Tetrahedron Letters 55 (2014) 3038-3040

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

O-Aryloxime ether analogues as novel and efficient ligands for palladium-catalyzed Suzuki–Miyaura coupling in water

Manoj Mondal^a, Utpal Bora^{a,b,*}

^a Department of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India ^b Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India

ARTICLE INFO

Article history: Received 2 January 2014 Revised 24 March 2014 Accepted 25 March 2014 Available online 2 April 2014

Keywords: Suzuki–Miyaura Cross-coupling O-Aryloxime ether Water Palladium chloride

ABSTRACT

O-Aryloxime ether analogues **L1–L3** were studied as ligands in palladium-catalyzed Suzuki–Miyaura cross-coupling reaction of aryl bromides and aryl boronic acids in water at room temperature. Reaction conditions for the cross-coupling were optimized using PdCl₂ and Pd(OAc)₂ under aerobic condition. From the three electronically diverse *O*-aryloxime ether ligands studied herein, the use of 1-*phenyl*-*ethanone O*-(4-*chloro-phenyl*)-*oxime* **L2** exhibits the best catalytic system in the presence of K₂CO₃ as the base and TBAB as the promoter.

© 2014 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +91 373 2370210; fax: +91 373 2370323. *E-mail addresses*: utbora@yahoo.co.in, ubora@tezu.ernet.in (U. Bora).

Scheme 1. Based on the previous literature reports of N-containing ligands,^{6–15} we expect that the *O*-aryloxime ether bearing nitrogen and oxygen atoms (Fig. 1) will be an interesting class of ligand in the Suzuki–Miyaura reaction. However, to the best of our knowledge the potential of oxime ether as ligand has never been investigated in the Suzuki–Miyaura reaction. Through this communication, we wish to report the use of simple catalytic system, composed of palladium chloride and *O*-aryloxime ether as ligands, which promotes Suzuki–Miyaura cross-coupling reactions of aryl halides and arylboronic acids at room temperature in water.

Initially, we synthesized a series of the analogous aryloxime ethers **L1–L3**,²³ (Fig. 1) to study their efficiency as ligands in

Figure 1. Ligands screened for Suzuki-Miyaura reaction.

palladium-catalyzed Suzuki–Miyaura cross-coupling reaction in water. The reaction of 4-bromonitrobenzene (0.5 mmol) and phenylboronic acid (0.55 mmol) was chosen as the prototype, and carried out in the presence of 1 mol % of palladium salt, K₂CO₃ (2 equiv), and ligands **L1–L3** (2 mol %) at room temperature.²⁴ It could be seen from Table 1 that the reaction proceeds more efficiently with the ligand **L2** compared to **L1** and **L3**, in the presence of PdCl₂ and TBAB (*tert*-butyl ammonium bromide) (Table 1, entry 4).

This is a significant result, as most of the reported ligand-based palladium-catalyzed Suzuki-Miyaura reactions require high temperature, long reaction time, and organic or biphasic media. Encouraged by the highest yield in the presence of ligand L2, we further optimized PdCl₂/L2 (Table 2). As shown in entries 1 and 2 (Table 2), it was found that the time required for the formation of 4-nitro-biphenyl increases to 5 h from 2.5 h when 1 mol % of L2 was used, while less amount of PdCl₂ (0.5 mol %) led to slightly lower vield with increase in reaction time (Table 2, entry 3). Generally, presence of water increases solubility of the bases, which are responsible for the activation of boronic acid resulting in enhancing the rate of the reaction in an aqueous medium. This may be the reason for low yield in isopropanol (Table 2, entry 4). To further optimize the reaction conditions, different bases were screened in the presence of 2 mol % of L2 and 1 mol % of PdCl₂ (Table 2, entries 5-10). As previous work has revealed that phosphate base was able to perform as highly efficient base in Pd-catalyzed Suzuki-Miyaura reaction,²⁵ we employed Na₃PO₄·12H₂O as the base to study if the rate of reaction could get enhanced, but it turned out to be poorer base as compared to K_2CO_3 (Table 2, entries 1 and 5). Similarly, Na₂CO₃ and Cs₂CO₃ also gave lower yields of product (Table 2, entries 6 and 7). We further examined the effect of metal hydroxides in our reaction conditions. KOH and NaOH have provided 73% and 78% isolated yield after 24 h, respectively, (Table 2, entries 8 and 9). Organic base such as triethyl-amine (Et₃N) gave only a trace amount of product after 24 h (Table 1, entry 10). However, no cross-coupling product was observed in the absence of base (Table 2, entry 11). Usually a strong base stimulates side reactions lowering the yield, and a

