO2-, CH2 Bn), 4.53-4.64 (m, 10H, 5 × CH₂ Bn), 4.71–4.77 (m, 2H, CH₂ Bn), 4.81, (d, 1H, J = 11.6 Hz, CHH Bn), 4.92, (d, 1H, J = 11.6 Hz, CHH Bn), 4.99–5.12 (m, 4H, H-1, NH CBz, CH2 CBz), 5.55 (s, 1H, CH benzylidene), 7.26-7.38 (m, 43H, H_{arom}), 7.44–7.48 (m, 2H, H_{arom}); ¹³C NMR (100 MHz): δ = 13.3 (F₁₇C₈CH₂CH₂CH₂SO₂-), 19.2-19.5 (7 × CH₂ cyanoethyl), 24.8, 25.9 ($2 \times CH_2$ hexylspacer), 29.3–29.9 ($2 \times CH_2$ hexylspacer, F₁₇C₈CH₂CH₂CH₂SO₂-), 40.7 (CH₂-N hexylspacer), 53.0, 53.1 (F₁₇C₈CH₂CH₂CH₂SO₂-, -OCH₂CH₂SO₂-), 61.3 (-OCH₂CH₂SO₂-), 61.8–62.4 (7 \times CH₂ cyanoethyl), 62.8 (C-5), 65.3–66.0 (11 \times CH₂ glycerol), 66.3 (CH₂ CBz), 68.4-68.6 (C-6, CH₂ glycerol), 72.0-72.2 (5 × CH₂ Bn), 73.4–73.5 (CH₂ Bn), 75.0 (CH₂ Bn), 75.2–75.5 (6 × CH glycerol), 78.0-78.1 (C-3), 78.9 (C-2), 81.7-81.8 (C-4), 97.4–97.7 (C-1), 100.8 (CH benzylidene), 116.6–116.7 (7 × C_q cyanoethyl), 125.7 (CH_{arom}), 127.5–128.9 (CH_{arom}), 136.6 (C_q Bn), 137.1–137.3 (6 × C_q Bn), 137.9 (C_q Bn), 138.5 (C_q benzylidene), 156.3 (C_q CBz); HRMS: $C_{128}H_{150}F_{17}N_8O_{43}P_7S + NH_4^+$ requires 3076.7748, found 3076.7789.

4.1.5. Glucosyl-glycerolphosphate hexamer (10)

Protected hexamer 9 (99.5 mg, 32.5 µmol) was treated with aqueous ammonia as described above. Additionally, the compound was eluted through a small column containing Dowex Na⁺ cationexchange resin (type: 50WX4-200, stored on 0.5 M NaOH in H₂O, flushed with H₂O and MeOH before use) and, subsequently, lyophilized, yielding the intermediate semiprotected hexamer (75.2 mg, 32.5 µmol, 100%) as an amorphous white solid. Analytical data intermediate: ³¹P NMR (161.7 MHz, D₂O): δ = 0.9–1.1 (6P), 2.9 (1P, phosphomonoester); ¹H NMR (400 MHz, D_2O): $\delta = 0.95-1.24$ (m, 6H, $3 \times CH_2$ hexylspacer), 1.34–1.44 (m, 2H, CH₂ hexylspacer), 2.85-2.94 (m, 2H, CH2-N hexylspacer), 3.51-4.15 (m, 38H, H-2, H-3, H-4, H-5, H-6, H-6', CH₂–O hexylspacer, $6 \times$ CH glycerol, $12 \times CH_2$ glycerol), 4.29–4.41 (m, 10H, $5 \times CH_2$ Bn), 4.47–4.58 $(m, 4H, 2 \times CH_2 Bn), 4.89 (s, 2H, CH_2 CBz), 5.29 (d, 1H, I = 3.6 Hz,$ H-1), 5.47 (s, 1H, CH benzylidene), 6.98–7.37 (m, 45H, H_{arom}); HRMS: $[C_{94}H_{120}NO_{41}P_7 + 2H]^{2+}$ requires 1068.7822, found

1068.7828. A portion of the intermediate (75.1 mg, 32.5 µmol) was deprotected with Pd (0)/H₂ using the standard procedure. Monoglucosylated hexamer 10 (45.5 mg, 31.7 µmol, 98%) was obtained as an amorphous white solid. ³¹P NMR (161.7 MHz, D₂O): δ = 0.9 (1P), 1.2-1.3 (4P), 1.4 (1P), 4.7 (1P, phosphomonoester); ¹H NMR (600 MHz, D₂O): δ = 1.38–1.43 (m, 4H, 2 × CH₂ hexylspacer), 1.60–1.68 (m, 4H, $2 \times CH_2$ hexylspacer), 2.97 (t, 2H, J = 7.5 Hz, CH₂-N hexylspacer), 3.37 (at, 1H, J = 9.6 Hz, H-4), 3.49 (dd, 1H, J = 3.8 Hz, 9.9 Hz, H-2), 3.71–3.77 (m, 3H, H-3, H-6, CHH glycerol), 3.79–4.04 (m, 32H, H-5, H-6', $5 \times CH$ glycerol, $11 \times CH_2$ glycerol, CHH glycerol, CH₂–O hexylspacer), 4.06–4.09 (m, 1H, CH glycerol), 5.14 (d, 1H, J = 3.7 Hz, H-1); ¹³C NMR (150 MHz, D₂O): $\delta = 25.4$, 26.1, 27.6 (3 \times CH₂ hexylspacer), 30.4 (d, J = 6.8 Hz, CH₂ hexylspacer), 40.4 (CH₂–N hexylspacer), 61.5 (C-6), 65.2 (d, J = 6.0 Hz, CH₂ glycerol), 65.7 (d, J = 4.5 Hz, CH₂ glycerol), 66.1 (d, J = 5.2 Hz, CH₂ glycerol), 67.1–67.3 ($8 \times$ CH₂ glycerol, CH₂–O hexylspacer), 67.7 (d, I = 5.5 Hz, CH₂ glycerol), 70.5 (t, I = 7.7 Hz, $4 \times$ CH glycerol), 70.7 (C-4), 71,3 (t, I = 7.3 Hz, CH glycerol), 72.5 (C-2), 72.8 (C-5), 73.9 (C-3), 76.4 (t, J = 8.0 Hz, CH glycerol), 98.7 (C-1); HRMS: $C_{30}H_{68}NO_{39}P_7 + H^+$ requires 1284.1605, found 1284.1610.

4.1.6. 3-O-Allyl-2-O-(2,3,4,6-tetra-O-benzyl-α,β-D-glucopyran osyl)-1-O-(*tert*-butyldiphenylsilyl)-*sn*-glycerol (13a)

To a cooled (0 °C) solution of donor **11a** (171 mg, 0.250 mmol) and semiprotected glycerol **12** (111 mg, 0.300 mmol) in a 4/1 mixture of Et₂O/DCM (5.0 ml) was added TMSOTf (2.25 µl, 12.4 µmol). After stirring for 40 min, Et₃N (3 drops) was added and the mixture diluted with DCM (10 ml). After washing once with a 1/1 mixture of satd aq NaHCO₃ and brine (10 ml), the organic layer was dried (Na₂SO₄) and concentrated in vacuo. Purification of the residue by silica gel column chromatography (EtOAc/PE) gave pseudodisaccharide **13a** (168 mg, 0.188 mmol, 75%) as an inseparable mixture of anomers (α/β ratio of ~4/1, based on ¹H NMR analysis. This was ~2/1 when the reaction was performed in pure DCM). For analytical data of the pure α -isomer see the synthesis of compound **15**.

4.1.7. 3-O-Allyl-2-O-(2,3,4-tri-O-benzyl-6-O-[9-fluorenylmethyl oxycarbonyl]-α-D-glucopyranosyl)-1-O-(*tert*-butyldiphenyl silyl)-*sn*-glycerol (13b)

To a cooled (0 °C) solution of donor **11b** (7.51 g, 8.90 mmol) and semiprotected glycerol 12 (3.96 g, 10.7 mmol) in Et₂O (180 ml) was added TfOH (157 µl, 1.78 mmol). After stirring for 25 min, satd aq NaHCO₃ (75 ml) was added and the layers separated. The ether layer was washed once with brine (50 ml) before it was dried (Na₂SO₄) and concentrated in vacuo. Purification of the residue by silica gel column chromatography (EtOAc/PE) gave pseudodisaccharide 13b (8.30 g, 8.09 mmol, 91%) as a colourless oil containing a minor amount (<3%, based on ¹H NMR analysis) of the β-product. $[\alpha]_D^{20}$ (CHCl₃): +32.0; IR: 1007, 1072, 1254, 1450, 1748, 2859; ¹H NMR (400 MHz): δ = 1.05 (s, 9H, *t*-Bu TBDPS), 3.58–3.63 (m, 3H, H-2, H-4, CHH glycerol), 3.69-3.80 (m, 3H, CHH glycerol, CH₂ glycerol), 3.94–4.14 (m, 6H, H-3, H-5, CH glycerol, CHH FMOc, CH2 allyl), 4.20-4.26 (m, 2H, CHH FMOc, CH FMOc), 4.31-4.40 (m, 2H, H-6, H-6'), 4.55 (d, 1H, J = 10.8 Hz, CHH Bn), 4.69 (d, 1H, J = 11.6 Hz, CHH Bn), 4.76–4.79 (m, 3H, $1 \times CH_2$ Bn, CHH Bn), 4.88 (d, 1H, J = 10.8 Hz, CHH Bn), 5.00 (d, 1H, J = 10.8 Hz, CHH Bn), 5.16 (d, 1H, *J* = 10.8 Hz, CHH allyl), 5.25 (dd, 1H, *J* = 1.4 Hz, 17.4 Hz, CHH allyl), 5.32 (d, 1H, / = 3.6 Hz, H-1), 5.87 (ddd, 1H, *J* = 5.5 Hz, 10.7 Hz, 17.1 Hz, CH allyl), 7.22–7.40 (m, 25H, H_{arom}), 7.58 (d, 1H, J = 7.5 Hz, H_{arom}), 7.61 (d, 1H, J = 7.5 Hz, H_{arom}), 7.66 (d, 4H, J = 7.1 Hz, H_{arom}), 7.75 (d, 2H, J = 7.6 Hz, H_{arom}); ¹³C NMR (100 MHz): δ = 19.2 (C_q t-Bu), 26.8 (3 × CH₃ TBDPS), 46.6 (CH FMOc), 63.8 (CH₂ glycerol), 66.2 (CH₂ FMOc), 68.5 (C-5), 69.9 (C-6), 70.6 (CH₂ glycerol), 72.2 (CH₂ allyl), 72.3 (CH₂ Bn), 75.0 (CH₂

Bn), 75.7 (CH₂ Bn), 75.8 (CH glycerol), 77.1 (C-4), 79.5 (C-2), 81.7 (C-3), 95.7 (C-1), 116.9 (CH₂ allyl), 125.1, 125.2 (CH_{arom}), 127.1–128.6 (CH_{arom}), 129.7 (CH_{arom}), 133.1, 133.2 (C_q phenyl), 134.6 (CH allyl), 135.5 (CH_{arom}), 138.1, 138.2, 138.7, 138.8 ($3 \times C_q$ Bn), 141.2, 141.2 ($2 \times C_q$ FMOc), 143.2, 143.4 ($2 \times C_q$ FMOc), 155.0 (C=0 FMOc); HRMS: C₆₄H₆₈O₁₀Si + NH₄⁺ requires 1042.4920, found 1042.4933.

4.1.8. 3-O-Allyl-2-O-(2,3,4-tri-O-benzyl-α-D-glucopyranosyl)-1-O-(*tert*-butyldiphenylsilyl)-*sn*-glycerol (14)

To a solution of compound 13b (3.40 g, 3.32 mmol) in DCM (65 ml) was added DBU (165 µl, 1.10 mmol). After stirring for 15 min the solvent was removed under reduced pressure and the residue purified by silica gel column chromatography (EtOAc/PE) giving alcohol 14 (2.50 g, 3.11 mmol, 94%) as a colourless oil. [α]_D²⁰ (CHCl₃): +33.6; IR: 737, 1026, 1072, 1454, 2928; ¹H NMR (400 MHz): δ = 1.03 (s, 9H, t-Bu TBDPS), 3.48-3.80 (m, 9H, H-2, H-4, H-5, H-6, H-6', 2 × CH₂ glycerol), 3.97–4.04 (m, 4H, H-3, CH glycerol, CH₂ allyl), 4.61 (d, 1H, J = 10.8 Hz, CHH Bn), 4.68 (d, 1H, *I* = 12.0 Hz, CHH Bn), 4.76 (d, 1H, *I* = 12.0 Hz, CHH Bn), 4.78 (d, 1H, / = 10.4 Hz, CHH Bn), 4.86 (d, 1H, / = 11.2 Hz, CHH Bn), 4.97 (d, 1H, J = 10.8 Hz, CHH Bn), 5.16 (dd, 1H, J = 1.6 Hz, 10.4 Hz, CHH allyl), 5,24–5.28 (m, 2H, H-1, CHH allyl), 5.88 (ddd, 1H, J = 5.5 Hz, 10.7 Hz, 17.1 Hz, CH allyl), 7.24-7.42 (m, 21H, Harom), 7.64-7.67 (m, 4H, H_{arom}); ¹³C NMR (100 MHz): $\delta = 19.1$ (C_q t-Bu), 26.8 $(3 \times CH_3 \text{ TBDPS})$, 61.4 (C-6), 63.8 (CH₂ glycerol), 70.7 (C-5), 70.9 (CH₂ glycerol), 72.2 (CH₂ allyl), 72.3 (CH₂ Bn), 74.9 (CH₂ Bn), 75.6 (CH₂ Bn), 76.0 (CH glycerol), 77.1 (C-4), 79.6 (C-2), 81.6 (C-3), 96.0 (C-1), 116.9 (CH₂ allyl), 127.5-128.4 (CH_{arom}), 129.7 (CH_{arom}), 133.1, 133.2 (C_q phenyl), 134.6 (CH allyl), 135.5 (CH_{arom}), 138.2, 138.3, 138.8 (3 \times Cq Bn); HRMS: C49H58O8Si + Na * requires 825.3793, found 825.3784.

4.1.9. 3-O-Allyl-2-O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyran osyl)-1-O-(*tert*-butyldiphenylsilyl)-*sn*-glycerol (15)

A solution of alcohol 14 (2.521 g, 3.14 mmol) together with BnBr (0.94 ml, 7.85 mmol) in DMF (20 ml) was stirred for 5 min at 0 °C, after which NaH (60% dispersion in mineral oil, 0.314 g. 7.85 mmol) was added. The resulting mixture was stirred for 75 min and allowed to slowly warm up to rt, before MeOH (5.0 ml) was added. After stirring for 15 min, H₂O (30 ml) was added and the mixture was extracted with Et₂O (50 ml). The organic layer was washed twice with H₂O (20 ml) and once with brine (20 ml) before it was dried (Na₂SO₄) and concentrated in vacuo. Purification of the residual oil by silica gel column chromatography (EtOAc/PE) furnished perbenzylglucosyl glycerol derivative 15 (2.429 g, 2.72 mmol, 87%) as a colourless oil. $[\alpha]_D^{20}$ (CHCl₃): +31.8; IR: 737, 1026, 1069, 1454, 2928; ¹H NMR (400 MHz): δ = 1.05 (s, 9H, t-Bu TBDPS), 3.36 (dd, 1H, J = 1.7 Hz, 10.6 Hz, H-6), 3.54-3.84 (m, 8H, H-2, H-4, H-5, H-6', $2 \times CH_2$ glyc), 3.95–4.00 (m, 3H, CH_2 allyl, H-3), 4.06 (m, 1H, CH glycerol), 4.36 (d, 1H, J = 12.4 Hz, CHH Bn), 4.43 (d, 1H, J = 10.8 Hz, CHH Bn), 4.55 (d, 1H, J = 12.0 Hz, CHH Bn), 4.69 (d, 1H, J = 12.0 Hz, CHH Bn), 4.74–4.82 (m, 3H, CH₂ Bn, CHH Bn), 4.97 (d, 1H, J = 10.8 Hz, CHH Bn), 5.15 (dd, 1H, J = 1.4 Hz, 10.6 Hz, CHH allyl), 5.24–5.29 (m, 2H, CHH allyl, H-1), 5.88 (ddd, 1H, J = 5.5 Hz, 10.7 Hz, 17.1 Hz, CH allyl), 7.08–7.11 (m, 2H, H_{arom}), 7.20–7.38 (m, 24H, H_{arom}), 7.64–7.67 (m, 4H, H_{arom}); ¹³C NMR (100 MHz): δ = 19.1 (C_q t-Bu), 26.8 (3 × CH₃ TBDPS), 63.8 (CH₂ glycerol), 68.0 (C-6), 70.1 (C-5), 70.5 (CH₂ glycerol), 72.2 (CH₂ allyl), 72.2 (CH₂ Bn), 73.3 (CH₂ Bn), 74.8 (CH₂ Bn), 75.5 (CH₂ Bn), 76.0 (CH glycerol), 77.4 (C-4), 79.5 (C-2), 81.8 (C-3), 96.1 (C-1), 116.7 (CH₂ allyl), 127.4–128.2 (CH_{arom}), 129.6 (CH_{arom}), 133.1, 133.3 (Cq phenyl), 134.6 (CH allyl), 135.5 (CH_{arom}), 137.9, 138.3, 138.4, 138.8 (4 \times C_q Bn); HRMS: C₅₆H₆₄O₈Si + NH₄⁺ requires 910.4709, found 910.4718.

4.1.10. 2-O-(2,3,4,6-Tetra-O-benzyl-α-D-glucopyranosyl)-1-O-(*tert*-butyldiphenylsilyl)-*sn*-glycerol (16)

A solution of glycoside 15 (2.37 g, 2.65 mmol) in freshly distilled THF (18 ml) was stirred under argon for 30 min. After the addition of Ir(COD)(Ph₂MeP)₂PF₆ (112 mg, 0.133 mmol) the solution was purged with H_2 (g) for ~15 s. After stirring under argon for 2 h, the mixture was diluted with THF (20 ml) and satd aq NaH- CO_3 (20 ml). Upon addition of I₂ (1.01 g, 3.98 mmol), the mixture was allowed to stir for 1.5 h at room temperature. The mixture was then diluted with EtOAc (100 ml) and washed with, respectively, satd aq NaS₂O₃ (30 ml) and brine (40 ml). The organic layer was dried over Na₂SO₄ and concentrated in vacuo. Column chromatography (EtOAc/PE) afforded 16 (1.97 g, 2.31 mmol, 87%) as a colourless oil. $[\alpha]_D^{20}$ (CHCl₃): +21.4; IR: 737, 1026, 1069, 1454, 1724, 2928, 3449; ¹H NMR (400 MHz): δ = 1.05 (s, 9H, *t*-Bu TBDPS), 3.11 (bs, 1H, CH₂OH), 3.32 (dd, 1H, J = 1.5 Hz, 10.6 Hz, H-6), 3.54-3.57 (m, 2H, H-2, H-6'), 3.62–3.70 (m, 3H, H-4, 2 × CHH glycerol), 3.77-3.86 (m, 4H, H-5, CH glycerol, $2 \times CHH$ glycerol), 3.97 (t, 1H, J = 9.3 Hz, H-3), 4.33 (d, 1H, J = 12.2 Hz, CHH Bn), 4.44 (d, 1H, J = 10.9 Hz, CHH Bn), 4.52 (d, 1H, J = 12.2 Hz, CHH Bn), 4.66 (d, 1H, J = 11.6 Hz, CHH Bn), 4.77-4.85 (m, 3H, CH₂ Bn, CHH Bn), 4.90-4.93 (m, 2H, H-1, CHH Bn), 7.08-7.12 (m, 2H, Harom), 7.20-7.39 (m, 24H, H_{arom}), 7.62–7.64 (m, 4H, H_{arom}); ¹³C NMR (100 MHz): δ = 19.0 (C_a t-Bu), 26.7 (3 × CH₃ TBDPS), 62.6 (CH₂ glycerol), 63.7 (CH₂ glycerol), 67.8 (C-6), 70.4 (C-5), 73.3, 73.8, 74.7, 75.5 (4 × CH₂ Bn), 77.4 (C-4), 79.4 (C-2), 80.8 (CH glycerol), 82.0 (C-3), 98.4 (C-1), 127.4-128.4 (CH_{arom}), 129.6 (CH_{arom}), 132.9, 133.0 (C_q phenyl), 135.4 (CH_{arom}), 137.4, 137.6, 138.1, 138.5 (C_q Bn); HRMS: $C_{53}H_{60}O_8Si + Na^+$ requires 875.3950, found 875.3946.

4.1.11. 2-0-(2,3,4,6-Tetra-O-benzyl-α-p-glucopyranosyl)-3-0-(4,4'-dimethoxytrityl)-*sn*-glycerol (17)

To a cooled (0 °C) solution of alcohol 16 (1.85 g, 2.17 mmol) and Et₃N (0.45 ml, 3.3 mmol) in DCM (11 ml) was added DMTr-Cl (881 mg, 2.60 mmol). The mixture was stirred for 2.5 h before MeOH (1.0 ml) was added. After stirring for an additional 15 min the reaction mixture was diluted with DCM (40 ml) and washed with a 1/1 mixture of satd aq NaHCO₃ and brine (30 ml). The aqueous layer was extracted with DCM (2×10 ml) and the combined organic layers were dried (Na₂SO₄) and concentrated under reduced pressure. The residual oil was redissolved in THF (15 ml) and, subsequently, TBAF (1 M solution in THF, 7.8 ml) was added. The mixture was stirred for 3 h after which the volatiles were removed in vacuo and the residual oil was purified by silica gel column chromatography (EtOAc/PE/Et₃N) yielding mono-alcohol 17 (1.77 g, 1.93 mmol, 89%) as a colourless oil. $[\alpha]_D^{20}$ (CHCl₃): +40.6; IR: 737, 1030, 1065, 1250, 1508, 1609, 2927, 3487; ¹H NMR (400 MHz): δ = 2.85 (at, 1H, J = 5.0 Hz, CH₂OH), 3.21 (dd, 1H, *J* = 6.1 Hz, 9.6 Hz, CHH glycerol), 3.35 (dd, 1H, *J* = 5.5 Hz, 9.6 Hz, CHH glycerol), 3.53–3.57 (m, 2H, H-2, H-4), 3.61–3.67 (m, 3H, H-6, H-6', CHH glycerol), 3.71 (s, 6H, 2 × OMe), 3.76–3.82 (m, 1H, CHH glycerol), 3.86 (m, 1H, CH glycerol), 3.96-4.04 (m, 2H, H-3, H-5), 4.46 (d, 1H, J = 10.8 Hz, CHH Bn), 4.47 (d, 1H, J = 12.4 Hz, CHH Bn), 4.58 (d, 1H, J = 11.6 Hz, CHH Bn), 4.63 (d, 1H, J = 12.0 Hz, CHH Bn), 4.80 (d, 1H, J = 10.4 Hz, CHH Bn), 4.82 (d, 1H, J = 10.4 Hz, CHH Bn), 4.96 (d, 1H, J = 10.8 Hz, CHH Bn), 4.99 (d, 1H, J = 3.6 Hz, H-1), 6.78–6.81 (m, 4H, H_{arom}), 7.11–7.13 (m, 2H, H_{arom}), 7.18–7.36 (m, 25H, H_{arom}), 7.46 (d, 2H, J = 7.4 Hz, H_{ar-} _{om}); ¹³C NMR (100 MHz): δ = 55.0 (2 × OMe), 63.4 (CH₂ glycerol), 63.9 (CH₂ glycerol), 68.5 (C-6), 70.5 (C-5), 72.6, 73.4, 75.0, 75.6 (4 × CH₂ Bn), 77.7 (C-4), 79.5 (C-2), 80.0 (CH glycerol), 81.8 (C-3), 86.3 (Cq DMTr), 96.8 (C-1), 113.0 (CHarom), 126.7-129.0 (CHarom), 130.0 (CH_{arom}), 135.8, 137.5, 137.9, 138.0, 138.6, 144.7, 158.4 $(4 \times C_q Bn, 5 \times C_q DMTr)$; HRMS: $C_{58}H_{60}O_{10} + Na^+$ requires 939.4079, found 939.4090.

4.1.12. 1-O-([*N*,*N*-Diisopropyl]-2-cyanoethyl-phosphoramidite)-2-O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-3-O-(4,4'dimethoxytrityl)-*sn*-glycerol (18)

To a cooled (0 °C) solution of alcohol 17 (801 mg, 0.873 mmol) and Et₃N (0.19 ml, 1.4 mmol) in DCM (6.0 ml) was added 2-cyanoethyl-N,N-diisopropylchlorophosphoramidite (258 mg, 1.09 mmol). After stirring for 30 min, the reaction was quenched by the addition of H₂O (1.0 ml), diluted with DCM (20 ml) and washed with a 1/1 mixture of satd aq NaHCO₃ and brine (20 ml). The aqueous layer was extracted with DCM (2×10 ml) and the combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. Purification of the residue by column chromatography (EtOAc/PE/Et₃N) gave phosphoramidite 18 (722 mg, 0.646 mmol, 74%) as a colourless oil. IR: 1030, 1250, 1508, 1605, 2928; ³¹P NMR (161.7 MHz, CD₃CN): δ = 149.0, 149.4 (diastereoisomers); ¹H NMR (400 MHz, CD₃CN, mixture of diastereoisomers): $\delta = 1.04 - 1.12$ (m, 12H, 4 × CH₃ isopropylamino), 2.40–2.42 (m, 2H, CH₂ cyanoethyl), 3.16–3.25 (m, 2H, CH₂ glycerol), 3.44-3.55 (m, 4H, H-2, H-4, 2 × CH isopropylamino), 3.60–3.88 (m, 13H, H-3, H-6, H-6', 2 × OMe, CH₂ glycerol, CH₂ cyanoethyl), 3.91-4.02 (m, 2H, H-5, CH glycerol), 4.48-4.61 (m, 5H, CH₂ Bn), 4.72–4.80 (m, 2H, C₂ Bn), 4.86–4.90 (m, 1H, CHH Bn), 5.15–5.18 (m, 1H, H-1), 6.80 (d, 4H, J = 8.9 Hz, H_{arom}), 7.12–7.36 (m, 27H, H_{arom}), 7.44–7.47 (m, 2H, H_{arom}); ¹³C NMR (100 MHz): δ = 24.9–25.1 (4 × CH₃ isopropylamino), 43.7–43.8 (2 × CH isopropylamino), 55.8 (2 × OMe), 59.3-59.6 (CH₂ glycerol), 64.3-64.4 (CH₂ glycerol, CH₂ cyanoethyl), 69.9 (C-6), 71.4-71.5 (C-5), 72.8-72.9, 73.9, 75.4–75.5, 76.0 (4 × CH₂ Bn), 77.5–77.7 (CH glycerol), 78.8 (C-4), 81.0 (C-2), 82.5 (C-3), 87.2 (C_q DMTr), 97.1-97.3 (C-1), 114.0 (CH_{arom}), 127.7-129.3 (CH_{arom}), 131.0 (CH_{arom}), 136.9, 139.5, 139.5, 139.7, 139.8, 140.1, 146.1, 159.6 (4 \times C_q Bn, 5 \times C_q DMTr, C_{q} cyanoethyl); HRMS: $C_{67}H_{77}N_2O_{11}P + H^+$ requires 1117.5338, found 1117.5337.

