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Introduction
Methodologies and structural requirements to build di- and
tetranuclear metallomacrocycles are well established. How-
ever, the repertoire of the building blocks used to prepare
these compounds is rather limited.[1] Geometry and length
are in fact the main requirements for the choice of the
bridging ligands, with little attention given to the benefits
that the incorporation of functionalized or flexible ligands
could ascribe to the properties or applications of the final
macrocycles.[1,2] Thus, the majority of the reported metallo-

macrocycles are based on bipyridines (1, 2), conjugated
diynyl- and polynyl chains (3), or combinations of both, with
slight variations in the structure of the M–L ligands in the
metal corners (Scheme 1).[3] Consequently, there are compa-
ratively few reports on molecules of biological relevance as
building blocks in the construction of metal-assembled cavi-
ties. Adenine derivatives with cationic {Cp*MIII} (Cp*=

C5Me5; M=Ru, Rh, Ir) 4[4,5] or {PtMe3} 5[6] as corners are
the most studied compounds in this family. These cationic
metallomacrocycles are trimeric structures in which the
presence of the adenine fragments improves their properties
as hosts and sensors for neutral molecules, cations, and
anions.[1f,4, 5]

Similar metallocyclic trimers 6 were obtained by using de-
protonated amino acids as linkers, acting both as N,O-che-
lating and as carboxylate bridging ligands (Scheme 2).[7]

More recently, the preparation of different metallomacrocy-
cles based on non-natural amino acids and modified pep-
tides has been reported.[8,9]

The pivotal role of b-lactam antibiotics in the treatment
of bacterial diseases, together with the apparition of antibi-
otic-resistant bacteria[10] justify the tireless efforts devoted to
the preparation of new 2-azetidinone-derived compounds
and the study of their antibiotic properties.[11] Examples of
the synthesis of b-lactam derivatives that bear an organome-
tallic complex are scarce,[12] and among them, metallocene-
derived 2-azetidinones are possibly the most abundant
group.[13] We have recently reported the synthesis of new
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types of 2-azetidinone-derived compounds, either embed-
ding the b-lactam rings in a macrocyclic structure[14] or with
metallocene nuclei attached to the 2-azetidinone ring.[13a,b]

In this context, the macrocyclic b-lactams that incorporate
M–L (M= Pd, Pt) bonds within the macrocycle framework
are yet unknown.[15] Furthermore, the synthesis of macrocy-
clic metallo-b-lactams by metal assembling has not been re-
ported in the literature, and the combination in a macrocy-
clic structure of the rigid 2-azetidinone rings with one or
two ligand-tunable metal centers with cis-square-planar ge-
ometry, makes this approach a respectable synthetic chal-
lenge.[14,16] Herein, we report the development of methodol-
ogy for the straightforward assembly of a series of diastereo-
merically pure novel macrocyclic Pd- and Pt-bis- and -tetra-

b-lactams, as well as the modi-
fication of the selectivity of the
Pt assembling processes by
tuning the reaction conditions.

Results and Discussion
The synthesis of the bis-b-
lactam building blocks that will
be used as scaffolds for the
macrocyclic structures is de-
picted in Scheme 3. Diimine 8
was prepared from aldehyde
7[17] in quantitative yield and
then reacted with phenoxyace-
tyl chloride and NEt3 by stan-
dard Staudinger conditions[18]

to form a 1:1 mixture of diaste-
reomeric bis-b-lactams 9 and
10 in 75 % yield. The isomers
were separated by SiO2 chro-
matography and treated inde-

pendently with tetra-n-butylACHTUNGTRENNUNGammonium fluoride (TBAF) to
remove the TMS groups, affording pure ligands 11 and 12 in
nearly quantitative yields. In both cases, the cis-stereochem-
istry of the b-lactam rings was confirmed by the coupling
constants of H3–H4 and H3’–H4� protons (J3,4 =4.4 Hz for
compounds 11 and 12).[19] Additionally, bis-pyridine ligands
13 and 14 were prepared by Sonogashira[20] coupling from
bis-ethynyl ligands 11 and 12 and 4-iodopyridine ([Pd-ACHTUNGTRENNUNG(PPh3)4]/NEt3/CuI/THF) in 82 % and 76 % yields, respective-
ly (Scheme 3).

The cis–anti-stereochemistry of bis-b-lactam 11 was un-
equivocally assigned by X-ray diffraction as described
below. Thus, by reaction of 11 and AlCl2H,[14a] azetidine 15
was prepared in 95 % yield (Scheme 4). A single crystal of
the azetidine/ZnCl2 complex 16 (prepared by reaction of 15
with ZnCl2 in MeOH, followed by slow crystallization from
MeOH/MeCN), was submitted to X-ray diffraction analysis,
which unambiguously established the cis–anti arrangement
of the b-lactam rings in the complex (Figure 1). Therefore,
the cis–anti stereochemistry of bis-b-lactam 11, and by com-
parison, the stereochemistry of 12 as well as that of the pyri-
dine derivatives 13 and 14, could be unequivocally assigned.

The preparation of PdII- and PtII-cornered complexes
based on bis-pyridine dative donor groups was approached
first. A chelating phosphine (diphenylphosphanylethane
(dppe)) was used to enforce the required cis geometry at
the Pd and Pt atoms of the final products. Thus, the reaction
of equimolar amounts of cis-[Pd ACHTUNGTRENNUNG(dppe) ACHTUNGTRENNUNG(OTf)2]

[21] (Tf = tri-
flate) and either anti- or syn-bis-pyridine ligands 13 and 14,
in CHCl3 at room temperature, afforded the complexes 17
and 18 in nearly quantitative yields as pale-yellow, air-stable
solids (Scheme 5). The macrocyclic mononuclear structure
of these triflate complexes was established by analytical and
spectroscopic data (see the Experimental Section). The pres-
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Scheme 1. Some examples of metallomacrocycles. Cy=cyclohexyl.
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ence of the triflate counterion in all cases was indicated by
the 19F signal located at around d=�78 ppm, which is
highly characteristic of ionic triflates.[3b] The 31P spectra
showed sharp singlets and, as expected, the 31P signals for 17
(d=66.8 ppm) and 18 (d= 64.3 ppm) are shielded d= 5.3
and 7.8 ppm, respectively, relative to the precursor metal tri-
flate.[21] The 1H and 13C NMR spectra were particularly diag-
nostic for the macrocyclic mononuclear complexes 17 and
18, respectively, in which the methylene signals of the che-
lating dppe unit are deshielded, as expected for the cationic
species relative to the neutral cis-[Pd ACHTUNGTRENNUNG(dppe) ACHTUNGTRENNUNG(OTf)2] precur-
sor. Finally, the structural formulation of the proposed mac-
rocycles 17 and 18 was firmly elucidated by ESI mass spec-
trometry.[22] The ESI-MS spectrum of 17 obtained from an
acetone/CH3CN solution resolved the peak centered at m/z
612.1 with an m/z peak spacing of 1/2, which corresponds to
the [M�2OTf]2+ charge state ion (Figure 2). In the case of
18, the ESI-MS spectrum showed peaks at m/z 1523.8 [M+

H]+ and 1373.8 [M�OTf]+ . In both cases, the observed mo-
lecular isotope patterns are in excellent agreement with the
theoretical pattern.[23]

The synthesis of the parent Pt macrocycles was attempted
next under the same conditions (Scheme 5). The reaction of
cis-[Pt ACHTUNGTRENNUNG(dppe) ACHTUNGTRENNUNG(OTf)2]

[21] and anti-bis-pyridine ligand 13 yield-
ed the expected mononuclear complex 19 as the main prod-
uct.[24] However, the isomeric syn-bis-pyridine ligand 14 af-
forded a 1:1 mixture of Pt complex 20 and oligomeric mate-
rial under the same reaction conditions (determined by the
31P and 1H NMR spectra of the crude reaction). The differ-
ent behavior of anti- and syn-bis-pyridine ligands 13 and 14

towards cis-[Pt ACHTUNGTRENNUNG(dppe) ACHTUNGTRENNUNG(OTf)2]
could be explained by the com-
bination of two factors,
namely, the different topology
of both isomers and the
strength of the Pt�pyridine
bonds. Thus, the kinetically
inert nature of PtII–pyridine
coordination bonds at room
temperature generally favors
the rapid formation of oligo-
mers over the assembly of the
macrocycle.[1d] The presence of
the electron-donor phosphine
ligands has proved to increase
the lability of the Pt�N bonds,
but even so, in our case, when
starting from syn-ligand 14, the
formation of oligomeric mate-
rial as a by-product could not
be avoided.

It is known that kinetically
controlled processes frequently
lead irreversibly to the kinetic
and statistic distribution of
products, including a collection
of linear/cyclic oligomers and

polymers of different chain length, which results inevitably
in poor yields of the desired macrocyclic structures. In sharp
contrast, reversible reactions can avoid these undesired ef-
fects that are introduced in kinetically controlled processes.
This is clearly the case with PdII–pyridine macrocyclic struc-
tures 17 and 18, as the Pd�pyridine bonds are much weaker
than their Pt counterparts and kinetically labile at room
temperature.[1d, 25] The term dynamic covalent chemistry
(DCC) is used to describe those reversible reactions con-
ducted under equilibrium conditions that allow the prepara-
tion of the macrocyclic target molecule, overcoming the for-
mation of undesired by-products.[26]

In an attempt to increase the lability of PtII�pyridine
bonds and to shift the process to the quantitative assembly
of the macrocycle, a solution of the crude 1:1 mixture of Pt
complex 20 and oligomeric material was heated in acetone
at 100 8C, in a sealed tube for a week.[3a,b, 27] The 1H NMR
spectroscopic analysis, however, revealed that there was no
improvement in the amount of macrocycle 20 present in the
reaction mixture after the experiment.

Pt-cornered macrocyclic b-lactams incorporating ethynyl
groups were prepared next, and the reaction turned out to
be extremely dependent on the coupling reaction conditions
that were employed. Direct coupling of anti bis-alkynyl
ligand 11 with cis-[Pt ACHTUNGTRENNUNG(dppe) ACHTUNGTRENNUNG(OTf)2] only resulted in rapid
polymerization of the starting material. However, when the
reaction was carried out in the presence of a weak base such
as sodium acetate,[28] a single product 21 was obtained. The
31P NMR spectrum of the crude reaction product showed a
sharp signal at d= 42.6 ppm (JP,Pt =2367 Hz), which is consis-

Scheme 2. Examples of bio-organometallic metallomacrocycles.
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tent with the presence of a single cis-phosphine center. The
absence of any other signal in the spectrum confirmed that
no Pt-containing oligomers were formed in the reaction.
Compound 21 was air stable, and was isolated by chroma-

tography on silica gel in 65 % yield (Scheme 6). The struc-
ture of 21 was established by spectroscopic and analytical
data. The IR spectrum contained a single n ACHTUNGTRENNUNG(C�C) absorp-
tion at 2110 cm�1 and the 13C NMR spectrum showed signals
that could be assigned to the two carbons of the alkynyl
moiety at d= 129.9 ppm (Ca�Pt, m) and d=113.0 ppm (Cb�Pt

d, JPC =33.9 Hz) together with a signal at d= 28.6 ppm
(CH2, d, J=154.6 Hz) appropriate for a single phosphine
ligand. Final confirmation of the structure of mono-assem-
bled cis-PtACHTUNGTRENNUNG(dppe)-bis-b-lactam 21 was obtained by fast-
atom-bombardment mass spectrometric analysis (FABMS)
that showed a [M+H]+ peak at m/z 1158.5, with the expect-
ed Pt isotopic distribution pattern (Figure 3).[23] Similar re-
sults were obtained starting from the isomeric syn-bis-alkyn-
yl-b-lactam 12. Thus, mono-assembled cis-Pt ACHTUNGTRENNUNG(dppe)-bis-b-
lactam 22 was obtained as the sole reaction product (61 %
isolated yield) by reaction of 12 with cis-[Pt ACHTUNGTRENNUNG(dppe) ACHTUNGTRENNUNG(OTf)2]
and sodium acetate. Macrocyclic Pt-bis-b-lactams 21 and 22
are diastereomerically pure metallic cavities.

When bis-b-lactam 11 was allowed to react with cis-[Pt-ACHTUNGTRENNUNG(dppe)Cl2]
[29] and NEt3 in the presence of catalytic amounts

of CuI (10%), a new product 23 was formed. The absence
of cis-Pt ACHTUNGTRENNUNG(dppe)-bis-b-lactam 21 as a by-product was con-
firmed by the 31P NMR spectrum of the crude reaction prod-
uct. The reaction product was isolated by chromatography
on silica gel (68 % yield) and identified as an inseparable 1:1
mixture of the diastereomeric syn/anti-bimetallic tetra-b-lac-
tams 23 a, b by NMR spectroscopy and FABMS (Scheme 7).
Thus, the 31P NMR spectrum showed two sharp signals at
d= 42.4 and 42.3 ppm (JP,Pt =2288 Hz) and the 13C NMR
spectra contained signals assignable to the carbons of the al-
kynyl moiety at d= 129.9–129.7 (Ca�Pt, m) and 111.6-
111.1 ppm (Cb�Pt, m), together with a signal at d= 30.5–
27.8 ppm (CH2, m), which corresponds to the phosphine li-
gands. Final confirmation of the structures of bimetallic
tetra-b-lactams 23 a, b came from the FABMS analysis,
which showed the [M+ H]+ peak at m/z 2315.7, which was
expected for the proposed structures.[23] In a similar way, bi-
metallic cis-Pt ACHTUNGTRENNUNG(dppe)-tetra-b-lactams 24 a, b (1:1 syn/anti dia-
stereomeric mixture) were formed from 12 and cis-[Pt-ACHTUNGTRENNUNG(dppe)Cl2] under analogous

Sonogashira-coupling condi-
tions. Macrocycles 24 a, b were
obtained in lower yields
(23 %) and accompanied by
polymeric material
(Scheme 8).

The total selectivity ob-
served in the assembling of
mono- and bimetallic macrocy-
clic b-lactams 21–24 is appeal-
ing. What is typical in the co-
ordination-metal assembling

processes is that the size of the macrocycle formed in prefer-
ence is predetermined by the angles and symmetry of the
starting building blocks.[30] However, in our case, it should
be noted that starting from the same precursors, with de-

Scheme 3. The synthesis of ligands 11–14.

Scheme 4. The preparation of azetidine 15.
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fined geometries, we are only able to obtain mono- and di-
nuclear-assembled products with a total selectivity by
switching the reaction conditions That the reaction is driven
by different mechanisms with cis-[Pt ACHTUNGTRENNUNG(dppe) ACHTUNGTRENNUNG(OTf)2]/NaOAc
and cis- [Pt ACHTUNGTRENNUNG(dppe)Cl2]/NEt3/CuI is evident, but the reasons
why the formation of mono-assembled products 21 and 22 is

preferred in the absence of CuI

remain elusive to date and
should await further data.
However, it is likely that the
Pt–C�C coupling process
leading to the ring closure is
much faster under the CuI cat-
alyst, which favors the rapid
self-assembly of two molecules
over the intramolecular cou-
pling, and hence, the formation
of the bimetallic tetra- b-lac-
tams 23 and 24.[26]

Macrocycles that incorporate
ethynyl groups and transition
metals provide binding sites
for other metal atoms.[31] With
the idea of incorporating new
metals inside the bio-organo-
metallic cavities, and the access
to new compounds, we have
taken advantage of the ability
of the Pt–C�C bond linkages
to form silver complexes in a
tweezer fashion. Thus, silver-
binding studies have been car-
ried out for compounds 21–24.
The addition of slightly more
than the equimolar amount of
AgOTf to solutions containing
b-lactams 21 and 22, respec-
tively, resulted in the quantita-
tive formation of silver triflate
complexes 25 and 26
(Scheme 9). These complexes
were also characterized by
spectroscopic and analytical
means. The incorporation of
silver triflate resulted in the
significant shift differences in
the IR and 31P spectra of the
macrocycle. Thus, the sharp
signal in the IR spectra at
2110 cm�1 in the starting mac-
rocycles 21 and 22 is replaced
by a broad signal at 2087–
2056 cm�1 in silver triflates 25
and 26. Furthermore, signifi-
cant changes are observed in
the 31P NMR spectra of these
complexes upon complexation.

Thus, for example, compared with free macrocycle 21, the
31P signal of 25 is only slightly deshielded ([D6]acetone,
about d=1.6 ppm) but the coupling constant 1JP,Pt increases
by 277 Hz. These changes can be attributed to the modifica-
tion of the angle between the two acetylene ligands upon
complexation, thus affecting the angle of the phosphine.[32]

Figure 1. ORTEP plot with 25% probability of the Zn complex 16. Hydrogen atoms are omitted for clarity ex-
ception made of H3, H4, H3�, and H4� bonded to the chiral carbon atoms. The asymmetric unit is one half of
the molecule.

Scheme 5. The preparation of Pd- and Pt-metallomacrocyclic b-lactams 17–20.
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Similar changes in the chemical shift and coupling constant
1JP,Pt were observed in the double silver triflates 27 and 28
(Scheme 9). Final evidence for the coordination of AgOTf
came from the MS spectra. Silver triflates 25 and 26 showed
the [M�OTf]+ peaks at m/z 1264.9 and 1264.2, respectively
(Figure 4 and the Supporting Information), with isotopic dis-
tributions essentially equivalent to the calculated patterns,
confirming the 1:1 stoichiometry of the complexes. On the
other hand, the 1:2 stoichiometry for complexes 27 and 28

was evidenced by their
[M�OTf]+ peaks at m/z 2680.4
and 2680.6 respectively, with
the expected 1 m/z separation
corresponding to the + 1
charge state, together with the
[M�2OTf]2+ peak at 1265.7
with the isotopic distribution
pattern corresponding to a
0.5 m/z separation of the peaks
(Figure 4 and the Supporting
Information).

Conclusions
The synthesis, isolation, and
full characterization of differ-
ent types of stable-metal-as-
sembled macrocyclic b-lactams
is reported. By using adequate-
ly functionalized bis-b-lactams
with defined stereochemistry
as building blocks, a series of
mono- and bimetallic Pd and
Pt metallamacrocycles has
been prepared in good to
quantitative yields. These
novel structures combine the
b-lactam moiety with transi-
tion-metal fragments with a de-
fined cis-square planar geome-
try and constitute a new class
of metal-assembled cavities in-
volving molecules with biologi-
cal relevance as building
blocks. By combining the ade-
quate ligands, metallic frag-
ments and tuning the reaction
conditions, different mono-
and bimetallic macrocyclic b-
lactam cavities can be selec-
tively obtained. The macrocy-
cles bearing Pt–ethynyl groups
can also incorporate other
metal cations in their struc-
tures. Thus, owing to the p-
tweezer effect between the Pt–

ethylnyl moieties and the Ag+ , 1:1 or 1:2 host/silver triflate
guest complexes are formed.

Experimental Section

General procedures : 1H NMR and 13C NMR spectra were recorded at
22 8C on a Bruker Avance 700 (700.1 and 176.0 MHz), 500 (500.1 and
125.7 MHz), 300 (300.1 and 75.54 MHz), or Bruker 200-AC (200.1 and

Figure 2. Experimental (left) and theoretical (right) isotopical distribution of [M�2OTf]2+ peak of 17. For the
theoretical and experimental isotopical distribution of [M+H]+ and [M�OTf]+ peaks of 19, see the Support-
ing Information.

Scheme 6. The synthesis of macrocyclic Pt-alkynyl-bis-b-lactams, 21 and 22.
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50 MHz) spectrometers. Chemical shifts are given in ppm relative to
CDCl3 (1H, 7.27 ppm), CDCl3 (13C, 77.0 ppm), [D6]acetone (1H, 2.0 ppm),
and [D6]acetone (13C, 206.0 ppm). 31P NMR spectra were recorded at
121.4 MHz, and all chemical shifts are reported in ppm relative to exter-
nal 85 % H3PO4 at 0.00 ppm. 19F NMR spectra were recorded at
282.4 MHz, and all chemical shifts are reported relative to external
CFC13 at 0.00 ppm. IR spectra were taken on a Bruker Tensor 27 (MIR

8000–400 cm�1) spectrometer. Mass spectra were recorded on a QSTAR
pulsar I, (hybrid analyzed QTOF, applied biosystems), (ESI), or a MAT
95 XP ThermoFinnigan (FAB) apparatus. CH2Cl2 was distilled from calci-
um hydride and THF, and Et2O from sodium-benzophenone. Flame-
dried glassware and standard Schlenk techniques were used for moisture-
sensitive reactions. Merck silica-gel (230–400 Mesh) was used as the sta-
tionary phase for purification of crude reaction mixtures by flash column
chromatography. Identification of the products was made by TLC (kiese-
gel 60F-254). UV light (l=254 nm) was used to develop the plates.

Imine 8 : Imine 8 was obtained in quantitative yields (2.2 g, yellow oil),
by reaction of aldehyde 7 (2.0 g, 10.0 mmol)[17] and 1,3-diaminopropane
(366.0 mg, 5.0 mmol) in Et2O (40 mL) and in the presence of MgSO4 at
room temperature for 3 h. 1H NMR (CDCl3, 300 MHz): d =8.27 (s, 2H,
CH=N), 7.66 (d, J= 8.2 Hz, 4 H, ArH), 7.50 (d, J =8.2 Hz, 4 H, ArH),
3.72 (t, J =6.6 Hz, 4 H, CH2-N), 2.12 (qt, J =6.6 Hz, 2 H, CH2), 0.26 ppm
(s, 18H, CH3); 13C NMR (CDCl3, 75.5 MHz): d =160.5 (C=N), 136.0,
132.1, 127.7, 125.1, (ArC), 104.6 (C), 96.1 (C), 59.2 (CH2-N), 31.8 (CH2),
�0.1 ppm (CH3); IR (film): ñ=2958, 2839, 2157, (C�C) 1643 (C=N),
1603, 1249 (C�O), 1221 (C�O), 864, 840 cm�1; C27H37N2Si2: calcd: C
73.25, H 7.74, N 6.33; found: C 73.40, H 7.85, N 6.46.

Synthesis of bis-b-lactams 9 and 10 : A solution of phenoxyacetyl chloride
(2.6 g, 15.0 mmol) in dry CH2Cl2 (50 mL) was purged with argon and
cooled at �78 8C. Then, a solution of triethylamine (3.1 g, 30.0 mmol) in

dry CH2Cl2 (15 mL) was added drop-
wise. The mixture was stirred for
30 min at �78 8C, and a solution of
imine 8 (2.1 g, 5.0 mmol) in dry
CH2Cl2 (30 mL) was added dropwise
by a syringe pump for 3 h, maintain-
ing the temperature at �78 8C. The re-
action was stirred at room tempera-
ture overnight and then quenched
with water/ice mixture (25 mL). The
organic layer was washed with HCl
0.5 m (to remove the excess of triethyl-
amine) and brine, and then dried over
MgSO4. The desiccant was removed
by filtration and the solvent evaporat-
ed at reduced pressure. The crude
solid was suspended in Et2O, filtered,
and dried with cold Et2O to yield
2.6 g (75 %) of a 1:1 mixture of anti-
and syn-bis-b-lactams 9 and 10 that
was separated by chromatography on
silica gel (hexane/AcOEt 7:3).

anti-Bis-b-lactam 9 : It was obtained
as a crystalline solid (1.1 g, 32%).
1H NMR (CDCl3, 300 MHz): d=7.40
(d, J =8.1 Hz, 4 H, ArH), 7.24 (d, J=

8.1 Hz, 4H, ArH), 7.13 (t, J =8.0 Hz,
4 H, ArH), 6.89 (t, J =7.3 Hz, 2H,
ArH), 6.70 (d, J =8.0 Hz, 4H, ArH),
5.42 (d, J=4.4 Hz, 2 H, CH-O), 4.89
(d, J=4.4 Hz, 2H, CH-N), 3.39 (dt,
J1 =13.8 Hz, J2 =7.0 Hz, 2 H, CH2-N),
3.05 (dt, J1 =13.8 Hz, J2 =7.0 Hz, 2H,
CH2-N), 1.71 (qt, J =7.0 Hz, 2H,
CH2), 0.24 ppm (s, 18H, CH3);
13C NMR (CDCl3, 75.5 MHz): d=

165.9 (C=O), 156.5, 133.3, 131.8,
129.2, 128.4, 123.5, 122.0, 115.2 (ArC),
104.3 (C), 95.3 (C), 81.7 (CH�O), 62.3

(CH�N), 38.5 (CH2�N), 25.2 (CH2), �0.1 ppm (CH3); IR (film): ñ=3042,
2958, 2158 (C�C), 1762 (C=O), 1598, 1494, 1235 (C�O), 863, 842 cm�1;
m. p. 199–202 8C (CHCl3); C43H46N2O4Si2: calcd: C 72.64, H 6.52, N 3.94;
found: C 72.75, H 6.61, N 3.84.

syn-Bis-b-lactam 10 : It was obtained as a crystalline solid (1.0 g, 30%).
1H NMR (CDCl3, 300 MHz): d =7.40 (d, J=8.2 Hz, 4H, ArH), 7.25 (d,

Figure 3. Experimental (left) and theoretical (right) isotopical distribu-
tion of [M+H]+ peak of 21.

Scheme 7. The synthesis of of macrocyclic bis-Pt-alkynyl-tetra-b-lactams, 23.
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J =8.2 Hz, 4H, ArH), 7.13 (t, J=

8.0 Hz, 4 H, ArH), 6.89 (t, J =7.5 Hz,
2H, ArH), 6.69 (d, J =8.0 Hz, 4H,
ArH), 5.39 (d, J =4.4 Hz, 2H, CH-
O), 4.85 (d, J=4.4 Hz, 2 H, CH-N),
3.46 (dt, J1 =14.4 Hz, J2 = 7.1 Hz, 2H,
CH2-N), 2.98 (dt, J1 =14.4 Hz, J2 =

7.1 Hz, 2H, CH2-N), 1.90–1.81 (m,
1H, CH2), 1.69–1.59 (m, 1 H, CH2),
0.23 ppm (s, 18H, CH3); 13C NMR
(CDCl3, 75.5 MHz): d=165.9 (C=O),
156.5, 133.2, 131.9, 129.2, 128.4, 123.6,
122.1, 115.3 (ArC), 104.3 (C), 95.3
(C), 81.8 (CH-0), 62.3 (CH-N), 38.1
(CH2-N), 25.5 (CH2), �0.1 ppm
(CH3); IR (film): ñ = 2961, 2162 (C�
C) 1751 (C=O), 1599, 1496, 1241 (C�
O), 871, 843 cm�1; m. p. 196–199 8C
(CHCl3); C43H46N2O4Si2: calcd: C
72.65, H 6.52, N 3.94; found: C 72.58,
H 6.45, N 4.03.

General procedure for the removal of
the TMS group : To a stirred solution
of the b-lactam in THF (30 mL),
TBAF·3H2O was added in one por-
tion. The mixture was stirred at room
temperature until total disappearance
of the starting material (monitored by
TLC; about 1 h). The crude reaction
was diluted with water (25 mL), ex-
tracted with CH2Cl2 (3 � 30 mL), and
the organic extracts dried over
MgSO4. The solvent was removed
under reduced pressure and the crude
solid was purified by chromatography
on silica gel (CH2Cl2/AcOEt 9:1).

Compound 11: Following the general
procedure, anti-bis-b-lactam 9
(250 mg, 0.3 mmol) and TBAF·3H2O
(277 mg, 0.8 mmol). After 1.5 h of re-
action and purification, compound 11
(191 mg, 96%) was obtained as a
crystalline solid. 1H NMR (CDCl3,
300 MHz): d=7.42 (d, J =8.1 Hz, 4H,
ArH), 7.26 (d, J =8.1 Hz, 4H, ArH),
7.13 (t, J=7.9 Hz, 4 H, ArH), 6.89 (t,
J =7.3 Hz, 2H, ArH), 6.71 (d, J=

7.9 Hz, 4 H, ArH), 5.44 (d, J =4.4 Hz,
2 H, CH-O), 4.91 (d, J=4.4 Hz, 2H,
CH�N), 3.40 (dt, J1 =14.2 Hz, J2 =

7.7 Hz, 2 H, CH2-N), 3.10 (s, 2H, C�
H), 3.07 (dt, J1 =14.2 Hz, J2 =7.7 Hz,
2 H, CH2-N), 1.74 ppm (q, J =7.7 Hz,
2 H, CH2); 13C NMR (CDCl3,
75.5 MHz): d= 166.0 (C=O), 156.5,
133.7, 132.0, 129.2, 128.5, 122.6, 122.1,
115.3 (ArC), 82.9 (C), 81.8 (CH�O),
78.1 (C), 62.3 (CH�N), 38.7 (CH2�
N), 25.3 ppm (CH2); IR (film): ñ=

3287 (C�C�H), 2927, 2106 (C�C)
1757 (C=O), 1597, 1493, 1233 (C�O),
840, 754 cm�1; m.p. 152–154 8C
(CHCl3); C37H30N2O4: calcd: C 78.43,
H 5.34, N 4.94; found C 78.51, H
5.22, N 4.79.

Compound 12 : Following the general
procedure, syn-bis-b-lactam 10
(150 mg, 0.2 mmol) and TBAF·3H2O

Scheme 8. The synthesis of of macrocyclic bis-Pt-alkynyl-tetra-b-lactams, 24.

Scheme 9. The synthesis of silver complexes 25–28.
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(166 mg, 0.5 mmol). After 1.5 h reaction and purification, compound 12
(116 mg, 97%) was obtained as a crystalline solid. 1H NMR (CDCl3,
300 MHz): d= 7.43 (d, J=8.1 Hz 4H, ArH), 7.27 (d, J=8.1 Hz 4 H,
ArH), 7.14 (t, J= 7.7 Hz, 4H, ArH), 6.89 (t, J= 7.2 Hz, 2H, ArH), 6.70
(d, J= 8.2 Hz, 4H, ArH), 5.41 (d, J=4.4 Hz, 2 H, CH-O), 4.89 (d, J=

4.4 Hz, 2 H, CH-N), 3.49 (dt, J1 =14.1 Hz, J2 =7.0 Hz, 2 H, CH2-N), 3.11
(s, 2H, C�H), 2.99 (dt, J1 =14.1 Hz, J2 =7.0 Hz, 2 H, CH2-N), 1.92–1.83
(m, 1 H, CH2), 1.73–1.62 ppm (m, 1H, CH2); 13C NMR (CDCl3,
75.5 MHz): d =165.9 (C=O), 156.5, 133.6, 132.0, 129.2, 128.5, 122.6, 122.1,
115.3 (ArC), 82.9 (C), 81.8 (CH�O), 78.1 (C), 62.2 (CH�N), 38.1 (CH2�
N), 25.5 ppm (CH2); IR (film): ñ=3287 (C�C�H), 3059, 2925, 2107 (C�
C) 1757 (C=O), 1596, 1493, 1234 (C�O), 833, 754 cm�1; m. p. 156–158 8C

(CHCl3); C37H30N2O4: calcd: C 78.43,
H 5.34, N 4.94; found: C 78.57, H
5.19, N 4.83.

Synthesis of pyridine ligands : [Pd-ACHTUNGTRENNUNG(PPh3)4] (10 mol %) and CuI (5
mol %) were added under Ar to a
stirred solution of 4-iodopyridine in a
4:1 mixture of dry THF and freshly
distilled triethylamine. Then, a solu-
tion of the b-lactam was added drop-
wise. The b-lactam/4-iodopyridine
ratio was 1:8 and the percentage of
the catalyst was related to the
amount of b-lactam used. The reac-
tion mixture was stirred at room tem-
perature and its progress monitored
by TLC until disappearance of the re-
agents. The crude product was fil-
tered though celite 545, the solvent
removed under reduced pressure, the
residue dissolved in CH2Cl2 (20 mL),
and then washed with water (2 �
10 mL) and brine (1 � 10 mL). The or-
ganic layer was dried over MgSO4,
the solvent remover under reduced
pressure, and the crude product puri-
fied by chromatography on silica gel
(CH2Cl2/AcOEt/MeOH).

Compound 13 : b-Lactam 11 (150 g,
0.26 mmol), 4-iodopyridine (127 mg,
0.66 mmol), [Pd ACHTUNGTRENNUNG(PPh3)4] (24 mg,
0.02 mmol), and CuI (2 mg,
0.01 mmol) were added together in a
4:1 THF/Et3N mixture (60 mL). After
5 h at room temperature and further
purification, 13 (150 mg, 82%) was
obtained as a pale-yellow crystalline
solid. 1H NMR (CDCl3, 300 MHz):
d=8.60 (br s, 4H, ArH), 7.63 (d, J=

7.9 Hz, 4H, ArH), 7.39–7.29 (m, 8H,
ArH), 7.14 (t, J =7.9 Hz, 4 H, ArH),
6.89 (t, J =7.3 Hz, 2 H, ArH), 6.72 (d,
J =7.9 Hz, 4H, ArH), 5.47 (d, J=

4.4 Hz, 2 H, CH-O), 4.97 (d, J=

4.4 Hz, 2H, CH�N), 3.44 (dt, J1 =

14.4 Hz, J2 =6.7 Hz, 2H, CH2�N),
3.12 (dt, J1 =14.4 Hz, J2 = 6.7 Hz, 2H,
CH2�N), 1.80 ppm (quint, J =6.7 Hz,
2H, CH2); 13C NMR (CDCl3,
75.5 MHz): d =166.0 (C=O), 156.5,
149.6, 134.3, 131.8, 131.1, 129.2, 128.7,
125.5, 122.6, 122.2, 115.3 (ArC), 93.3
(C), 87.4 (C), 81.9 (CH-O), 62.4
(CH�N), 38.8 (CH2�N), 25.4 ppm
(CH2); IR (film): ñ =3040, 2924, 2885,
2222 (C�C), 1760 (C=O), 1591, 1540,
1493, 1438, 1234 (C�O), 821,
753 cm�1; m. p. 147–149 8C (CHCl3);

ESI-MS: m/z : 721.5 [M+H]+. C47H36N4O4: calcd: C 78.31, H 5.03, N
7.77; found: C 78.47, H 5.16, N 7.62.

Compound 14 : b-Lactam 12 (100 mg, 0.17 mmol), 4-iodopyridine
(288 mg, 1.41 mmol), [PdACHTUNGTRENNUNG(PPh3)4] (19 mg, 0.02 mmol), and CuI (2 mg,
0.01 mmol) were combined in a 4:1 THF/Et3N mixture (50 mL). After
5 h at room temperature and further purification, 14 (95 mg, 76%) was
obtained as a pale-yellow crystalline solid. 1H NMR (CDCl3, 300 MHz):
d=8.60 (br s, 4 H, ArH), 7.49 (d, J =8.0 Hz, 4 H, ArH), 7.39–7.31 (m, 8 H,
ArH), 7.13 (t, J= 7.8 Hz, 4H, ArH), 6.89 (t, J= 7.3 Hz, 2H, ArH), 6.71
(d, J= 8.0 Hz, 4H, ArH), 5.44 (d, J=4.3 Hz, 2 H, CH-O), 4.95 (d, J=

Figure 4. a) Experimental (left) and theoretical (right) isotopical distribution of 1264.2 [M�OTf]+ peak of 1:1
silver triflate complex 25. b) Theorethical (above) and experimental (below) isotopical distribution of 1264.7
[M�2OTf]2+ (left) and 2680.3 [M�OTf]+ (right) peaks of 1:2 silver triflate complex 27.
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4.3 Hz, 2H, CH-N), 3.57–3.47 (m, 2H, CH2-N), 3.07–2.98 (m, 2H, CH2-
N), 1.94–1.89 (m, 1H, CH2), 1.76–1.69 ppm (m, 1H, CH2); 13C NMR
(CDCl3, 75.5 MHz): d=165.9 (C=O), 156.5, 149.6, 134.1, 131.7, 131.1,
129.2, 128.7, 125.4, 122.5, 122.1, 115.3 (ArC), 93.2 (C), 87.4 (C), 81.8
(CH�O), 62.2 (CH�N), 38.2 (CH2�N), 25.5 ppm (CH2); IR (film): ñ=

3041, 2928, 2224 (C�C), 1762 (C=O), 1593, 1542, 1495, 1236 (C�O), 823,
755 cm�1; m. p. 145–148 8C (CHCl3); ESI-MS: m/z : 721.5 [M +H]+ ;
C47H36N4O4: calcd: C 78.31, H 5.03, N 7.77; found: C 78.55, H 5.18, N
7.83.

Synthesis of bis-azetidine 15 : A solution of AlCl3 (292 mg, 2.12 mmol) in
dry THF (35 mL) was added via cannula to a stirred suspension of
LiAlH4 (80 mg, 2.12 mmol) in dry THF (10 mL) at 0 8C and under argon.
The mixture was stirred for 30 min at room temperature and then cooled
to 0 8C before the addition (via cannula) of a solution of bis-b-lactam 11
(200 mg, 0.35 mmol) in dry THF (29 mL). After 20 min at room tempera-
ture, the reaction was quenched with ice and extracted with Et2O (3 �
25 mL). The organic phases were washed with brine and water and dried
over MgSO4. The solvent was removed under reduced pressure and the
crude product was purified by flash chromatography on silica gel
(CH2Cl2/AcOEt 9:1). Bis-azetidine 15 (180 mg, 95 %) was obtained as a
pale-yellow viscous oil. 1H NMR (CDCl3, 300 MHz): d=7.43 (d, J=

8.3 Hz, 4 H, ArH), 7.38 (d, J= 8.3 Hz, 4H, ArH), 7.12 (t, J=7.8 Hz, 4H,
ArH), 6.84 (t, J =7.4 Hz, 2H, ArH), 6.56 (d, J=8.2 Hz, 4 H, ArH), 4.88
(t, J =5.5 Hz, 2H, CH�O), 4.13 (d, J=5.5 Hz, 2 H, CH-N), 3.59 (d, J=

8.7 Hz, 2H, CH2-N), 3.19 (dd, J1 =8.7 Hz, J2 =5.5 Hz, 2H, CH2-N), 3.09
(s, 2H, �CH), 2.63–2.49 (m, 4H, CH2-N), 1.30–1.24 ppm (m, 2 H, CH2);
13C NMR (CDCl3, 75.5 MHz): d=157.1, 138.4, 131.4, 129.0, 128.4, 120.8,
120.7, 114.9 (ArC), 83.7 (C), 77.0 (C�CH), 72.4 (CH�O), 71.0 (CH�N),
57.6 (CH2�N), 56.5 (CH2�N), 26.3 ppm (CH2); IR (film): ñ =3287 (C�
C�H), 3057, 2937, 2830, 2106 (C�C), 1599, 1587, 1494, 1237 (C�O), 814,
752 cm�1; C37H34N2O2: calcd: C 82.50, H 6.36, N 5.20; found: C 82.73, H
6.12, N 5.39.

Synthesis of Zn complex 16 : ZnCl2 (38 mg, 0.28 mmol) was added to a
stirred solution of bis-azetidine 15 (150 mg, 0.28 mmol) in anhydrous
MeOH. The mixture was refluxed for 5 h under constant stirring and
then left to reach room temperature before the addition of Et2O
(30 mL). The Zn complex 16 precipitated in the medium and was re-
moved by filtration. Slow crystallization in MeOH/MeCN 1:1 yielded
suitable crystals for X-ray diffraction.

General procedure for the synthesis of Pd– and Pt–pyridine complexes
17–20 : A solution of the pyridine–bis-b-lactam was stirred in CHCl3 or
acetone (HPLC), and under an argon atmosphere, and the corresponding
cis-[M ACHTUNGTRENNUNG(dppe) ACHTUNGTRENNUNG(OTf)2] (M=Pd, Pt)[21] was added as a single portion (molar
ratio b-lactam/cis-[M ACHTUNGTRENNUNG(dppe)ACHTUNGTRENNUNG(OTf)2], 1:1). After 15 min at room tempera-
ture, the solvent was removed under reduced pressure and the macrocy-
cles were obtained as pale-yellow crystalline solids that decompose
before melting at temperatures of around 180 8C.

Compound 17: Compound 13 (20 mg, 0.03 mmol) and cis-[Pd ACHTUNGTRENNUNG(dppe)-ACHTUNGTRENNUNG(OTf)2] (22 mg, 0.03 mmol) in CHCl3 (10 mL) were mixed together to
obtain macrocycle 17 (41 mg, 98%). 1H NMR ([D6]acetone, 300 MHz):
d=8.85 (br s, 4 H, ArH), 7.99–7.85 (m, 8 H, ArH), 7.66–7.59 (m, 12 H,
ArH), 7.41–7.20 (m, 12 H, ArH), 7.05 (t, J =7.4 Hz, 4 H, ArH), 6.78–6.69
(m, 6H, ArH), 5.53 (d, J =4.0 Hz, 2H, CH�O), 5.15 (br s, 2H, CH�N),
3.49–3.24 (m, 6 H, CH2�N + CH2�P), 3.21–3.04 (m, 2H, CH2�N), 1.78–
1.61 ppm (m, 2H, CH2); 13C NMR ([D6]acetone, 75.5 MHz): d =166.1
(C=O), 157.8, 151.5, 138.0, 135.7, 134.6–134.2 (m, dppe), 134.1, 132.7,
131.4–130.7 (m, dppe), 130.1, 130.0, 128.7, 126.8, 126.1, 122.6, 122.4 (q,
J =322.0 Hz, CF3), 121.7, 116.0 (ArC), 98.9 (C), 86.4 (C), 82.8 (CH-O),
62.6 (CH�N), 39.5 (CH2�N), 29.8–28.3 (m, CH2�P), 26.4 ppm (CH2);
31P NMR ([D6]acetone, 121.4 MHz): d= 66.8 ppm; 19F NMR
([D6]acetone, 282.4 MHz): d=�78.8 ppm; IR (film): ñ =3058, 2925, 2222
(C�C), 1760 (C=O), 1610, 1514, 1494, 1407, 1276, 1256, 1225 (C�O),
1157, 1029, 838, 723, cm�1; ESI-MS: m/z : 612.1 [M�2OTf]2+ ;
C75H60F6N4O10P2PdS2: calcd: C 59.12, H 3.97, N 3.68; found: C 58.86, H
3.79, N 3.46.

Compound 18 : Compound 14 (20 mg, 0.03 mmol) and cis-[Pd ACHTUNGTRENNUNG(dppe)-ACHTUNGTRENNUNG(OTf)2] (22 mg, 0.03 mmol) in CHCl3 (10 mL) were mixed together to ob-
tained macrocycle 18 (40 mg, 95 %). 1H NMR (CDCl3, 300 MHz): d=

8.86 (br s, 4H, ArH), 7.81–7.68 (m, 8H, ArH), 7.53 (br s, 12H, ArH),
7.41–7.28 (m, 8H, ArH), 7.19–7.04 (m, 8H, ArH), 6.89–6.80 (m, 2 H,
ArH), 6.71–6.63 (m, 4H, ArH), 5.43 (d, J =3.9 Hz, 2H, CH�O), 4.98
(br s, 2 H, CH�N), 3.57–3.43 (m, 2H, CH2�N), 3.32–2.92 (m, 6H, CH2�N
+ CH2�P), 1.98–1.83 (m, 1H, CH2), 1.78–1.67 ppm (m, 1 H, CH2);
13C NMR (CDCl3, 75.5 MHz): d=165.9 (C=O), 156.4, 150.5, 135.1, 134.5,
133.4–133.0 (m, dppe), 132.0, 130.3–1329.7 (m, dppe), 129.2, 128.8, 127.9,
125.6, 124.8, 122.1, 121.5, 120.8 (q, J=318.7 Hz, CF3), 115.2 (ArC), 97.8
(C), 85.8 (C), 81.8 (CH�O), 62.1 (CH�N), 38.3 (CH2�N), 29.4–28.0 (m,
CH2�P), 25.5 ppm (CH2); 31P NMR (CDCl3, 121.4 MHz): d= 64.3 ppm;
19F NMR (CDCl3, 282.4 MHz): d =�78.3 ppm; IR (film): ñ=3058, 2924,
2853, 2221 (C�C), 1761 (C=O), 1610, 1514, 1494, 1405, 1276, 1254, 1225
(C�O), 1029, 838, 725 cm�1; ESI-MS: m/z : 1523.8 [M +H]+ , 1373.8
[M�OTf]+ ; C75H60F6N4O10P2PdS2: calcd: C 59.12, H 3.97, N 3.68; found:
C 58.79, H 3.82, N 3.49.

Compound 19 : Compound 13 (20 mg, 0.03 mmol) and cis-[Pt ACHTUNGTRENNUNG(dppe)-ACHTUNGTRENNUNG(OTf)2] (22 mg, 0.03 mmol) in acetone (10 mL) (HPLC) were mixed to-
gether to obtain 19 (41 mg, 98 %) accompanied by trace amounts of oli-
gomeric material (5 %). 1H NMR (CDCl3, 300 MHz): d =8.86 (br s 4H,
ArH), 7.81–7.66 (m, 8H, ArH), 7.65–7.45 (m, 12H, ArH), 7.41–7.27 (m,
8H, ArH), 7.20–7.02 (m, 8 H, ArH), 6.93–6.80 (m, 2 H, ArH), 6.68 (br s,
4H, ArH), 5.43 (br s, 2H, CH�O), 4.98 (br s, 2H, CH�N), 3.58–3.41 (m,
2H, CH2�N), 3.23–2.89 (m, 6 H, CH2�N+ CH2�P), 1.96–1.79 ppm (m,
2H, CH2); 13C NMR ([D6]acetone, 75.5 MHz): d =165.9 (C=O), 157.4,
151.2, 137.8, 136.1, 134.6–133.9 (m, dppe), 132.5, 130.7, 130.5, 129.8,
129.1, 125.5, 124.6, 122.2, 122.2 (q, J =321.6 Hz, CF3), 121.4, 115.8 (ArC),
99.5 (C), 86.1 (C), 82.6 (CH-O), 62.3 (CH-N), 39.3 (CH2�N), 28.9–27.7
(m, CH2�P), 26.0 ppm (CH2); 31P NMR ([D6]acetone, 121.4 MHz): d=

38.4 ppm (s, JP�Pt =3230.5 Hz); 19F NMR ([D6]acetone, 282.4 MHz): d=

�78.8 ppm; IR (film): ñ =3058, 2925, 2221 (C�C), 1761 (C=O), 1610,
1514, 1491, 1409, 1255, 1156, 1108, 1030, 840, 754, cm�1; ESI-MS: m/z :
1612.9 [M +H],+ 1462.9 [M�OTf].+

Compound 20 : Compound 14 (20 mg, 0.03 mmol) and cis-[Pt ACHTUNGTRENNUNG(dppe)-ACHTUNGTRENNUNG(OTf)2] (22 mg, 0.03 mmol) in acetone (10 mL) (HPLC) were mixed to-
gether to obtain a 1:1 mixture of 20 and oligomeric material (40 mg) that
could not be separated. 1H NMR ([D6]acetone, 300 MHz): d= 8.87 (br s
4H, ArH), 8.00–7.87 (m, 8H, ArH), 7.74–7.56 (m, 12 H, ArH), 7.49–7.33
(m, 12 H, ArH), 7.14–7.01 (m, 4 H, ArH), 6.79–6.68 (m, 6 H, ArH), 5.55
(br s, 2H, CH�O), 5.20 (br s, 2 H, CH�N), 3.54–3.00 (m, 8 H, CH2�N
+ CH2�P) 1.85–1.96 ppm (m, 2 H, CH2). Signals at d =8.56, 5.51, 5.07,
and 1.67–1.58 ppm correspond to oligomeric material. The 31P NMR
spectrum (CDCl3, 121.4 MHz) showed a signal assignable to 20 at d=

38.4 ppm (s, JP�Pt =3225.7 Hz), (oligomer d=38.5), and the 19F NMR
(CDCl3, 282.4 MHz) shows a signal at d=�78.7 ppm. The presence of 20
was also demonstrated by ESI-MS: m/z : 1612.9 [M +H]+ , 1462.9
[M�OTf].+

General procedure for the synthesis of Pt–C complexes 21 and 22 : To a
stirred solution of the bis-b-lactam 11 or 12 in CH2Cl2 (100 mL), under
argon, was added a solution of NaOAc·3H2O in MeOH (5 mL). Then, a
solution of cis-[Pt ACHTUNGTRENNUNG(dppe) ACHTUNGTRENNUNG(OTf)2]

[21] in CH2Cl2 (10 mL) was subsequently
added dropwise The reaction mixture was stirred at room temperature
for 12 h, quenched by addition of water (20 mL) and extracted. The or-
ganic layer was dried over MgSO4, the solvent was removed under re-
duced pressure, and the products were purified by chromatography on
silica gel (CH2Cl2/AcOEt/MeOH).

Compound 21: Following the general procedure, bis-b-lactam 11 (40 mg,
0.07 mmol), cis-[Pt ACHTUNGTRENNUNG(dppe) ACHTUNGTRENNUNG(OTf)2] (62 mg, 0.07 mmol), and NaOAc
(53 mg, 0.28 mmol) were added together. After 12 h at room temperature
and further purification, 21 (52 mg, 65 %) was obtained as a pale yellow
crystalline solid. 1H NMR (CDCl3, 300 MHz): d =8.03–7.93 (m, 8 H,
ArH), 7.46–7.37 (m, 12H, ArH), 7.23 (d, J=8.1 Hz, 4 H, ArH), 7.09 (t,
J =8.0 Hz, 4H, ArH), 7.03 (d, J=8.1 Hz, 4 H, ArH), 6.84 (t, J =7.3 Hz,
2H, ArH), 6.70 (d, J =7.8 Hz, 4H, ArH), 5.35 (d, J =4.4 Hz, 2H, CH�
O), 4.80 (d, J =4.4 Hz, 2H, CH�N), 3.48 (dt, J1 =14.3 Hz, J2 =8.0 Hz,
2H, CH2�N), 3.01 (dt, J1 =14.3 Hz, J2 =8.0 Hz, 2 H, CH2�N), 2.58–2.21
(m, 4H, CH2�P), 1.76 ppm (quint, J =8.0 Hz, 2 H, CH2); 13C NMR
(CDCl3, 75.5 MHz): d=166.3 (C=O), 156.8, 133.5–133.1 (m, dppe), 131.3,
131.1, 129.9 (m, Ca C�C), 129.7, 129.1, 128.9–128.6 (m, dppe), 127.8,
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121.8, 115.5 (ArC), 113.0 (d, J= 33.9 Hz, Cb C�C), 81.8 (CH-O), 64.2
(CH�N), 41.2 (CH2�N), 28.6 (d, J =154.6 Hz, CH2�P), 28.4 ppm (CH2);
31P NMR (CHCl3, 121.4 MHz): d =42.6 ppm (JPt�P =2367.5 Hz); 31P NMR
[D6]acetone, 121.4 MHz): d=43.3 ppm (JPt�P =2344.8 Hz); IR (film): ñ=

3054, 2922, 2110 (C�C), 1755 (C=O), 1597, 1493, 1234 (C�O), 1104, 825,
750 cm�1; m.p. 235 8C; FABMS: 1158.5 [M+H]+ ; C63H53N2O4P2Pt: calcd:
C 65.34, H 4.53, N 2.42; found: C 65.39, H 4.65, N 2.35.

Compound 22 : Following the general procedure, bis-b-lactam 12 (50 mg,
0.09 mmol), cis-[Pt ACHTUNGTRENNUNG(dppe) ACHTUNGTRENNUNG(OTf)2] (78 mg, 0.09 mmol), and NaOAc
(47 mg, 0.35 mmol) were combined. After 12 h at room temperature and
further purification, 22 (62 mg, 61%) was obtained as a pale yellow solid.
1H NMR (CDCl3, 300 MHz): d=8.03–7.93 (m, 8 H, ArH), 7.43 (m, 12H,
ArH), 7.33 (d, J =8.1 Hz, 4 H, ArH), 7.13–7.05 (m, 8 H, ArH), 6.85 (t, J=

7.3 Hz, 2H, ArH), 6.74 (d, J=7.8 Hz, 4H, ArH), 5.33 (d, J =4.4 Hz, 2 H,
CH-O), 4.73 (d, J=4.4 Hz, 2H, CH�N), 3.42–3.32 (m, 2H, CH2�N),
2.89–2.79 (m, 2H, CH2�N), 2.51–2.31 (m, 4H, CH2�P), 2.03–1.91 ppm
(m, 2H, CH2); 13C NMR (CDCl3, 75.5 MHz): d =165.8 (C=O), 157.0,
133.7–133.1 (m, dppe), 132.0, 131.3, 131.1, 129.9 (dd, J1 =54.7 Hz, J2 =

21.3 Hz, Ca C�C), 129.6, 129.1, 129.0–128.6 (m, dppe), 127.7, 121.8,
115.6 (ArC), 113.1 (d, J= 33.9 Hz, Cb C�C), 82.0 (CH�O), 63.9 (CH�
N), 40.0 (CH2�N), 29.7 (CH2�P), 27.4 ppm (CH2); 31P NMR (CHCl3,
121.4 MHz): d=42.6 ppm (JPt�P =2359.3 Hz); IR (film): ñ =2923, 2853,
2110 (C�C), 1759 (C=O), 1598, 1493, 1234 (C�O), 1105, 840, 754 cm�1;
m.p. 243 8C (decomp); FABMS: 1158.8 [M+ H]+ ; C63H53N2O4P2Pt: calcd:
C 65.34, H 4.53, N 2.42; found: C 65.61, H 4.40, N 2.38.

General procedure for the synthesis of Pt–C complexes 23 and 24 : To a
stirred solution of the bis-b-lactams 11 and 12 and cis-[Pt ACHTUNGTRENNUNG(dppe)Cl2]

[29] in
CH2Cl2/Et3N (9:1; 100 mL), under an argon atmosphere, CuI (10 %) was
added in a single portion. The reaction mixture was stirred at room tem-
perature for 12 h, quenched by addition of water (20 mL) and extracted.
The organic layer was dried over MgSO4, the solvent was removed under
reduced pressure, and the products were purified by chromatography on
silica gel (CH2Cl2/AcOEt/MeOH 6:3:1).

Compounds 23a, b : Following the general procedure, bis-b-lactam 11
(40 mg, 0.07 mmol), cis-[Pt ACHTUNGTRENNUNG(dppe)Cl2] (44 mg, 0.07 mmol), and CuI
(1.3 mg, 0.01 mmol) were added together. After 12 h at room tempera-
ture and further purification, a 1:1 syn/anti diastereomeric mixture of
doubly assembled compounds 23 a and 23 b (55 mg; 68%) was obtained
as a pale yellow solid. 1H NMR (CDCl3, 300 MHz): d =7.96–7.79 (m,
16H, ArH), 7.47–7.29 (m, 24 H, ArH), 7.18–7.10 (m, 8H, ArH), 7.06–6.96
(m, 16 H, ArH), 6.86–6.78 (m, 4 H, ArH), 6.68–6.63 (m, 8 H, ArH), 5.27–
5.25 (m, 4H, CH�O), 4.58–4.56 (m, 4H, CH�N), 3.37–3.30 (m, 4H,
CH2�N), 3.00–2.91 (m, 4 H, CH2�N), 2.51–2.29 (m, 8 H, CH2�P), 1.59–
1.50 ppm (m, 4 H, CH2); 13C NMR (CDCl3, 75.5 MHz): d=166.0 (C=O),
156.6, 156.5 133.7–133.1 (m, dppe), 132.0, 131.5–131.1 (m), 129.9–129.7
(m, Ca C�C), 129.3, 129.2, 128.8–128.5 (m, dppe), 127.8, 121.8, 115.5,
115.4 (ArC), 111.6–111.1 (m, Cb C�C), 81.6, (CH�O), 62.0, 61.9 (CH�
N), 37.6 (CH2�N), 30.5–27.8 (m, CH2�P), 24.5, 24.4 ppm (CH2); 31P NMR
(CHCl3, 121.4 MHz): d=42.4, 42.3 ppm (JPt�P =2288.8 Hz); IR (KBr):
ñ= 3056, 2923, 2853, 2114 (C�C), 1760 (C=O), 1597, 1493, 1235 (C�O),
1105, 828, 750 cm�1; FABMS: 2315.7 [M +H]+ ; m.p. 240 8C (decomp);
C126H106N4O8P4Pt2: calcd: C 65.34, H 4.53, N 2.42; found: C 65.49, H 4.34,
N 2.31.

Compounds 24a,b : Following the general procedure, of bis-b-lactam 12
(70 mg, 0.12 mmol), cis-[Pt ACHTUNGTRENNUNG(dppe)Cl2] (78 mg, 0.12 mmol), and CuI
(2.6 mg, 0.02 mmol) were added together. After 12 h at room tempera-
ture and further purification, a 1:1 syn/anti diastereomeric mixture of
doubly assembled compounds 24a and 24b (27 mg, (23 %) was obtained
as a pale yellow solid. 1H NMR (CDCl3, 300 MHz): d =7.99–7.79 (m,
16H, ArH), 7.45–7.31 (m, 24 H, ArH), 7.15–6.97 (m, 24H, ArH), 6.82–
6.72 (m, 4H, ArH), 6.70–6.62 (m, 8 H, ArH), 5.29–5.29 (m, 4 H, CH�O),
4.65–4.62 (m, 4H, CH�N), 3.40–3.23 (m, 4 H, CH2�N), 3.03–2.89 (m, 4 H,
CH2�N), 2.55–2.28 (m, 8 H, CH2�P), 2.09–1.95 (m, 2H, CH2), 1.75–
1.60 ppm (m, 2 H, CH2); 13C NMR (CDCl3, 75.5 MHz): d=166.0 (C=O),
156.7, 156.6 133.7–133.1 (m, dppe), 131.2, 131.1, 129.9, 129.7, 129.4, 129.3,
129.2, 129.1, 128.8–128.4 (m, dppe), 127.8, 127.7, 121.8, 115.6, 115.5 (ArC
+ C�C), 81.8, 81.7 (CH�O), 62.5 (CH�N), 38.3 (CH2�N), 29.8–28.3 (m,
CH2�P), 26.1 ppm (CH2); 31P NMR (CHCl3, 121.4 MHz): d= 42.3 ppm

(JPt�P =2279.1 Hz); IR (film): ñ= 3055, 2923, 2853, 2114 (C�C), 1755
(C=O), 1597, 1493, 1235 (C�O), 1105, 822, 751 cm�1; FABMS: 2316.4
[M+ H]+ ; m.p. 245 8C (decomp); C126H106N4O8P4Pt2: calcd: C 65.34, H
4.53, N 2.42; found: C 65.43, H 4.60, N 2.30.

General procedure for the synthesis of AgOTf complexes : To a solution
of the corresponding macrocycle in CDCl3 and under argon, AgOTf was
added in one portion. The ratios macrocycle/AgOTf used were 1:1 for
the monometallic macrocycles 21 and 22 and 1:2 for the bimetallic mac-
rocycles 23 and 24. The mixture was stirred for 3 h in the dark (a brown
precipitate was formed). The products were obtained by centrifugation
(3000 rpm, 30 min–1 h), followed by washing with CDCl3 and drying. The
AgOTf complexes were light-sensitive products.

AgOTf complex 25 : Complex 21 (20 mg, 17 mmol) and AgOTf (4.5 mg,
17 mmol) in CDCl3 (5 mL) were mixed together. After 3 h, silver triflate
complex 25 (20 mg, 82 %) was obtained as a light brown solid. 1H NMR
([D6]acetone, 300 MHz): d =8.01–6.95 (m, 34H, ArH), 6.94–6.76 (m, 4H,
ArH), 5.60–5.53 (br s, 2H, CH�O), 5.31–5.22 (br s, 2H, CH�N), 3.64–3.43
(m, 2H, CH2�N), 3.22–3.02 (m, 2H, CH2�N), 2.92–2.64 (m, 4H, CH2�P),
1.69–1.48 ppm (m, 2H, CH2); 13C NMR ([D6]acetone, 176.0 MHz CDCl3):
d=165.3 (C=O), 157.0, 134.0–131.5 (m, dppe + ArC), 129.5, 128.9, 124.9,
120.5, 115.0 (ArC), 81.9 (CH-O), 63.3 (CH�N), 40.4 (CH2�N), 30.7–28.0
(m, CH2�P), 26.9 ppm (CH2); 31P NMR ([D6]acetone, 121.4 MHz): d=

42.9 ppm (s, JPt�P =2621.9 Hz); 19F NMR ([D6]acetone, 282 MHz): d=

�78.9 ppm; IR (film): ñ =3057, 2923, 2087 (C�C), 1756 (C=O), 1596,
1493, 1277, 1259, 1233 (C�O), 1159, 1105, 1030, 825, 753 cm�1; FABMS:
1264.9 [M�OTf].+

