

PII: S0040-4039(97)01586-4

Preparation of 4,5-Cyclopropylsugar Derivatives : Application to the Stereocontrolled Synthesis of Bottom Half (C7-C16) Segment of Lasonolide A

Mukund K. Gurjar*, Anjan Chakrabarti, B.Venkateswara Rao and Punit Kumar Indian Institute of Chemical Technology, Hyderabad 500 007, India.

Abstract: Synthesis and application of the cyclopropane incorporated sugar intermediate in the stereoselective synthesis of C_7 - C_{16} segment of lasonolide A is described. © 1997 Elsevier Science Ltd.

Many reports have documented that marine sources contribute significantly towards biologically active natural products with unique structural arrangements¹. The representative example includes *in vitro* proliferation antagonist of A-549 human carcinoma cells - lasonolide A $(1)^2$. It was isolated from shallow water caribbean sponge *Forcepia sps*. Compound 1 attracted our attention³ because of unique structural features coupled with useful biological activity.

Preparation of cyclopropane containing carbohydrates are relatively rare in literature inspite of the fact that they could be useful synthons for chemical manipulation to obtain stereochemically defined branched chain carbohydrate intermediates. We now describe a novel application of a cyclopropane sugar derivative in the synthesis of bottom half segment (C_7 - C_{16}) of lasonolide A. The salient features of our strategy are i) stereoselective synthesis of 4,5-cyclopropane sugars, ii) radical induced reductive opening to obtain branched chain carbohydrate and finally, iii) stereospecific hydroboration-oxidation of 5,6-ene to obtain the advanced sugar intermediate with required L-configuration.

Methyl 2,3,4-tri-O-acetyl- α -D-mannopyranoside (3) was treated with PCC in refluxing toluene to give the unsaturated aldehyde (4) which was reduced with NaBH₄ in the presence of Amberlite IR 120 (H+) resin in MeOH to provide the allyl alcohol (5) in 60% overall yield⁴.

The modified Simmon-Smith cyclopropanation of 5 using $Et_2Zn-CH_2I_2$ in CH_2Cl_2 at -20° gave a mixture of diastereomeric cyclopropane derivatives 6 (desired) and 7 (undesired) in almost equal amounts (74%), which were separated by chromatography. The stereochemical assignments could not be made by ¹H NMR spectral analysis, but further chemical transformations allowed unequivocal allocation of structures 6 and 7. In order to improve the diastereoselectivity of cyclopropanation, compound 5 was transformed into sterically more demanding product 8 by a three step sequence. Subsequent Simmon-Smith reaction of 8 gave exclusively one product 9 with the undesired stereochemistry. For the purpose of correlation, compound 9 was converted into 7. Treatment of 6 with CBr₄-Ph₃P in CH₂Cl₂ at room temperature afforded the corresponding 6- bromo derivative 10 (92%).

(a) PCC, $C_6H_5CH_3$, Δ , 1 h, 70%; (b) NaBH₄, IR 120(H⁺) resin, MeOH, 0°C, 5 min., 85%; (c) CH₂I₂, Et₂Zn, CH₂Cl₂, -20°C, 10 h, 74%; (d)(i) TBS-Cl, Imid, CH₂Cl₂, RT, 2 h, 97%; (ii) NaOMe, MeOH, RT, 15 min., 95%; (iii) Me₂C(OMe)₂, PPTS, RT, 3 h, 90%; (e)(i) AcOH-H₂O (1:1), RT, 4 h, 75%; (ii) TBS-Cl, Imid, CH₂Cl₂, RT, 2 h, 90%; (iii) Ac₂O, Et₃N, CH₂Cl₂, RT, 30 min., 97%; (iv) Bu₄NF, THF, AcOH, 0°C, 3 h, 80%, (f) Ph₃P, CBr₄, Imid, CH₂Cl₂, RT, 1 h, 92%.

Interestingly in the proposed radical induced ring opening of 10, three competing pathways would be envisaged leading to the pyranose derivative 11, seven membered product 12 or ring opened product 13. Treatment of 10 with Bu₃SnH-AIBN in refluxing toluene gave a mixture of two products 11 and 12 (3:2) in 93% yield, which were separated with difficulty by preparative tlc. The ¹H NMR spectrum of 11 was amenable to first order analysis in which the characteristic coupling constants ($J_{2,3}$ = 3.2 (ax-eq) and $J_{3,4}$ = 10.0 (ax-ax) Hz) clearly indicated that the C₄-methyl group was equatorial. This stereochemical

(a) