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O-Aryloxime ether analogues L1–L3 were studied as ligands in palladium-catalyzed Suzuki–Miyaura
cross-coupling reaction of aryl bromides and aryl boronic acids in water at room temperature. Reaction
conditions for the cross-coupling were optimized using PdCl2 and Pd(OAc)2 under aerobic condition.
From the three electronically diverse O-aryloxime ether ligands studied herein, the use of 1-phenyl-
ethanone O-(4-chloro-phenyl)-oxime L2 exhibits the best catalytic system in the presence of K2CO3 as
the base and TBAB as the promoter.
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The palladium-catalyzed Suzuki–Miyaura cross-coupling of
organic halides with boronic acids is one of the most widely used
methods for the synthesis of biaryls1 and alkene derivatives, that
are structural components of numerous agrochemicals, natural
products, pharmaceuticals, and polymers.2 Conventionally, the
reactions have been carried out with numerous phosphorus and
nitrogen based ligands, as they are known to increase the electron
density over palladium, which can accelerate the oxidative
addition step (Scheme 1).3–16 Usually, these reactions are
performed in organic solvents. However from the viewpoint of
green chemistry, the use of water as an economical and environ-
mentally benign alternative to organic solvent has received tre-
mendous interest.17 Water, compared to common organic solvent
is most abundant, non-toxic, non-corrosive, as well as non-flam-
mable.18 In addition, water shows excellent chemical reactivity,
and in many cases facilitates the solubility of base, salts, and polar
compounds, thus enhancing the rate of reaction.19 Moreover, stud-
ies of various natural processes occurring in aqueous environment
reveal that water could be an effective media for almost every
organic reaction.20 Accordingly, numerous catalytic protocols have
been developed for the Suzuki–Miyaura cross-coupling in water.21

However in majority of cases either an elevated reaction tempera-
ture or the use of co-solvent is required to maximize catalytic
performances.22
Based on the previous literature reports of N-containing
ligands,6–15 we expect that the O-aryloxime ether bearing nitrogen
and oxygen atoms (Fig. 1) will be an interesting class of ligand in the
Suzuki–Miyaura reaction. However, to the best of our knowledge
the potential of oxime ether as ligand has never been investigated
in the Suzuki–Miyaura reaction. Through this communication, we
wish to report the use of simple catalytic system, composed of
palladium chloride and O-aryloxime ether as ligands, which pro-
motes Suzuki–Miyaura cross-coupling reactions of aryl halides
and arylboronic acids at room temperature in water.

Initially, we synthesized a series of the analogous aryloxime
ethers L1–L3,23 (Fig. 1) to study their efficiency as ligands in
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Table 2
Optimization of the Suzuki–Miyaura reaction of 4-bromonitrobenzene with phenyl-
boronic acid in the presence of L2a

Br +O2N O2NB(OH)2
PdCl2/L2

Base, Solvent,
TBAB, r.t.

Entry Solvent Base PdCl2/L2
(mol %)

Time (h) Yieldb (%)

1 H2O K2CO3 1/2 2.5 99
2 H2O K2CO3 1/1 5 96
3 H2O K2CO3 0.5/1 6.5 96
4 i-PrOH K2CO3 1/2 4 94c

5 H2O Na3PO4�12H2O 1/2 6 92
6 H2O Na2CO3 1/2 6 85
7 H2O Cs2CO3 1/2 12 75
8 H2O KOH 1/2 24 73
9 H2O NaOH 1/2 24 78

10 H2O Et3N 1/2 24 Trace
11 H2O — 1/2 24 no

reaction

a Reaction conditions: 4-bromonitrobenzene (0.5 mmol), phenylboronic acid
(0.55 mmol), base (1 mmol), TBAB (0.5 mmol), solvent (4 mL), ca. 27 �C in air unless
otherwise noted.

b Isolated yield.
c Without TBAB.
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Figure 1. Ligands screened for Suzuki–Miyaura reaction.
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palladium-catalyzed Suzuki–Miyaura cross-coupling reaction in
water. The reaction of 4-bromonitrobenzene (0.5 mmol) and phen-
ylboronic acid (0.55 mmol) was chosen as the prototype, and carried
out in the presence of 1 mol % of palladium salt, K2CO3 (2 equiv), and
ligands L1–L3 (2 mol %) at room temperature.24 It could be seen
from Table 1 that the reaction proceeds more efficiently with the
ligand L2 compared to L1 and L3, in the presence of PdCl2 and TBAB
(tert-butyl ammonium bromide) (Table 1, entry 4).

This is a significant result, as most of the reported ligand-based
palladium-catalyzed Suzuki–Miyaura reactions require high tem-
perature, long reaction time, and organic or biphasic media.
Encouraged by the highest yield in the presence of ligand L2, we
further optimized PdCl2/L2 (Table 2). As shown in entries 1 and 2
(Table 2), it was found that the time required for the formation
of 4-nitro-biphenyl increases to 5 h from 2.5 h when 1 mol % of
L2 was used, while less amount of PdCl2 (0.5 mol %) led to slightly
lower yield with increase in reaction time (Table 2, entry 3). Gen-
erally, presence of water increases solubility of the bases, which
are responsible for the activation of boronic acid resulting in
enhancing the rate of the reaction in an aqueous medium. This
may be the reason for low yield in isopropanol (Table 2, entry 4).
To further optimize the reaction conditions, different bases were
screened in the presence of 2 mol % of L2 and 1 mol % of PdCl2