Table 1

Effect of the O-aryloxime ether ligand (L1–L3) on palladium-catalyzed Suzuki–Miyaura reaction $^{\rm a}$

Pd, Ligand	
K ₂ CO ₃ , H ₂ O, r.t., 12 h	

Entry	Ligand	[Pd]-source	Additive	Yield ^b (%)
1	_	PdCl ₂	_	10
2	L1	PdCl ₂	_	23
3	L1	PdCl ₂	TBAB	91
4	L2	PdCl ₂	TBAB	99
5	L3	PdCl ₂	TBAB	87
6	-	$Pd(OAc)_2$	-	9
7	L1	$Pd(OAc)_2$	TBAB	87
8	L2	$Pd(OAc)_2$	TBAB	94
9	L3	$Pd(OAc)_2$	TBAB	81

^a Reaction conditions: 4-bromonitrobenzene (0.5 mmol), phenylboronic acid (0.55 mmol), K_2CO_3 (1 mmol), Pd-source (1 mol %), ligand (2 mol %), water (4 mL), TBAB (0.5 mmol), 12 h, ca. 27 °C in air unless otherwise noted.

^b Isolated yield.

Table 2

Optimization of the Suzuki–Miyaura reaction of 4-bromonitrobenzene with phenylboronic acid in the presence of L2^a

^a Reaction conditions: 4-bromonitrobenzene (0.5 mmol), phenylboronic acid (0.55 mmol), base (1 mmol), TBAB (0.5 mmol), solvent (4 mL), ca. 27 °C in air unless otherwise noted.

^b Isolated yield.

^c Without TBAB.

Without Th

weak base remains unable to activate boronic acids. Metal carbonates as compared to other bases offer clean and mild reaction condition, high yield, and reaction rate, and simple work-up procedure. As recognized from the literature, the presence of electron-rich and bulky ligands in palladium-catalyzed reaction provides extra stabilization to the rate determining transition state.²⁶ Similar to the ligands like aryl oximes²⁷ and arylamines,²⁸ the aryl ring of the aryloxime ether is expected to undergo orthometalation through CH activation to form highly active palladacycle.

After attaining the optimal reaction conditions, we then examined the applicability of the present catalytic system to the crosscoupling of various electronically diverse arvl bromides and arvl boronic acids. Generally, aryl bromides with electron-donating groups at the *para* position are significantly less reactive than aryl bromides bearing electron-withdrawing groups. However, as shown in Table 3, most of the aryl bromides were found equally reactive toward electronically different aryl boronic acids, yielding corresponding biphenyl derivatives in good to excellent yields (90-100%, Table 3). Similarly, 4-bromonitrobenzene reacts with electronically diverse arylboronic acids with almost comparable reactivity (Table 3, entries 1–3). When 4-bromoanisole was used as substrate, slight decrease in yield was observed with all types of arylboronic acids (Table 3, entries 4-6). However, in case of 4-bromotoluene, higher yield was observed (Table 3, entry 7 and 8). Conversely, for other aryl bromides, having electron-withdrawing substituent at para position, such as for 4-bromobenzaldehyde and 4-bromoacetophenone, the amount of biaryl products remains relatively similar to that with 4-bromonitrobenzene (Table 3, entries 1-3 and 9-14). In another case, bromobenzene was found to react efficiently with all three types of aryl boronic acids yielding biaryl products in excellent yields (Table 3, entries 15-17). These results are quite significant as the desired biaryls could be efficiently achieved at room temperature using water as a solvent and with relatively lower palladium loading (1 mol %) in the presence of O-aryloxime ether (2 mol %).