4.1.13. 2-0-(2,3,4,6-Tetra-O-benzyl-α-D-glucopyranosyl)-3-0-(4,4'-dimethoxytrityl)-1-0-succinyl-*sn*-glycerol (19)

To a cooled (0 °C) solution of alcohol **17** (914 mg, 0.997 mmol) and Et₃N (1.52 ml, 11.0 mmol) in DCM (10 ml) was added succinic anhydride (498 mg, 4.98 mmol). After stirring for 1 h the mixture was concentrated under reduced pressure, after which column chromatography (EtOAc/PE/Et₃N) gave succinyl ester 19 (966 mg, 0.963 mmol, 96%) as a pale yellow oil. $[\alpha]_D^{20}$ (CHCl₃): +36.6; IR: 1030, 1153, 1246, 1508, 1609, 1713, 1736, 2928; ¹H NMR (400 MHz, CD₃CN): δ = 2.49 (s, 4H, 2 × CH₂ succinvl), 3.22–3.31 (m, 2H, CH₂ glycerol), 3.50 (dd, 1H, J = 3.5 Hz, 9.7 Hz, H-2), 3.57 (at, 1H, J = 9.5 Hz, H-4), 3.68–3.77 (m, 8H, H-6, H-6', $2 \times OMe$), 3.90 (at, 1H, J = 9.3 Hz, H-3), 3.93-3.98 (m, 1H, H-5), 4.01-4.08 (m, 1H, CH glycerol), 4.23–4.32 (m, 2H, CH₂ glycerol), 4.49–4.61 (m, 5H, CHH Bn, $2 \times CH_2$ Bn), 4.78 (d, 1H, J = 11.1 Hz, CHH Bn), 4.83 (d, 1H, J = 11.1 Hz, CHH Bn), 4.91 (d, 1H, J = 11.1 Hz, CHH Bn), 5.12 (d, 1H, J = 3.5 Hz, H-1), 6.84 (d, 4H, J = 8.9 Hz, H_{arom}), 7.16–7.39 (m, 27H, H_{arom}), 7.48 (d, 2H, J = 7.4 Hz, H_{arom}); ¹³C NMR (100 MHz, CD₃CN): δ = 29.8, 30.3 (2 × CH₂ succinyl), 56.5 $(2 \times OMe)$, 64.1 (CH₂ glycerol), 65.9 (CH₂ glycerol), 70.5 (C-6), 72.2 (C-5), 73.7, 74.5, 76.1 (3 × CH₂ Bn), 76.2 (CH glycerol), 76.6 (CH2 Bn), 79.4 (C-4), 81.5 (C-2), 82.9 (C-3), 87.9 (Cq DMTr), 97.6 (C-1), 114.7 (CH_{arom}), 128.4–129.9 (CH_{arom}), 131.6 (CH_{arom}), 137.3, 137.4, 139.9, 140.0, 140.2, 140.7, 146.6, 160.2 (5 \times C $_q$ DMTr, $4 \times C_q$ Bn), 173.5, 174.9 (2 × C=O succinyl); HRMS: $C_{62}H_{64}O_{13} + Na^+$ requires 1039.4239, found 1039.4237.

4.1.14. 2-O-(2,3,4,6-Tetra-O-benzyl-α-D-glucopyranosyl)-1-O-(*N*-[3-perfluorooctylpropyl]-succinamidyl-*sn*-glycerol (20)

To a solution of compound **19** (351 mg, 0.350 mmol), perfluorooctylpropylamine (119 mg, 0.250 mmol) and *N*,*N*-diisopropylethylamine (0.366 ml, 2.10 mmol) in a 2/1 mixture of DCM/DMF (5.0 ml) was added BOP (310 mg, 0.700 mmol). The mixture was stirred for 1.5 h before it was diluted with EtOAc (100 ml) and, subsequently, washed with satd aq NaHCO₃ (2×50 ml), H₂O $(2 \times 50 \text{ ml})$ and brine (50 ml). The organic layer was dried (Na₂SO₄) and concentrated under reduced pressure, after which the residue was taken up in DCM (5.0 ml). After the addition of, respectively, triethylsilane (0.605 ml, 3.75 mmol) and dichloroacetic acid (0.308 ml, 3.75 mmol) the mixture was stirred for 30 min and, subsequently, diluted with DCM (40 ml) and washed with a 1/1 mixture of satd aq NaHCO₃ and brine (20 ml). The organic layer was dried (Na₂SO₄) and concentrated in vacuo, after which the residue was partitioned between 80/20 acetonitrile/water and hexane and purified by FSPE as described in the general procedure. Fluorous compound **20** (263 mg, 0.224 mmol, 90%) was isolated as an amorphous solid. [α]²⁰_D (CHCl₃): +23.8; IR: 1026, 1065, 1146, 1200, 1547, 1644, 1736, 2924; ¹H NMR (400 MHz): $\delta = 1.71 - 1.79$ (m, 2H, F₁₇C₈CH₂CH₂CH₂N), 1.99–2.13 (m, 2H, F₁₇C₈CH₂CH₂CH₂N), 2.38 (t, 2H, J = 6.7 Hz, CH₂ succinyl), 2.63 (t, 2H, J = 6.7 Hz, CH₂ succinyl), 3.24 (dd, 2H, I = 6.8 Hz, 13.3 Hz, $F_{17}C_8CH_2CH_2CH_2N$), 3.54–3.75 (m, 6H, H-2, H-4, H-6, H-6', CH₂ glycerol), 3.83-3.89 (m, 1H, CH glycerol), 3.91-3.96 (m, 1H, H-5), 4.00 (at, 1H, J = 9.4 Hz, H-3), 4.13-4.16 (m, 2H, CH₂ glycerol), 4.46-4.50 (m, 2H, 2 × CHH Bn), 4.59 (d, 1H, J = 12.1 Hz, CHH Bn), 4.67 (d, 1H, J = 11.6 Hz, CHH Bn), 4.80–4.90 (m, 4H, H-1, 3 × CHH Bn), 4.95 (d, 1H, J = 11.0 Hz, CHH Bn), 5.85 (t, 1H, *J* = 5.9 Hz, NH), 7.12–7.15 (m, 2H, H_{arom}), 7.24– 7.37 (m, 18H, H_{arom}); ¹³C NMR (100 MHz): $\delta = 20.8$ (F₁₇C₈ CH₂CH₂CH₂N), 28.3 (t, J = 22 Hz, F₁₇C₈CH₂CH₂CH₂N), 29.3, 30.7 $(2 \times CH_2 \text{ succinyl})$, 38.5 $(F_{17}C_8CH_2CH_2CH_2N)$, 61.8 $(CH_2 \text{ glycerol})$, 64.1 (CH₂ glycerol), 68.4 (C-6), 70.9 (C-5), 73.5, 74.2, 75.1, 75.6 (4 × CH₂ Bn), 77.7 (C-4), 78.8 (CH glycerol), 79.5 (C-2), 82.1 (C-3), 98.6 (C-1), 127.6-128.6 (CH_{arom}), 137.4, 137.7, 138.0, 138.5 $(4 \times C_q Bn)$, 171.5, 172.6 $(2 \times C=0 \text{ succinyl})$; HRMS: $C_{52}H_{52}F_{17}$ NO₁₀ + Na⁺ requires 1196.3212, found 1196.3210.

4.1.15. Glucosyl glycerol phosphate dimer (21)

Monomer 20 (133 mg, 113 µmol) was coupled to glycerol phosphoramidite 4 (1.5 equiv), oxidized, detritylated and purified (FSPE) using the general procedure as described above. Dimer 21 (153 mg, 104 µmol, 92%) was obtained as a colourless oil. ³¹P NMR (161.7 MHz): $\delta = -0.9$, -0.9 (1P); ¹H NMR (400 MHz): $\delta = 1.70-$ 1.78 (m, 2H, F₁₇C₈CH₂CH₂CH₂N), 1.99–2.12 (m, 2H, F₁₇C₈CH₂CH₂ CH₂N), 2.26–2.67 (m, 7H, $2 \times CH_2$ succinyl, CH₂ cyanoethyl, CH₂OH), 3.22 (dd, 2H, I = 6.7 Hz, 13.0 Hz, $F_{17}C_8CH_2CH_2CH_2N$), 3.54-3.60 (m, 1H, H-2), 3.61-3.73 (m, 6H, H-4, H-6, H-6', CH glycerol, CH₂ glycerol), 3.84-3.95 (m, 2H, H-3, H-5), 4.01-4.31 (m, 9H, CH glycerol, $3 \times CH_2$ glycerol, CH_2 cyanoethyl), 4.44–4.49 (m, 2H, $2 \times CHH$ Bn), 4.56–4.73 (m, 5H, CHH Bn, $2 \times CH_2$ Bn), 4.78–4.83 (m, 2H, 2 × CHH Bn), 4.92–4.96 (m, 1H, CHH Bn), 5.01–5.03 (m, 1H, H-1), 6.01-6.05 (m,1H, NH), 7.12-7.14 (m, 2H, H_{arom}), 7.25-7.37 (m, 23H, H_{arom}); ¹³C NMR (100 MHz): δ = 19.3–19.4 (CH₂ cyanoethyl), 20.7 ($F_{17}C_8CH_2CH_2CH_2N$), 28.3 (t, J = 22 Hz, $F_{17}C_8CH_2$ CH₂CH₂N), 29.4, 30.7 (2 × CH₂ succinyl), 38.5 (F₁₇C₈CH₂ CH₂CH₂N), 60.5 (d, *J* = 5 Hz, CH₂ glycerol), 62.0 (d, *J* = 5 Hz, CH₂ cyanoethyl), 63.0 (CH₂ glycerol), 66.1–66.6 (2 × CH₂ glycerol), 68.3 (C-6), 70.9 (C-5), 72.0, 72.0 (CH₂ Bn), 73.1, 73.2 (CH₂ Bn), 73.5 (CH₂ Bn), 73.9-74.1 (CH glycerol), 75.1, 75.5 (2 × CH₂ Bn), 77.4-77.6 (C-4, CH glycerol), 79.6, 79.7 (C-2), 81.5 (C-3), 96.9, 97.1 (C-1), 116.4, 116.5 (Cq cyanoethyl), 127.6-128.5 (CH_{arom}), 137.6-137.7, 137.9, 138.6 $(5 \times C_q Bn)$, 171.5, 172.3 $(2 \times C=0 succinyl)$; HRMS: C₆₅H₆₈F₁₇N₂ O₁₅P + Na⁺ requires 1493.3978, found 1493.3978.

