

Published on Web 08/15/2003

Dinitrogen Chemistry from Trigonally Coordinated Iron and Cobalt Platforms

Theodore A. Betley and Jonas C. Peters*

Division of Chemistry and Chemical Engineering, Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125

Received June 14, 2003: E-mail: ipeters@caltech.edu

The Chatt-type nitrogen reduction scheme is well-established for certain molecular systems that feature molybdenum.¹ For example, Schrock has recently demonstrated that a single, amido-supported molybdenum center can support various N2-derived intermediates (e.g., M(N₂H), M(N₂H₂), M(N), M(NH)), oxidation states, and redox couples to favorably mediate the complete reduction of nitrogen to ammonia in a catalytic fashion.1c,d One key feature of this and other competent N2-reducing molybdenum systems is their ability to accommodate a π -acidic N₂ ligand, as well as π -basic functionalities derived from N_2 (e.g., N^{3-} , NH^{2-}), at a single site.^{1,2} To date, very few first-row ion platforms allow N₂ to be taken up and derivatized in a similar fashion (e.g., $Fe(N_2) \rightarrow Fe(N_2H)$).^{3,4} Iron is particularly noteworthy in this regard, given its possible if not likely role in biological (and industrial) nitrogen fixation.^{5,6}

Recent work by our group has shown that trigonally coordinated iron and cobalt subunits of the form "[PhBP₃]M" ([PhBP₃] = $[PhB(CH_2PPh_2)_3]^-$) will support a strongly π -donating ligand at a fourth site along their pseudo-three-fold axis (e.g., [PhBP₃]Fe≡ NR).7 Simple electronic structure considerations suggest that these same [PhBP3]M subunits should also accommodate strongly π -acidic ligands at the fourth site,⁷⁻⁹ a feature that might complement nitrogen reduction schemes at iron. Herein we demonstrate that second-generation " $[PhBP^{iPr}_{3}]Fe$ " ($[PhBP^{iPr}_{3}] =$ [PhB(CH₂PⁱPr₂)₃]⁻) and related cobalt systems coordinate, activate, and promote the methylation of nitrogen at the fourth binding site. Moreover, the N₂ ligand can be replaced by nitrene (NR) through an oxidative group-transfer reaction. 7,8a The iron- N_{2} species discussed are the first thoroughly characterized, 4-coordinate complexes of their type.⁴

Entry to this reaction manifold begins with the recently reported precursors [PhBP^{iPr}₃]MX (M = Fe, X = Cl (1); M = Co, X = I (2)).⁹ A THF solution of yellow 1 or green 2, stirred under a blanket of nitrogen in the presence of Mg⁰, produced the anionic, paramagnetic dinitrogen complexes {[PhBPiPr3]Fe(N2)}{MgCl- $(THF)_2 \} \mbox{ ($\mathbf{3a}, 84\%)$ and $ [PhBP^{iPr}_3]Co(N_2) $_2 $ Mg(THF)_4 $ ($\mathbf{4a}, 78\%)$ }$ as red-brown and red crystals, respectively (Scheme 1). An XRD study of single crystals of 4a suffered from modest disorder but confirmed a Mg(THF)42+ dication sandwiched by two anionic Co(N₂)⁻ units, in accord with related structure types.^{10,11} The IR spectra of **3a** and **4a** show intense ν_{NN} bands that shift to higher energy upon addition of 18-crown-6 (18-C-6) to encapsulate the Mg²⁺ ion ($\nu_{NN(^{15}NN)}$ in cm⁻¹ for **3a**, 1830(1769); **3b**, 1884(1822); 4a, 1863(1802); 4b, 1896(1842)). Gentle oxidation by ferrocenium (Cp₂Fe⁺) in THF produced the neutral, dinuclear N₂-bridged products {[PhBP^{iPr}₃]Fe}₂(μ -N₂) (5, 88%) and {[PhBP^{iPr}₃]Co}₂(μ -N₂) (6, 92%) (Scheme 2). Both 5 and 6 were also obtained directly from halides 1 and 2 when Na/Hg amalgam was used as the reductant in place of Mg⁰. Furthermore, extended exposure of 5 and 6 to sodium amalgam produced the mixed-valence (M⁰/M^I) complexes [([PhBP^{iPr}₃]Fe)₂(μ -N₂)][Na(THF)₆] (7, 93%) and $[([PhBP^{iPr_3}]Co)_2(\mu-N_2)][Na(THF)_6]$ (8, 89%). XRD data were obtained on single crystals of 7 and 8, and the molecular structure

Scheme 1

of 7 is shown in Figure 1. The structure of 8 is isomorphous and isostructural.¹¹ A crystallographically imposed inversion center reflects one-half of each dinuclear anion into the other, suggesting that these species are likely delocalized at low temperature. A modest elongation of the N2 ligand is observed in each case (N-N' 1.171(4) for 7, and 1.147(4) Å for 8), and the local geometry of each metal center is perhaps best described as trigonal monopyramidal, with N₂ lying in an equatorial position.