In conclusion, we have developed a simple and convenient methodology based on PdCl₂ and *O*-aryloxime ether analogous for Suzuki–Miyaura coupling of aryl bromides and aryl boronic acids. From the three electronically diverse ligands studied herein, the use of 1-*phenyl-ethanone O*-(4-*chloro-phenyl*)-*oxime* **L2** resulted

Table 3

Suzuki-Miyaura reaction of arylbromides with different arylboronic acids^a

R ¹	Br_{+} R^{2} $\operatorname{B(O)}$	H) ₂ PdCl ₂ (1 mol ⁴ K ₂ CO ₃ , TB	<u>%), L2(2mol%)</u> AB, H ₂ O, r.t. R ¹	$\square \square $
Entry	R ¹	R ²	Time (h)	Yield ^b (%)
1	NO ₂	Н	2.5	99
2	NO ₂	Cl	4.5	95
3	NO ₂	OCH ₃	6	94
4	OCH ₃	Н	2.5	94
5	OCH ₃	Cl	4	90
6	OCH ₃	OCH ₃	4.5	92
7	CH_3	Н	1.5	98
8	CH_3	OCH ₃	2	99
9	CHO	Н	5	98
10	CHO	OCH ₃	4	97
11	CHO	Cl	6	95
12	COCH ₃	Н	4	95
13	COCH ₃	OCH ₃	5.5	93
14	COCH ₃	Cl	6	90
15	Н	Н	1	100
16	Н	OCH ₃	3	95
17	Н	Cl	4.5	96

 a Reaction conditions: aryl bromide (0.5 mmol), arylboronic acid (0.55 mmol), K₂CO₃ (1 mmol), PdCl₂ (1 mol %), L2 (2 mol %), water (4 mL), TBAB (0.5 mmol), ca. 27 °C in air unless otherwise noted.

^b Isolated yield.

in most efficient conversion in pure water at room temperature. The present method, involving aerobic condition, is in accordance with the concept of green chemistry, and offers mild and effective alternative to the existing protocols. Further effort to identify the exact role of the ligands in the catalytic system and more application of this system are currently under investigation in our laboratory.

Acknowledgements

We gratefully thank UGC, New Delhi (India) for support (No. 41-254/2012 (SR). M.M. thanks UGC, New Delhi for UGC-BSR (RFSMS) fellowship.

References and notes

- (a) Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6722–6737; (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483; (c) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359–1470.
- (a) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176–4211; (b) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633–9695.
- 3. Bellina, F.; Carpita, A.; Rossi, R. Synthesis 2004, 15, 2419-2440.
- Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685–4696.
- 5. Sarmah, C.; Borah, M.; Das, P. Appl. Organomet. Chem. 2011, 25, 552–558.
- (a) Herrmann, W. A.; Reisinger, C.-P.; Spiegler, M. J. Organomet. Chem. 1998, 557, 93–96; (b) Navarro, O.; Kaur, H.; Mahjoor, P.; Nolan, S. P. J. Org. Chem. 2004, 69, 3173–3180; (c) Xiong, Z.; Wang, N.; Dai, M.; Li, A.; Chen, J.; Yang, Z. Org. Lett. 2004, 6, 3337–3340.
- 7. (a) Li, S.; Lin, Y.; Cao, J.; Zhang, S. J. Org. Chem. 2007, 72, 4067–4072; (b) Ye, C.; Chen, Z.; Wang, H.; Wu, J. Tetrahedron 2012, 68, 5197–5202.
- (a) Tao, B.; Boykin, D. W. J. Org. Chem. 2004, 69, 4330–4335; (b) Li, J.-H.; Liu, W.-J. Org. Lett. 2004, 6, 2809–2811.
- 9. Costa, D. P.; Nobre, S. M. Tetrahedron Lett. 2013, 54, 4582-4584.
- (a) Banik, B.; Tairai, A.; Shahnaz, N.; Das, P. Tetrahedron Lett. 2012, 53, 5627–5630; (b) Dewan, A.; Bora, U.; Borah, G. Tetrahedron Lett. 2014, 55, 1689–1692; (c) Shahnaz, N.; Banik, B.; Das, P. Tetrahedron Lett. 2013, 54, 2886–2889.
- 11. Dewan, A.; Buragohain, Z.; Mondal, M.; Sarmah, G.; Borah, G.; Bora, U. *Appl. Organomet. Chem.* **2014**, *28*, 230–233.
- Zhou, J.; Guo, X.; Tu, C.; Li, X.; Sun, H. J. Organomet. Chem. 2009, 694, 697–702.
 Amadio, E.; Scrivanti, A.; Beghetto, V.; Bertoldini, M.; Alam, M. M.; Matteoli, U. RSC Adv. 2013, 3, 21636–21640.