4.1.16. Glucosyl glycerol phosphate trimer (22)

Dimer **21** (149 mg, 101 µmol) was coupled to glycerol phosphoramidite **4** (1.5 equiv), oxidized, detritylated and purified (FSPE) using the general procedure as described above. Trimer **22** (161 mg, 91.0 µmol, 90%) was obtained as a colourless oil. ³¹P NMR (161.7 MHz): $\delta = -1.4, -1.3, -1.3, -1.3$ (1P), -1.0, -0.9

(1P): ^{1}H NMR (400 MHz): $\delta = 1.69 - 1.77$ (m. 2H. F₁₇C₈CH₂CH₂CH₂N), 1.98–2.12 (m, 2H, F₁₇C₈CH₂CH₂CH₂N), 2.17– 2.69 (m, 9H, $2 \times CH_2$ succinvl, $2 \times CH_2$ cyanoethyl, CH_2OH), 3.18-3.26 (m, 2H, F₁₇C₈CH₂CH₂CH₂CH₂N), 3.55-3.60 (m, 1H, H-2), 3.61-3.74 (m, 6H, H-4, H-6, H-6', CH glycerol, CH₂ glycerol), 3.76-3.82 (m, 1H, CH glycerol), 3.86-3.95 (m, 2H, H-3, H-5), 4.01–4.31 (m, 15H, CH glycerol, $5 \times CH_2$ glycerol, $2 \times CH_2$ cyanoethyl), 4.44-4.49 (m, 2H, 2 × CHH Bn), 4.56-4.65 (m, 5H, CHH Bn, $2 \times CH_2$ Bn), 4.69–4.72 (m, 2H, $2 \times CHH$ Bn), 4.77–4.83 (m, 2H, 2 × CHH Bn), 4.91-4.95 (m, 1H, CHH Bn), 5.01-5.04 (m, 1H, H-1), 6.16-6.22 (m,1H, NH), 7.12-7.15 (m, 2H, H_{arom}), 7.25-7.37 (m, 28H, H_{arom}); ¹³C NMR (100 MHz): δ = 19.2–19.4 (2 × CH₂ cyanoethyl), 20.6 (F₁₇C₈CH₂CH₂CH₂N), 28.2 (t, J = 22 Hz, F₁₇C₈CH₂CH₂-CH₂N), 29.3, 30.6 ($2 \times CH_2$ succinyl), 38.4 ($F_{17}C_8CH_2CH_2CH_2N$), 60.4, 60.5 (CH₂ glycerol), 62.0–62.2 ($2 \times CH_2$ cyanoethyl), 63.0 (CH₂ glycerol), 65.5-66.7 (4 × CH₂ glycerol), 68.3 (C-6), 70.8 (C-5), 72.0 (CH₂ Bn), 72.1, 72.2 (CH₂ Bn), 73.0, 73.1 (CH₂ Bn), 73.4 (CH₂ Bn), 73.8-74.1 (CH glycerol), 75.1 (CH₂ Bn), 75.2-75.4 (CH glycerol), 75.5 (CH₂ Bn), 77.4-77.5 (C-4, CH glycerol), 79.6 (C-2), 81.5 (C-3), 96.9, 97.0 (C-1), 116.5–116.6 ($2 \times C_q$ cyanoethyl), 127.5–128.5 (CH_{arom}), 137.1, 137.7–138.0, 138.5 ($6 \times C_q$ Bn), 171.5, 172.3 (2 × C=O succinvl); HRMS: $C_{78}H_{84}F_{17}N_3O_{20}P_2 + Na^+$ requires 1790.4744, found 1790.4744.

4.1.17. Glucosyl glycerol phosphate tetramer (23)

Trimer 22 (157 mg, 88.7 µmol) was coupled to glycerol phosphoramidite 4 (1.5 equiv), oxidized, detritylated and purified (FSPE) using the general procedure as described above. Tetramer 23 (169 mg, 82.0 µmol, 92%) was obtained as a colourless oil. ³¹P NMR (161.7 MHz): $\delta = -1.4$ to -1.2 (2P), -0.9, -0.9, -0.9 (1P); ¹H NMR (400 MHz): $\delta = 1.68 - 1.76$ (m, 2H, $F_{17}C_8CH_2CH_2CH_2N$), 1.98-2.19 (m, 3H, F₁₇C₈CH₂CH₂CH₂N, CH₂OH), 2.35-2.67 (m, 10H, $2 \times CH_2$ succinyl, $3 \times CH_2$ cyanoethyl), 3.18–3.25 (m, 2H, F₁₇C₈CH₂CH₂CH₂CH₂N), 3.54-3.60 (m, 1H, H-2), 3.61-3.75 (m, 6H, H-4, H-6, H-6', CH glycerol, CH₂ glycerol), 3.76–3.83 (m, 2H, $2 \times$ CH glycerol), 3.85-3.95 (m, 2H, H-3, H-5), 4.01-4.30 (m, 21H, CH glycerol, $7 \times CH_2$ glycerol, $3 \times CH_2$ cyanoethyl), 4.44–4.49 (m, 2H, 2 × CHH Bn), 4.56–4.66 (m, 7H, CHH Bn, 3 × CH₂ Bn), 4.69–4.72 (m, 2H, 2 × CHH Bn), 4.76–4.83 (m, 2H, 2 × CHH Bn), 4.91–4.95 (m, 1H, CHH Bn), 5.01-5.04 (m, 1H, H-1), 6.12-6.19 (m,1H, NH), 7.10-7.15 (m, 2H, H_{arom}), 7.23-7.38 (m, 33H, H_{arom}); ¹³C NMR (100 MHz): $\delta = 19.2-19.5$ (3 × CH₂ cyanoethyl), 20.6 (F₁₇C₈CH₂ CH_2CH_2N), 28.2 (t, I = 22 Hz, $F_{17}C_8CH_2CH_2CH_2N$), 29.3, 30.6 $(2 \times CH_2 \text{ succinyl})$, 38.4 (F₁₇C₈CH₂CH₂CH₂N), 60.4, 60.5 (CH₂ glycerol), 62.0–62.2 ($3 \times CH_2$ cyanoethyl), 63.1 (CH₂ glycerol), 65.5– 66.6 ($6 \times CH_2$ glycerol), 68.3 (C-6), 70.8 (C-5), 72.0 (CH₂ Bn), 72.1-72.2 (2 × CH₂ Bn), 73.0, 73.1 (CH₂ Bn), 73.4 (CH₂ Bn), 73.7-74.2 (CH glycerol), 75.1 (CH₂ Bn), 75.2–75.4 ($2 \times$ CH glycerol), 75.5 (CH₂ Bn), 77.4–77.5 (C-4, CH glycerol), 79.6 (C-2), 81.6 (C-3), 96.8, 97.0 (C-1), 116.6–116.7 (3 \times Cq cyanoethyl), 127.6–128.5 (CH_{arom}), 137.2, 137.7–138.0, 138.5 $(7 \times C_q Bn)$, 171.4, 172.3 $(2 \times C=0 \text{ succinyl}); \text{ HRMS: } [C_{91}H_{100}F_{17}N_4O_{25}P_3 + 2Na]^{2+} \text{ requires}$ 1055.2701, found 1055.2705.