Complexes 5 and 6 provided clean access to the "[PhB^{iPr}P₃]M^I" fragment, as exemplified by their ability to undergo rapid oxidation upon addition of either tolyl or adamantyl azide to afford trivalent imide products. For example, burgundy [PhBP^{iPR}₃]-Fe≡NAd (9, 69%) and red [PhBP^{iPr}₃]Co≡N-*p*-tolyl (10, 93%) were isolated and thoroughly characterized (Scheme 2), and the solidstate structure of each was determined.11 The crystal structure of complex 9 (Figure 2) features a very short Fe-N bond (1.638(2) Å) and an almost linear Fe-N-C bond vector (176°), consistent with the triple-bond formulation we have proposed previously.⁷

Figure 1. Displacement ellipsoid representation of $\{(PhBP^{iPr}_3]Fe_2(\mu-N_2)\} \{Na(THF)_6\}$ (7). Hydrogen atoms have been removed for clarity. Selected bond distances (Å) and angles (deg), for 7: Fe–N 1.813(2), N–N' 1.171-(4), Fe–P1 2.292(1), Fe–P2 2.278(1), Fe–P3 2.290(1); N'–N–Fe 178.0-(3), P1–Fe–P2 96.93(4), P1–Fe–P3 97.96(4), P2–Fe–P3 97.22(4), N–Fe–P1 118.88(9), N–Fe–P2 109.66(9), N–Fe–P3 129.83(9).

Figure 2. Displacement ellipsoid representation of $[PhBP^{iPr}_3]Fe≡NAd (9)$. Hydrogen atoms have been removed for clarity. Selected bond distances (Å) and angles (deg), for 9: Fe−N 1.638(2), Fe−P1 2.260(1), Fe−P2 2.297-(1), Fe−P3 2.263(1); C28−N−Fe 176.0(2), P1−Fe−P2 91.05(2), P1−Fe−P3 91.56(3), P2−Fe−P3 92.39(3), N−Fe−P1 121.62(7), N−Fe−P2 130.03(7), N−Fe−P3 120.27(7).

Structural data for related ${f 10}$ have been placed in the Supporting Information.

The anionic N₂ adducts **3** and **4** appear well-poised for further elaboration at the coordinated N₂ functionality. This is significant because the direct conversion of coordinated N₂ to a coordinated diazenido (N₂R⁻) and/or hydrazido (N₂R₂²⁻) species by simple addition of an electrophile (e.g., R⁺) has, to our knowledge, not been established for a first-row transition metal ion.^{3,4} We were thus gratified to find that the simple addition of methyl tosylate (MeOTs) to a THF solution of **3** effected a modest color change from brown to gold, along with a concomitant shift in its $\nu_{NN(^{15}NN)}$ vibration to 1597(1538) cm⁻¹, characteristic of a coordinated, monodentate diazenido functionality.¹ A neutral, benzene-soluble product was isolated from the reaction mixture that analyzed as the diazenido complex [PhBP^{iPr}₃]Fe—N=NMe (**11**, 56%), consistent with its magnetic susceptibility (S = 2, 4.93 μ_B , Evans). A similar protocol converted **4a** to the amber-colored complex [PhB^{iPr}P₃]Co—N=NMe (**12**, 68%), which exhibited a very similar $\nu_{NN(^{15}NN)}$ stretch 1599(1542) cm⁻¹ and a solution moment indicative of low-spin cobalt(II) (1.92 μ_{B}). Complex **4a** also reacted cleanly with trimethylsilyl chloride to generate [PhBP^{iPr}₃]Co—N=NSiMe₃ (**13**, 79%; $\nu_{NN(^{15}NN)} = 1654(1596)$ cm⁻¹; 2.08 μ_{B}). The latter product could be obtained in good yield by a more direct procedure that involved stirring a solution of chloride **2** in the presence of Me₃-SiCl and Na/Hg amalgam under nitrogen.

These data allow us to summarize several salient features of the chemistry described herein: The [PhBP^{iPr}₃] ligand has been used to isolate a single iron center in a pseudo-tetrahedral environment in which a single binding site is compatible with coordination of N₂, diazenido (N₂Me), and imide (NR). Moreover, N₂ uptake/ coordination by 4-coordinate iron has been established for the formal oxidation states M(0), M(+0.5), and M(+1). Methylation of Fe⁰(N₂)⁻ to produce Fe^{II}(N₂Me) constitutes a two-electron redox process at iron. The additional observation of a separate two-electron redox process, that of oxidative nitrene transfer (FeL^I \rightarrow Fe^{III} \equiv NR), establishes that the "[PhBP^{iPr}₃]Fe" platform will support four formal oxidation states (Fe⁰, Fe^I, Fe^{II}, Fe^{III}), in addition to two discrete two-electron redox couples (Fe^{0/II} and Fe^{I/III}). An analogous set of observations has been made with the related cobalt system. These features collectively motivate further development of the present first-row systems into possible models for functional nitrogen fixation.