- (a) Schaper, L.-A.; Hock, S. J.; Herrmann, W. A.; Kuhn, F. E. Angew. Chem., Int. Ed. 2012, 51, 2–22; (b) Fleckenstein, C.; Roy, S.; Leuthaußer, S.; Plenio, H. Chem. Commun. 2007, 2870–2872; (c) Karimi, B.; Akhavan, P. F. Chem. Commun. 2011, 7686–7688.
- (a) Das, P.; Sarmah, C.; Tairai, A.; Bora, U. Appl. Organomet. Chem. 2011, 25, 283–288;
 (b) Chahen, L.; Therrien, B.; Suss-Fink, G. Eur. J. Inorg. Chem. 2007, 32, 5045–5051.
- 16. Peng, Y.-Y.; Liu, J.; Lei, X.; Yin, Z. Green Chem. 2010, 12, 1072–1075.
- 17. Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998.
- (a)Organic Reactions in Aqueous Media; Li, C.-J., Chan, T.-H., Eds., 2nd ed.; Wiley: New York, 1997; (b)Organic Synthesis in Water; Grieco, P. A., Ed.; Academic Press: Dordrecht, The Netherlands, 1997; (c)Aqueous-Phase Organometallic Catalysis; Cornils, B., Herrmann, W. A., Eds.; Wiley-VCH: Weinheim, 2004.
- Cornils, B.; Herrmann, W. A.; Horvth, I. T.; Leitner, W.; Mecking, S.; Olivier-Bourbigou, H.; Vogt, D. *Multiphase Homogeneous Catalysis*; Wiley-VCH: Weinheim, 2008; pp 2–23.
- (a) Dallinger, D.; Kappe, C. O. Chem. Rev. 2007, 107, 2563–2591; (b) Lipshutz, B. H.; Ghorai, S. Aldrichimica Acta 2008, 41, 59–72; (c) Chanda, A.; Folkin, V. V. Chem. Rev. 2009, 109, 725–748; (d) Manabe, K.; Kobayashi, S. Chem. Eur. J. 2002, 8, 4094–4101; (e) Li, C. J. Chem. Rev. 2005, 105, 3095–3166.
- (a) Lamblin, M.; Nassar-Hardy, L.; Hierso, J.-C.; Fouquet, E.; Felpin, F.-X. Adv. Synth. Catal. 2010, 352, 33–79; (b) Franzen, R.; Xu, Y. Can. J. Chem. 2005, 83, 266–272; (c) Shaughnessy, K. H.; DeVasher, R. B. Curr. Org. Chem. 2005, 7, 585– 604; (d) Bai, L.; Wang, J.-X. Curr. Org. Chem. 2005, 9, 535–553; (e) Mondal, M.; Bora, U. Green Chem. 2012, 14, 1873–1876; (f) Uozumi, Y.; Matsu-ura, Y.; Arakawa, T.; Yamada, Y. M. A. Angew. Chem., Int. Ed. 2009, 48, 2708–2710.
- (a) Liu, C.; Ni, Q.; Bao, F.; Qiu, J. Green Chem. 2011, 13, 1260–1266; (b) Liu, C.; Ni, Q.; Hu, P.; Qiu, J. Org. Biomol. Chem. 2011, 9, 1054–1060; (c) Marziale, A. N.; Faul, S. H.; Reiner, T.; Schneider, S.; Eppinger, J. Green Chem. 2010, 12, 35–38; (d) Karimi, B.; Akhavan, P. F. Chem. Commun. 2009, 2750–2752; (e) Cohen, A.; Crozet, M. D.; Rathelot, P.; Vanelle, P. Green Chem. 2009, 11, 1736–1742; (f) Yamada, Y. M. A.; Sarkar, S. M.; Uozumi, Y. J. Am. Chem. Soc. 2012, 134, 3190–3198.
- 23. Preparation of ligands L1-L3^{29a}
 - Acetophenone oxime (1 mmol) and corresponding aryl boronic acids (2 mmol) were stirred in a round bottom flask with $Cu(OAc)_2$ (0.5 mmol), Cs_2CO_3 (1 mmol), and 4 mL of DMSO under open atmosphere. The progress of the reaction was monitored by TLC (Merck silica gel 60F₂₅₄ plates). After completion, the reaction mixture was quenched with dil. NH₄Cl-H₂O solution (10 mL) and extracted with ethyl acetate (3 × 20 mL). The combined extract was washed with brine (2 × 20 ml) and dried over anhydrous Na₂SO₄. After evaporation of ethyl acetate under reduced pressure, the residue was chromatographed {silica gel (60–120 mesh) ethyl acetate-hexane; 1.5:8.5} to obtain the desired products. The analytically pure product was obtained in 82% (L1), 80% (L2), and 79% (L3).