4.1.18. Glucosyl glycerol phosphate pentamer (24)

Tetramer **23** (165 mg, 79.9 µmol) was coupled to glycerol phosphoramidite **4** (1.8 equiv), oxidized, detritylated and purified (FSPE) using the general procedure as described above. Pentamer **24** (176 mg, 74.3 µmol, 93%) was obtained as a colourless oil. ³¹P NMR (161.7 MHz): δ = -1.4 to -1.1 (3P), -0.9, -0.9, -0.9 (1P); ¹H NMR (400 MHz): δ = 1.68–1.76 (m, 2H, F₁₇C₈CH₂CH₂CH₂N), 1.98–2.12 (m, 2H, F₁₇C₈CH₂CH₂CH₂CH₂N), 2.26–2.67 (m, 13H, 2 × CH₂ succinyl, 4 × CH₂ cyanoethyl, CH₂OH), 3.18–3.26 (m, 2H, F₁₇C₈CH₂CH₂CH₂CH₂N), 3.54–3.60 (m, 1H, H-2), 3.61–3.75 (m, 6H, H-4, H-6, H-6', CH glycerol, CH₂ glycerol), 3.76–3.83 (m, 3H, 3 × CH glycerol), 3.86–3.95 (m, 2H, H-3, H-5), 4.00–4.30 (m, 27H, CH

glycerol, $9 \times CH_2$ glycerol, $4 \times CH_2$ cyanoethyl), 4.43–4.49 (m, 2H, 2 × CHH Bn), 4.56–4.67 (m, 9H, CHH Bn, 4 × CH₂ Bn), 4.69–4.71 (m, 2H, 2 × CHH Bn), 4.76–4.83 (m, 2H, 2 × CHH Bn), 4.91–4.95 (m, 1H, CHH Bn), 5.01-5.04 (m, 1H, H-1), 6.14-6.20 (m,1H, NH), 7.10–7.15 (m, 2H, H_{arom}), 7.23–7.39 (m, 38H, H_{arom}); ¹³C NMR (100 MHz): δ = 19.3–19.4 (4 × CH₂ cyanoethyl), 20.6 (F₁₇C₈CH₂CH₂ CH₂N), 28.2 (t, J = 23 Hz, $F_{17}C_8CH_2CH_2CH_2N$), 29.3, 30.6 (2 × CH₂ succinyl), 38.4 (F₁₇C₈CH₂CH₂CH₂N), 60.4, 60.5 (CH₂ glycerol), 62.0-62.2 (4 × CH₂ cyanoethyl), 63.0 (CH₂ glycerol), 65.5-66.6 (8 × CH₂ glycerol), 68.3 (C-6), 70.8 (C-5), 71.9 (CH₂ Bn), 72.1-72.2 (3 × CH₂ Bn), 73.0, 73.1 (CH₂ Bn), 73.4 (CH₂ Bn), 73.7-74.0 (CH glycerol), 75.1 (CH_2 Bn), 75.1–75.4 (3 \times CH glycerol), 75.5 (CH2 Bn), 77.4-77.5 (C-4, CH glycerol), 79.6 (C-2), 81.5 (C-3), 96.8, 96.9 (C-1), 116.6–116.7 (4 \times C_q cyanoethyl), 127.5–128.4 (CH_{arom}), 137.2, 137.7–138.0, 138.5 (8 \times Cq Bn), 171.4, 172.3 $(2 \times C=0 \text{ succinyl}); \text{ HRMS: } [C_{104}H_{116}F_{17}N_5O_{30}P_4 + 2Na]^{2+} \text{ requires}$ 1204.3101. found 1204.3100.

4.1.19. Glucosyl glycerol phosphate hexamer (25)

Pentamer 24 (149 mg, 63.1 µmol) was coupled to glycerol phosphoramidite 4 (2.0 equiv), oxidized, detritylated and purified (FSPE) using the general procedure as described above. Hexamer **25** (151 mg, 56.8 μ mol, 90%) was obtained as a colourless oil. ³¹P NMR (161.7 MHz): $\delta = -1.4$ to -1.1 (4P), -0.9, -0.9, -0.9 (1P); ¹H NMR (400 MHz): $\delta = 1.68 - 1.76$ (m, 2H, $F_{17}C_8CH_2CH_2CH_2N$), 1.98–2.12 (m, 2H, F₁₇C₈CH₂CH₂CH₂N), 2.31–2.67 (m, 15H, $2 \times CH_2$ succinyl, $5 \times CH_2$ cyanoethyl, CH_2OH), 3.17-3.25 (m, 2H, F₁₇C₈CH₂CH₂CH₂CH₂N), 3.54–3.59 (m, 1H, H-2), 3.61–3.74 (m, 6H, H-4, H-6, H-6', CH glycerol, CH₂ glycerol), 3.76-3.84 (m, 4H, $4 \times$ CH glycerol), 3.85-3.94 (m, 2H, H-3, H-5), 4.00-4.31 (m, 33H, CH glycerol, $11 \times CH_2$ glycerol, $5 \times CH_2$ cyanoethyl), 4.44–4.48 (m, 2H, $2 \times$ CHH Bn), 4.57–4.66 (m, 11H, CHH Bn, $5 \times$ CH₂ Bn), 4.68–4.71 (m, 2H, 2 \times CHH Bn), 4.77–4.82 (m, 2H, 2 \times CHH Bn), 4.90–4.95 (m, 1H, CHH Bn), 5.01-5.04 (m, 1H, H-1), 6.17-6.23 (m,1H, NH), 7.11-7.14 (m, 2H, H_{arom}), 7.23-7.38 (m, 43H, H_{arom}); ¹³C NMR (100 MHz): $\delta = 19.2-19.4$ (5 × CH₂ cyanoethyl), 20.6 (F₁₇C₈CH₂ CH_2CH_2N), 28.2 (t, I = 22 Hz, $F_{17}C_8CH_2CH_2CH_2N$), 29.3, 30.5 $(2 \times CH_2 \text{ succinyl})$, 38.4 $(F_{17}C_8CH_2CH_2CH_2N)$, 60.4, 60.5 $(CH_2 \text{ glyc}$ erol), 62.0–62.2 ($5 \times CH_2$ cyanoethyl), 63.1 (CH₂ glycerol), 65.5– 66.6 (10 × CH₂ glycerol), 68.3 (C-6), 70.8 (C-5), 71.9 (CH₂ Bn), 72.1-72.2 (4 × CH₂ Bn), 73.0, 73.0 (CH₂ Bn), 73.4 (CH₂ Bn), 73.8-74.0 (CH glycerol), 75.1 (CH₂ Bn), 75.2–75.5 (4 × CH glycerol), 75.5 (CH₂ Bn), 77.4–77.6 (C-4, CH glycerol), 79.6 (C-2), 81.5 (C-3), 96.8, 96.9 (C-1), 116.6–116.8 (5 \times Cq cyanoethyl), 127.5–128.5 (CH_{arom}), 137.2, 137.7–138.0, 138.5 (9 \times Cq Bn), 171.4, 172.3 $(2 \times C=0 \text{ succinyl});$ HRMS: $[C_{117}H_{132}F_{17}N_6O_{35}P_5 + 2Na]^{2+}$ requires 1352.8484, found 1352.8479.

4.1.20. Glucosyl glycerol phosphate hexamer-spacer (26)

Hexamer 25 (145 mg, 54.6 µmol) was coupled to spacer phosphoramidite 8 (2.5 equiv), oxidized and purified (FSPE) using the general procedure as described above. Hexamer 26 (147 mg, 48.7 µmol, 89%) was obtained as a colourless oil. ³¹P NMR (161.7 MHz): $\delta = -1.4$ to -1.1 (6P); ¹H NMR (400 MHz): $\delta = 1.25$ -1.40 (m, 4H, $2 \times CH_2$ hexylspacer), 1.44–1.52 (m, 2H, CH₂ hexylspacer), 1.60-1.68 (m, 2H, CH2 hexylspacer), 1.68-1.76 (m, 2H, F₁₇C₈CH₂CH₂CH₂N), 1.98-2.12 (m, 2H, F₁₇C₈CH₂CH₂CH₂N), 2.35-2.67 (m, 16H, $2 \times CH_2$ succinyl, $6 \times CH_2$ cyanoethyl), 3.12–3.25 (m, 4H, CH₂-N hexylspacer, F₁₇C₈CH₂CH₂CH₂CH₂N), 3.54-3.59 (m, 1H, H-2), 3.61-3.68 (m, 2H, H-4, H-6), 3.70-3.75 (m, 1H, H-6'), 3.76-3.84 (m, 5H, 5 × CH glycerol), 3.85-3.94 (m, 2H, H-3, H-5), 4.00–4.31 (m, 39H, CH glycerol, $12 \times CH_2$ glycerol, $6 \times CH_2$ cyanoethyl, CH2-O hexylspacer), 4.44-4.48 (m, 2H, 2 × CHH Bn), 4.57-4.65 (m, 11H, CHH Bn, 5 × CH₂ Bn), 4.68–4.71 (m, 2H, 2 × CHH Bn), 4.76–4.83 (m, 2H, 2 × CHH Bn), 4.90–4.95 (m, 1H, CHH Bn),