Acknowledgment. This work was supported by a DOE PE-CASE award. T.A.B. is grateful for a Department of Defense graduate research fellowship.

Supporting Information Available: Complete experimental procedures and characterization data, and crystallographic data (PDF, CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Chatt, J.; Dilworth, J. R.; Richards, R. L. Chem. Rev. 1978, 78, 589.
 (b) Leigh, G. J. Acc. Chem. Res. 1992, 25, 177.
 (c) Yandulov, D. V.; Schrock, R. R. Science 2003, 301, 76.
 (d) Yandulov, D. V.; Schrock, R. R. Inorg. Chem. 2003, 42, 796.
- (2) (a) Hidai, M.; Mizobe, Y. *Chem. Rev.* **1995**, *95*, 1115. (b) Laplaza, C. E.; Johnson, M. J. A.; Peters, J. C.; Odom, A. L.; Kim, E.; Cummins, C. C.; George, G. N.; Pickering, I. J. *J. Am. Chem. Soc.* **1996**, *118*, 8623. (c) Peters, J. C.; Cherry, J. P. F.; Thomas, J. C.; Baraldo, L.; Mindiola, D. J.; Davis, W. M.; Cummins, C. C. *J. Am. Chem. Soc.* **1999**, *121*, 10053.
 (3) (a) Hughes, D. L.; Leigh, G. J.; Jimeneztenorio, M.; Rowley, A. T. J.
- (3) (a) Hughes, D. L.; Leigh, G. J.; Jimeneztenorio, M.; Rowley, A. T. J. Chem. Soc., Dalton Trans. 1993, 75. (b) George, T. A.; Rose, D. J.; Chang, Y. D.; Chen, Q.; Zubieta, J. Inorg. Chem. 1995, 34, 1295. (c) Smith, J. M.; Lachicotte, R. J.; Pittard, K. A.; Cundari, T. R.; Lukat-Rodgers, G.; Rodgers, K. R.; Holland, P. L. J. Am. Chem. Soc. 2001, 123, 9222.
- (4) Yamamoto and co-workers have reported on 4-coordinate tris(phosphine)cobalt complexes that coordinate N₂ and liberate NH₃/N₂H₄ on protonation. They also provide IR and combustion analysis data for a nominally 4-coordinate Fe(N₂) species, [EtFe(N₂)(PPh₃)₂]Mg(THF)₄], but no structural data for this latter species. See: Yamamoto, A.; Miura, Y.; Ito, T.; Chen, H., Iri, K.; Ozawa, F. Organometallics **1983**, *2*, 1429.
- (5) Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C. *Science* **2002**, 297, 1696.
- (6) (a) Thorneley, R. N. F.; Lowe, D. In *Molybdenum Enzymes*; Spiro, T. G., Ed.; Wiley-Interscience: New York, 1985. (b) Lovell, T.; Li, J.; Case, D. A.; Noodleman, L. *J. Am. Chem. Soc.* **2002**, *124*, 4546. (c) Sellmann, D.; Sutter, J. Acc. Chem. Res. **1997**, *30*, 460. (d) Siemann, S.; Schneider, K.; Drottboom, M.; Muller, A. Eur. J. Biochem. **2002**, *269*, 1650. (e) Krahn, E.; Weiss, B. J. R.; Krockel, M.; Groppe, J.; Henkel, G.; Cramer, S. P.; Trautwein, A. X.; Schneider, K.; Muller, A. J. Biol. Inorg. Chem. **2002**, *7*, 37.
- (7) (a) Jenkins, D. M.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2002, 124, 11238. (b) Brown, S. D.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003, 125, 322.
- (8) (a) Thyagarajan, S.; Shay, D. T.; Incarvito, C. D.; Rhenigold, A. L.; Theopold, K. H. J. Am. Chem. Soc. 2003, 15, 440. (b) Detrich, J. L.; Konecny, R.; Vetter, W. M.; Doren, D.; Rheingold, A. L.; Theopold, K. H. J. Am. Chem. Soc. 1996, 118, 1703.
- (9) Betley, T. A.; Peters, J. C. Inorg. Chem. 2003, 42, 5074.
- (10) Greco, G. E.; Schrock, R. R. Inorg. Chem. 2001, 40, 3861.
- (11) Crystallographic data obtained for 4a, 8, and 10 have been placed in the Supporting Information.JA036687F