AgOTf complex 26 : Complex 22 (15 mg, 12 mmol) and AgOTf (3.3 mg,
12 mmol) were added together in CDCl3 (4 mL). After 3 h, AgOTf com-
plex 26 (12 mg, 65%) was obtained as a light brown solid. 1H NMR
([D6]acetone, 300 MHz): d =7.94–7.81 (m, 4H, ArH), 7.74–7.58 (m, 12H,
ArH), 7.32–7.02 (m, 16 H, ArH), 6.94–6.84 (m, 6 H, ArH), 5.57 (d, J =

4.3 Hz, 2H, CH�O), 5.23 (br s, 2 H, CH�N), 3.64–3.55 (m, 2 H, CH2�N),
2.97–2.68 (m, 6 H, CH2�N + CH2�P), 1.63–1.55 ppm (m, 2 H, CH2);
13C NMR ([D6]acetone, 176.0 MHz): d=165.2 (C=O), 157.0, 133.9–133.6
(m, dppe), 132.9–132.5 (m, dppe), 131.7, 130.4–130.2 (m, dppe), 129.5,
129.4–129.3 (m, dppe), 122.2, 115.3, (ArC), 82.6 (CH�O), 63.4 (CH�N),
41.7 (CH2�N), 29.6.7–28.5 (m, CH2�P), 29.4 ppm (CH2); 31P NMR
([D6]acetone, 121.4 MHz): d =42.4 ppm (JPt�P =2577.9 Hz); 19F NMR
([D6]acetone, 282 MHz): d=�79.1 ppm; IR (film): ñ=3061, 2960, 2919,
2056 (C�C), 1761 (C=O), 1594, 1491, 1261, 1233 (C�O), 1159, 1102,
1030, 801, 754 cm�1; ESI-MS: 1264.23 [M�OTf].+

AgOTf complexes 27: The mixture of diastereoisomers 23a,b (20 mg, 8
mmol) and AgOTf (4.5 mg, 17 mmol) were mixed together in CDCl3

(5 mL). After 3 h, AgOTf complexes 27 (18 mg, 75 %; mixture of diaste-
reoisomers) were obtained as a light brown solid. 1H NMR ([D6]acetone,
300 MHz): d =8.07–7.73 (m, 16H, ArH), 7.72–7.30 (m, 24H, ArH), 7.23–
7.02 (m, 16H, ArH), 6.97–6.60 (m, 20 H, ArH), 5.56–5.52 (m, 4H, CH-
O), 5.13–5.08 (m, 4H, CH-N), 3.44–3.26 (m, 4H, CH2-N), 3.15–2.83 (m,
12H, CH2-N + CH2-P), 1.41–1.26 ppm (m, 4 H, CH2); 13C NMR
([D6]acetone, 75.5 MHz): d =165.5, 165.4 (C=O), 157.8, 156.7, 135.5,
135.4, 133.9–133.8 (m, dppe), 133.5–133.4 (m, dppe), 132.8–132.7 (m,
dppe), 132.4, 132.1, 132.09, 132.03, 131.3, 131.2, 129.4–129.1 (m, dppe),
128.8, 128.5, 122.4, 122.3, 121.8, 121.7, 115.1, 114.9 (ArC), 81.9, 81.6
(CH�O), 62.8, 62.7 (CH�N), 40.1, 40.0 (CH2�N), 29.8–28.8 (m, CH2�P),
28.0, 27.8 ppm (CH2); 31P NMR ([D6]acetone, 121.4 MHz): d=44.0
(JPt�P =2516.1 Hz), 43.9 ppm (JPt�P =2510.8 Hz); 19F NMR ([D6]acetone,
282 MHz): d =�78.9 ppm; IR (film): ñ=3064, 2926, 2854, 1759 (C=O),
1597, 1494, 1284, 1237 (C�O), 1168, 1108, 1031, 826, 756 cm�1; ESI-MS:
2680.40 [M�OTf],+ 2421.57 [M�Ag�2OTf],+ 1264.74 [M�2OTf].2+

AgOTf complexes 28 : The mixture of diastereoisomers 24 a,b (15 mg, 6
mmol) and AgOTf (3.3 mg, 12 mmol) were added together in CDCl3

(4 mL). After 3 h, AgOTf complexes 28 (11 mg, 60 %; mixture of diaste-
reoisomers) were obtained as a light-brown solid. 1H NMR ([D6]acetone,
300 MHz): d =8.10–7.86 (m, 16H, ArH), 7.75–7.29 (m, 24H, ArH), 7.20–
6.89 (m, 24 H, ArH), 6.77–6.64 (m, 12H, ArH), 5.51–5.43 (m, 4 H, CH�
O), 5.02–4.93 (m, 4 H, CH�N), 3.54–2.75 (m, 16 H, CH2�N), 1.44–
1.20 ppm (m, 4 H, CH2); 13C NMR ([D6]acetone, 176.0 MHz): d=165.1,
164.9 (C=O), 156.9, 135.8, 135.5, 134.1–133.9 (m, dppe), 133.6–133.4 (m,
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dppe), 132.7–132.6 (m, dppe), 132.5, 132.3, 132.2, 131.9, 131.3, 129.6–
129.4 (m, dppe), 129.3, 129.2, 129.17, 129.10, 128.6, 128.5, 128.0, 122.6,
122.5, 121.9, 121.8, 120.3, 115.3, 115.2 (ArC), 82.2, 82.0 (CH�O), 62.3,
62.2 (CH�N), 39.5, 39.4 (CH2�N), 31.7–28.1 (m, CH2�P), 26.9, 26.8 ppm
(CH2); 31P NMR ([D6]acetone, 121.4 MHz): d =44.2 (s, JPt�P =2504.2 Hz),
43.4 ppm (s, JPt�P =2522.9 Hz); 19F NMR ([D6]acetone, 282 MHz): d=

�79.0 ppm; IR (film): ñ=3058, 2959, 2920, 2853, 1760 (C=O), 1594, 1491,
1260, 1235 (C-O), 1162, 1101, 1031, 801, 754 cm� ; FABMS: 2680.6
[M�OTf],+ 2424.0 [M�Ag�2OTf].+

X-ray data collection and structure refinement for compound 16 : A suita-
ble crystal for X-ray-diffraction experiments was obtained by crystalliza-
tion of 16 from MeOH/Et2O. Data collection was carried out at room
temperature on a Bruker Smart CCD diffractometer by using graphite-
monochromated MoKa radiation (l =0.71073 �) operating at 50 kV and
30 mA. Data were collected over a hemisphere of the reciprocal space by
combination of three exposure sets. Each exposure of 30 s covered 0.3 in
w. The first 100 frames were recollected at the end of the data collection
to monitor crystal decay, and no appreciable decay was observed.

A summary of the fundamental crystal and refinement data is given in
Table 1. The structure was solved by direct methods and refined by full-
matrix least-square procedures on F2 (SHELXL-97).[33] All non-hydrogen
atoms were refined anisotropically. All hydrogen atoms were included in
the calculated positions and refined riding on the respective carbon
atoms with some exceptions. Thus, the hydrogen atoms H3, H4, H3�, and
H4� bonded to C3, C4, C3�, and C4� atoms, respectively, were located in a
Fourier synthesis and refined riding on the respective carbon bonded
atoms. CCDC-718551 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The Cam-
bridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_
request/cif.
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Table 1. Crystal data and structure refinement for C37H34Cl2N2O2Zn.

empirical formula C37H34Cl2N2O2Zn
formula weight 674.93
temperature [K] 296(2)
wavelength [�] 0.71073
crystal system triclinic
space group P1̄
unit cell dimensions
a [�], a [8] 8.5548(7), 84.009(2)
b [�], b [8] 12.4210(10), 82.206(2)
c [�], g [8] 16.7526(14), 76.382(2)
volume [�3] 1709.2(2)
z 2
1calcd 1.311 Mg m�3

m [mm�1] 0.909
F ACHTUNGTRENNUNG(000) 700
q range for data collection 1.23 to 25.008
index ranges �10�h�10, �14�k�13, �19� l�18
reflections collected 12135
independent reflections 5496 [R ACHTUNGTRENNUNG(int) =0.0857]
completeness to q=25.008 91.3 %
refinement method full-matrix least-squares on F2

data/restraints/parameters 5496/0/401
strength of fit on F2 0.844
final R indices [I>2s (I)] R1=0.0449,[a] wR2 =0.0845[b]

R indices (all data) R1=0.1318,[a] wR2 =0.1070[b]

largest diff. peak and hole 0.295 and �0.326 e��3

[a] S[jFoj�jFcj]/S jFo j . [b] {S[w ACHTUNGTRENNUNG(Fo
2�Fc

2)2]/S[w ACHTUNGTRENNUNG(Fo
2)2]}1/2.
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