Ligand **L1**: Colorless oil.²⁹

¹H NMR: (CDCl₃, 300 MHz, ppm) δ : 7.63–7.60 (m, 2H), 7.39–7.37 (m, 3H), 7.22–7.20 (m, 2H), 6.91 (s, 1H), 6.82–6.79 (m, 2H), 2.31 (s, 3H, –CH₃). ¹³C NMR (CDCl₃, 75 MHz, ppm) δ : 156.2, 155.6, 136.4, 129.6, 129.3, 128.6, 126.1, 120.5, 115.4, 12.5.

 Typical experimental procedure for Suzuki–Miyaura reaction of aryl bromides with aryl boronic acids.

All the reactions were carried out in open atmosphere. A mixture of aryl bromide (0.5 mmol), aryl boronic acid (0.55 mmol), K_2CO_3 (1 mmol), $PdCl_2$ (1 mmol %), ligand (2 mol %), TBAB (0.5 mmol), and water (4 mL) was stirred at room temperature for the indicated time in a 25 mL round bottom flask. The progress of the reaction was monitored using TLC (Merck silica gel 60F₂₅₄ plates) under UV light. After completion, the reaction mixture was diluted with brine (10 mL) and extracted with ether (3 × 10 mL). The combined extract was dried over anhydrous Na₂SO₄. After evaporation of ether under vacuum, the product was isolated by short-chromatography {silica gel (60–120 mesh), ethyl acetate-hexane; 0.5:9.5]. The isolated products were confirmed by comparing their ¹H and ¹³C NMR and mass spectral data with reported samples.

- 25. (a) Maegawa, T.; Kitamura, Y.; Sako, S.; Udzu, T.; Sakurai, A.; Tanaka, A.; Kobayashi, Y.; Endo, K.; Bora, U.; Kurita, T.; Kozaki, A.; Monguchi, Y.; Sajiki, H. *Chem. Eur. J.* **2007**, *13*, 5937–5943; (b) Karami, K.; Rahimi, N.; Shehni, M. B. *Tetrahedron Lett.* **2012**, *53*, 2428–2431; (c) Mao, S.-L.; Sun, Y.; Yu, G.-A.; Zhao, C.; Han, Z.-J.; Yuan, J.; Zhu, X.; Yang, Q.; Liu, S.-H. *Org. Biomol. Chem.* **2012**, *10*, 9410–9417.
- 26. Szilvási, T.; Veszprémi, T. ACS Catal. 2013, 3, 1984–1991.
- (a) Dupont, J.; Pfeffer, M.; Spencer, J. Eur. J. Inorg. Chem. 2001, 1917–1927; (b) Onoue, H.; Minami, K.; Nakagawa, K. Bull. Chem. Soc. Jpn. 1970, 43, 3480–3485; (c) Constable, A. G.; McDonald, W. S.; Sawkins, L. C.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1980, 1992–2000.
- 28. Bedford, R. B.; Cazin, C. S. J. Chem. Commun. 2001, 1540–1541.
- (a) Mondal, M.; Sarmah, G.; Gogoi, K.; Bora, U. *Tetrahedron Lett.* **2012**, *53*, 6219–6222; (b) De, P.; Nonappa; Pandurangan, K.; Maitra, U.; Wailes, S. Org. Lett.
 2007, *9*, 2767–2770; (c) Feng, X.-H.; Zhang, G.-Z.; Chen, C.-Q.; Yang, M.-Y.; Xu, X.-Y.; Huang, G.-S. Synth. Commun. **2009**, *39*, 1768–1780.