(Table 2, entries 5–10). As previous work has revealed that phos-
phate base was able to perform as highly efficient base in Pd-cata-
lyzed Suzuki–Miyaura reaction,25 we employed Na3PO4�12H2O as
the base to study if the rate of reaction could get enhanced, but
it turned out to be poorer base as compared to K2CO3 (Table 2,
entries 1 and 5). Similarly, Na2CO3 and Cs2CO3 also gave lower
yields of product (Table 2, entries 6 and 7). We further examined
the effect of metal hydroxides in our reaction conditions. KOH
and NaOH have provided 73% and 78% isolated yield after 24 h,
respectively, (Table 2, entries 8 and 9). Organic base such as tri-
ethyl-amine (Et3N) gave only a trace amount of product after
24 h (Table 1, entry 10). However, no cross-coupling product was
observed in the absence of base (Table 2, entry 11). Usually a
strong base stimulates side reactions lowering the yield, and a
Table 1
Effect of the O-aryloxime ether ligand (L1–L3) on palladium-catalyzed Suzuki–
Miyaura reactiona

Br B(OH)2+ Pd, Ligand
K2CO3, H2O,

r.t., 12 h

O2N O2N

Entry Ligand [Pd]-source Additive Yieldb (%)

1 — PdCl2 — 10
2 L1 PdCl2 — 23
3 L1 PdCl2 TBAB 91
4 L2 PdCl2 TBAB 99
5 L3 PdCl2 TBAB 87
6 — Pd(OAc)2 — 9
7 L1 Pd(OAc)2 TBAB 87
8 L2 Pd(OAc)2 TBAB 94
9 L3 Pd(OAc)2 TBAB 81

a Reaction conditions: 4-bromonitrobenzene (0.5 mmol), phenylboronic acid
(0.55 mmol), K2CO3 (1 mmol), Pd-source (1 mol %), ligand (2 mol %), water (4 mL),
TBAB (0.5 mmol), 12 h, ca. 27 �C in air unless otherwise noted.

b Isolated yield.
weak base remains unable to activate boronic acids. Metal carbon-
ates as compared to other bases offer clean and mild reaction con-
dition, high yield, and reaction rate, and simple work-up
procedure. As recognized from the literature, the presence of elec-
tron-rich and bulky ligands in palladium-catalyzed reaction pro-
vides extra stabilization to the rate determining transition
state.26 Similar to the ligands like aryl oximes27 and arylamines,28

the aryl ring of the aryloxime ether is expected to undergo ortho-
metalation through CH activation to form highly active
palladacycle.

After attaining the optimal reaction conditions, we then exam-
ined the applicability of the present catalytic system to the cross-
coupling of various electronically diverse aryl bromides and aryl
boronic acids. Generally, aryl bromides with electron-donating
groups at the para position are significantly less reactive than aryl
bromides bearing electron-withdrawing groups. However, as
shown in Table 3, most of the aryl bromides were found equally
reactive toward electronically different aryl boronic acids, yielding
corresponding biphenyl derivatives in good to excellent yields (90–
100%, Table 3). Similarly, 4-bromonitrobenzene reacts with elec-
tronically diverse arylboronic acids with almost comparable reac-
tivity (Table 3, entries 1–3). When 4-bromoanisole was used as
substrate, slight decrease in yield was observed with all types of
arylboronic acids (Table 3, entries 4–6). However, in case of 4-bro-
motoluene, higher yield was observed (Table 3, entry 7 and 8).
Conversely, for other aryl bromides, having electron-withdrawing
substituent at para position, such as for 4-bromobenzaldehyde
and 4-bromoacetophenone, the amount of biaryl products remains
relatively similar to that with 4-bromonitrobenzene (Table 3,
entries 1–3 and 9–14). In another case, bromobenzene was found
to react efficiently with all three types of aryl boronic acids yield-
ing biaryl products in excellent yields (Table 3, entries 15–17).
These results are quite significant as the desired biaryls could be
efficiently achieved at room temperature using water as a solvent
and with relatively lower palladium loading (1 mol %) in the pres-
ence of O-aryloxime ether (2 mol %).

In conclusion, we have developed a simple and convenient
methodology based on PdCl2 and O-aryloxime ether analogous
for Suzuki–Miyaura coupling of aryl bromides and aryl boronic
acids. From the three electronically diverse ligands studied herein,
the use of 1-phenyl-ethanone O-(4-chloro-phenyl)-oxime L2 resulted



Table 3
Suzuki–Miyaura reaction of arylbromides with different arylboronic acidsa

PdCl2(1 mol%), L2(2mol%)
K2CO3, TBAB, H2O, r.t.

Br B(OH)2

+
R1 R2 R1 R2

Entry R1 R2 Time (h) Yieldb (%)

1 NO2 H 2.5 99
2 NO2 Cl 4.5 95
3 NO2 OCH3 6 94
4 OCH3 H 2.5 94
5 OCH3 Cl 4 90
6 OCH3 OCH3 4.5 92
7 CH3 H 1.5 98
8 CH3 OCH3 2 99
9 CHO H 5 98

10 CHO OCH3 4 97
11 CHO Cl 6 95
12 COCH3 H 4 95
13 COCH3 OCH3 5.5 93
14 COCH3 Cl 6 90
15 H H 1 100
16 H OCH3 3 95
17 H Cl 4.5 96

a Reaction conditions: aryl bromide (0.5 mmol), arylboronic acid (0.55 mmol),
K2CO3 (1 mmol), PdCl2 (1 mol %), L2 (2 mol %), water (4 mL), TBAB (0.5 mmol), ca.
27 �C in air unless otherwise noted.

b Isolated yield.
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in most efficient conversion in pure water at room temperature.
The present method, involving aerobic condition, is in accordance
with the concept of green chemistry, and offers mild and effective
alternative to the existing protocols. Further effort to identify the
exact role of the ligands in the catalytic system and more applica-
tion of this system are currently under investigation in our
laboratory.
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