5.01-5.13 (m, 4H, H-1, CH₂ Cbz, NH Cbz), 6.11-6.18 (m,1H, NH), 7.11-7.14 (m, 2H, H_{arom}), 7.22-7.39 (m, 48H, H_{arom}); ¹³C NMR (100 MHz): δ = 19.2–19.5 (6 × CH₂ cyanoethyl), 20.6 (F₁₇C₈CH₂CH₂ CH₂N), 24.8 (CH₂ hexylspacer), 25.9 (CH₂ hexylspacer), 28.2 (t, J = 22 Hz, F₁₇C₈CH₂CH₂CH₂CH₂N), 29.3 (CH₂ succinyl), 29.6 (CH₂ hexylspacer), 29.9 (d, J = 7 Hz, CH₂ hexylspacer), 30.5 (CH₂ succinyl), 38.3 (F₁₇C₈CH₂CH₂CH₂CH₂N), 40.7 (CH₂-N hexylspacer), 61.8-62.1 $(6 \times CH_2$ cyanoethyl), 63.0 (CH₂ glycerol), 65.5–66.4 (11 \times CH₂ glycerol, CH₂ Cbz), 68.3-68.4 (C-6, CH₂-O hexylspacer), 70.8 (C-5), 72.1–72.2 (6 × CH₂ Bn), 72.9, 73.0 (CH₂ Bn), 73.4 (CH₂ Bn), 73.7–74.0 (CH glycerol), 75.0 (CH₂ Bn), 75.3–75.5 (5 × CH glycerol), 77.4 (C-4), 79.6 (C-2), 81.5 (C-3), 96.8, 96.9 (C-1), 116.5-116.7 $(6 \times C_q \ cyanoethyl), \ 127.5{-}128.5 \ (CH_{arom}), \ 136.6, \ 137.2, \ 137.7{-}$ 138.0, 138.5 (9 \times C_{q} Bn, C_{q} Cbz), 156.3 (C=O Cbz), 171.3, 172.2 $(2 \times C=0 \text{ succinyl}); \text{ HRMS: } [C_{134}H_{155}F_{17}N_8O_{40}P_6 + 2Na]^{2+} \text{ requires}$ 1535.9156. found 1535.9153.

4.1.21. Glucosyl-glycerol phosphate hexamer (2)

Protected hexamer 26 (139 mg, 46.3 µmol) was treated with aqueous ammonia as described above. The intermediate hexamer (98.5 mg, 44.1 µmol, 95%) was obtained as an amorphous white solid. Analytical data intermediate: ³¹P NMR (161.7 MHz, D₂O): $\delta = 0.9-1.1$ (5P), 1.2 (1P); ¹H NMR (400 MHz, D₂O): $\delta = 0.80-1.10$ (m, 6H, $3 \times CH_2$ hexylspacer), 1.21–1.36 (m, 2H, CH₂ hexylspacer), 2.59-2.78 (m, 2H, CH2-N hexylspacer), 3.24-4.05 (m, 38H, H-2, H-3, H-4, H-5, H-6, H-6', $12 \times CH_2$ glycerol, $6 \times CH$ glycerol, CH_2 -O hexylspacer), 4.16–5.02 (m, 22H, H-1, $9 \times CH_2$ Bn, CH_2 Cbz, NH Cbz), 6.66–7.14 (m, 50H, H_{arom}); HRMS: $[C_{101}H_{127}NO_{38}P_6 + 2NH_4]^{2+}$ requires 1092.3586, found 1092.3590. A portion of the intermediate (34.5 mg, 15.4 μ mol) was deprotected with Pd (0)/H₂ using the standard procedure. Glucosylated hexamer 2 (19.7 mg, 15.0 µmol, 97%) was obtained as an amorphous white solid. ³¹P NMR (161.7 MHz, D₂O): δ = 1.2 (1P), 1.2–1.3 (4P), 1.3 (1P); ¹H NMR (600 MHz, D₂O): δ = 1.39–1.44 (m, 4H, 2 × CH₂ hexylspacer), 1.61–1.70 (m, 4H, $2 \times CH_2$ hexylspacer), 2.99 (t, 2H, J = 7.5 Hz, CH₂-N hexylspacer), 3.39 (at, 1H, *J* = 9.6 Hz, H-4), 3.52 (dd, 1H, J = 3.9 Hz, 9.9 Hz, H-2), 3.71–3.76 (m, 4H, H-3, H-6, CH₂ glycerol). 3.80–4.05 (m. 32H, H-5, H-6', $6 \times CH$ glycerol, $11 \times CH_2$ glycerol, CH₂-O hexylspacer), 4.14-4.17 (m, 1H, CH glycerol), 5.15 (d, 1H, I = 3.8 Hz, H-1); ¹³C NMR (150 MHz, D₂O): $\delta = 25.3$, 26.0, 27.5, 30.3 ($4 \times CH_2$ hexylspacer), 40.3 (CH₂–N hexylspacer), 61.4 (C-6), 62.2 (CH₂ glycerol), 65.2 (d, *J* = 6 Hz, CH₂ glycerol), 66.9–67.1 (CH₂–O hexylspacer, $11 \times CH_2$ glycerol), 70.3–70.5 (5 × CH glycerol,C-4), 72.4 (C-2), 72.9 (C-5), 73.8 (C-3), 77.7 (d, J = 8 Hz, CH glycerol), 98.7 (C-1); HRMS: $C_{30}H_{67}NO_{36}P_6 + H^+$ requires 1204.1941, found 1204.1948.

4.1.22. Bis-glucosyl-glycerol phosphate hexamer (27)

Pentamer 24 (22.5 mg, 9.52 µmol) was coupled to glucosyl-glycerol phosphoramidite 18 (3.0 equiv), oxidized, detritylated and purified (FSPE) using the general procedure as described above. Bis-glucosylated hexamer 27 (25.7 mg, 8.31 µmol, 87%) was obtained as a colourless oil. ³¹P NMR (161.7 MHz): $\delta = -1.4$ to -1.3(2P), -1.2, -1.0 (3P); ¹H NMR (400 MHz): $\delta = 1.66-1.82$ (m, 2H, F₁₇C₈CH₂CH₂CH₂N), 1.97-2.12 (m, 2H, F₁₇C₈CH₂CH₂CH₂N), 2.28-2.68 (m, 15H, $2 \times CH_2$ succinyl, $5 \times CH_2$ cyanoethyl, CH_2OH), 3.17– 3.28 (m, 2H, $F_{17}C_8CH_2CH_2CH_2N$), 3.51–3.98 (m, 19H, 2 × H-2, $2 \times$ H-3, $2 \times$ H-4, $2 \times$ H-5, $2 \times$ H-6, $2 \times$ H-6', $5 \times$ CH glycerol, CH₂ glycerol), 4.00–4.31 (m, 33H, CH glycerol, $11 \times CH_2$ glycerol, $5 \times CH_2$ cyanoethyl), 4.42–4.48 (m, 4H, $4 \times CHH$ Bn), 4.56–4.64 (m, 10H, 2 \times CHH Bn, 4 \times CH₂ Bn), 4.67–4.71 (m, 3H, 3 \times CHH Bn), 4.76-4.84 (m, 5H, 5 × CHH Bn), 4.90-4.95 (m, 3H, H-1, 2 × CHH Bn), 5.01-5.03 (m, 1H, H-1), 6.02-6.09 (m, 1H, NH), 7.09-7.16 (m, 4H, Harom), 7.22-7.38 (m, 56H, Harom); HRMS: [C144H160F17N6O40 $P_5 + 2Na^{2+}$ requires 1568.9452, found 1568.9454.

4.1.23. Bis-glucosyl-glycerol phosphate hexamer-spacer (28)

Hexamer 27 (24.5 mg, 7.92 µmol) was coupled to spacer phosphoramidite 8 (5 equiv), oxidized and purified (FSPE) using the general procedure as described above. Hexamer 28 (24.3 mg, 7.06 µmol, 89%) was obtained as a colourless oil. ³¹P NMR (161.7 MHz): $\delta = -1.4$ to -1.0 (6P); ¹H NMR (400 MHz): $\delta = 1.26-$ 1.37 (m, 4H, $2 \times CH_2$ hexylspacer), 1.41–1.49 (m, 2H, CH₂ hexylspacer), 1.59-1.68 (m, 2H, CH₂ hexylspacer), 1.68-1.77 (m, 2H, F₁₇C₈CH₂CH₂CH₂N), 1.97-2.11 (m, 2H, F₁₇C₈CH₂CH₂CH₂N), 2.30-2.66 (m, 16H, $2 \times CH_2$ succinyl, $6 \times CH_2$ cyanoethyl), 3.10–3.25 (m, 4H, CH₂-N hexylspacer, F₁₇C₈CH₂CH₂CH₂N), 3.54-3.94 (m, 18H, 2 \times H-2, 2 \times H-3, 2 \times H-4, 2 \times H-5, 2 \times H-6, 2 \times H-6', 4 \times CH glycerol), 4.00–4.30 (m, 40H, $2 \times CH$ glycerol, $12 \times CH_2$ glycerol, $6 \times CH_2$ cyanoethyl, CH_2 -O hexylspacer), 4.40-4.48 (m, 4H, 4 × CHH Bn), 4.55–4.64 (m, 10H, 2 × CHH Bn, 4 × CH₂ Bn), 4.68– 4.71 (m, 4H, 4 × CHH Bn), 4.76–4.83 (m, 4H, 4 × CHH Bn), 4.90– 4.95 (m, 2H, 2 × CHH Bn), 5.01–5.13 (m, 5H, 2 × H-1, CH₂ Cbz, NH Cbz), 6.04-6.11 (m,1H, NH), 7.08-7.15 (m, 4H, H_{arom}), 7.22-7.38 (m, 61H, H_{arom}); HRMS: $[C_{161}H_{183}F_{17}N_8O_{45}P_6 + 2H]^{2+}$ requires 1730.0305, found 1730.0312.

4.1.24. Bis-glucosyl-glycerol phosphate hexamer (29)

Protected hexamer 28 (22.5 mg, 6.54 µmol) was treated with aqueous ammonia as described above. The intermediate hexamer (17.1 mg, 6.42 µmol, 98%) was obtained as an amorphous white solid. Analytical data intermediate: ³¹P NMR (161.7 MHz, D₂O): $\delta = 0.9-1.2$ (6P); ¹H NMR (400 MHz, D₂O): $\delta = 0.76-1.10$ (m, 6H, $3 \times CH_2$ hexylspacer), 1.21–1.34 (m, 2H, CH₂ hexylspacer), 2.55– 2.76 (m, 2H, CH₂-N hexylspacer), 3.11-4.14 (m, 44H, 2 × H-2, $2 \times$ H-3, $2 \times$ H-4, $2 \times$ H-5, $2 \times$ H-6, $2 \times$ H-6', $12 \times$ CH₂ glycerol, $6 \times$ CH glycerol, CH₂–O hexylspacer), 4.15–4.84 (m, 28H, 2 × H-1, 12 × CH₂ Bn, CH₂ Cbz), 4.96-5.04 (m, 1H, NH Cbz), 6.61-7.17 (m, 65H, H_{arom}); HRMS: $[C_{128}H_{155}NO_{43}P_6 + 2NH_4]^{2+}$ requires 1308.4554, found 1308.4563. A portion of the intermediate (15.6 mg, 5.85 μ mol) was deprotected with Pd (0)/H₂ using the standard procedure. Bis-glucosylated hexamer 29 (8.43 mg, 5.71 umol. 98%) was obtained as an amorphous white solid. ³¹P NMR (161.7 MHz, D_2O): $\delta = 0.9$ (1P), 1.2–1.3 (5P); ¹H NMR (600 MHz, D₂O): δ = 1.40–1.44 (m, 4H, 2 × CH₂ hexylspacer), 1.62–1.70 (m, 4H, $2 \times CH_2$ hexylspacer), 2.99 (t, 2H, I = 7.5 Hz, CH₂-N hexylspacer), 3.36-3.41 (m, 2H, 2 × H-4), 3.48-3.53 (m, 2H, 2 × H-2), 3.71–3.77 (m, 6H, 2 × H-3, 2 × H-6, CH₂ glycerol), 3.80–4.05 (m, 33H, $2 \times$ H-5, $2 \times$ H-6', $5 \times$ CH glycerol, $11 \times$ CH₂ glycerol, CH₂–O hexylspacer), 4.07–4.10 (m, 1H, CH glycerol), 5.15 (d, 2H, J = 3.4 Hz, $2 \times$ H-1); ¹³C NMR (150 MHz, D_2 O): δ = 25.5, 26.1, 27.6, 30.5 (4 × CH₂ hexylspacer), 40.4 (CH₂-N hexylspacer), 61.2 (2 × C-6), 61.7 (CH₂ glycerol), 65.3 (d, J = 5 Hz, CH₂ glycerol), 66.1 (d, J = 5 Hz, CH₂ glycerol), 67.1–67.3 (CH₂–O hexylspacer, $10 \times CH_2$ glycerol), 70.4–70.7 (4 × CH glycerol,2 × C-4), 72.5, 72.5 (2 × C-2), 72.9, 73.0 (2 × C-5), 73.9, 74.0 (2 × C-3), 76.4 (t, *J* = 8 Hz, CH glycerol), 77.8 (d, *J* = 8 Hz, CH glycerol), 98.7, 98.8 (2 × C-1); HRMS: $C_{36}H_{77}NO_{41}P_6 + H^+$ requires 1366.2469, found 1366.2474.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.carres.2012.02.023.

References

- (a) Fischer, W. Adv. Microb. Physiol. **1988**, 29, 233–302; (b) Naumova, I. B.; Shashkov, A. S.; Tul'skaya, E. M.; Streshinskaya, G. M.; Kozlova, Y. I.; Potekhina, N. V.; Evtushenko, L. I.; Stackebrandt, E. *FEMS Microbiol. Rev.* **2001**, 25, 269–283; (c) Neuhaus, F. C.; Baddiley, J. Microbiol. Mol. Biol. Rev. **2003**, 67, 686–723; (d) Weidenmaier, C.; Peschel, A. Nat. Rev. Microbiol. **2008**, 6, 276–287.
- (a) Morath, S.; Geyer, A.; Hartung, T. J. Exp. Med. 2001, 193, 393–397; (b) Morath, S.; Geyer, A.; Spreitzer, I.; Hermann, C.; Hartung, T. Infect. Immun. 2002, 70, 938–944; (c) Morath, S.; Von Aulock, S.; Hartung, T. J. Endotoxin Res. 2005, 11, 348–356.
- (a) Hogendorf, W. F. J.; Van den Bos, L. J.; Overkleeft, H. S.; Codée, J. D. C.; van der Marel, G. A. *Bioorg. Med. Chem.* **2010**, *18*, 3668–3678; (b) Hogendorf, W. F. J.; Meeuwenoord, N.; Overkleeft, H. S.; Filippov, D. V.; Laverde, D.; Kropec, A.; Huebner, J.; Van der Marel, G. A.; Codée, J. D. C. *Chem. Commun.* **2011**, *47*, 8961– 8963; (c) Hogendorf, W. F. J.; Lameijer, L. N.; Beenakker, T. J. M.; Overkleeft, H. S.; Filippov, D. V.; Codée, J. D. C.; Van der Marel, G. A. *Org. Lett.* **2012**, *14*, 848– 851.
- (a) Theilacker, C.; Krueger, W. A.; Kropec, A.; Huebner, J. Vaccine 2004, 22, S31– S38; (b) Koch, S.; Hufnagel, M.; Huebner, J. Expert Opin. Biol. Ther. 2004, 4, 1519–1531; (c) Sava, I. G.; Heikens, E.; Huebner, J. Clin. Microbiol. Inf. 2010, 16, 533–540.
- (a) Theilacker, C.; Kaczynski, Z.; Kropec, A.; Fabretti, F.; Sange, T.; Holst, O.; Huebner, J. Infect. Immun. 2006, 74, 5703–5712; (b) Theilacker, C.; Kaczynski, Z.; Kropec, A.; Sava, I.; Ye, L.; Bychowska, A.; Holst, O.; Huebner, J. Plos One 2011, 6, e17839; (c) Theilacker, C.; Kropec, A.; Hammer, F.; Sava, I.; Wobser, D.; Sakinc, T.; Codée, J. D. C.; Hogendorf, W. F. J.; Van der Marel, G. A.; Huebner, J. J. Infect. Dis. 2012, 205, 1076–1085.
- 6. Pollack, J. H.; Neuhaus, F. C. J. Bacteriol. 1994, 176, 7252-7259.
- Endl, J.; Seidl, H. P.; Fiedler, F.; Schleifer, K. H. Arch. Microbiol. 1983, 135, 215– 223.
- (a)Handbook of Fluorous Chemistry; Gladysz, J. A., Curran, D. P., Horváth, I. T., Eds.; Wiley-VCH: Weinheim, 2004; (b) Curran, D. P. Aldrichim. Acta 2006, 39, 3– 9; (c) Zhang, W.; Curran, D. P. Tetrahedron 2006, 62, 11837–11865; (d) Zhang, W.; Cai, C. Chem. Commun. 2008, 5686–5694; (e) Zhang, W. Chem. Rev. 2009, 109, 749–795; (f) Zhang, W. Green Chem. 2009, 11, 911–920; For an example of a fluorous phosphate protecting group see: (g) Liu, L; Pohl, N. L. B. Org. Lett. 2011, 13, 1824–1827.
- Zheng, W.; DeMattei, J. A.; Wu, J.-P.; Duan, J. J.-W.; Cook, L. R.; Oinuma, H.; Kishi, Y. J. Am. Chem. Soc. 1996, 118, 7946–7968.
- Complete immunological evaluation studies, including OPA inhibition assays will be reported in due course.
- (a) Beaucage, S. L.; Iyer, R. P. Tetrahedron 1992, 48, 2223–2311; (b) Reese, C. B. Org. Biomol. Chem. 2005, 3, 3851–3868.
- (a) Schmidt, R. R. Angew. Chem. **1986**, 98, 213–236; Angew. Chem., Int. Ed. **1986**, 25, 215–235; For a recent example see: (b) Pedersen, C. M.; Figueroa-Perez, I.; Lindner, B.; Ulmer, A. J.; Zähringer, U.; Schmidt, R. R. Angew. Chem., Int. Ed. **2010**, 49, 1–7.
- (a) Adinolfi, M.; Barone, G.; Iadonisi, A.; Shiattarella, M. *Tetrahedron Lett.* 2002, 43, 5573–5577; (b) Adinolfi, M.; Iadonisi, A.; Schiattarella, M. *Tetrahedron Lett.* 2003, 44, 6479–6482; (c) Walvoort, M. T. C.; Lodder, G.; Overkleeft, H. S.; Codée, J. D. C.; Van der Marel, G. A. J. Org. Chem. 2010, 75, 7990–8002.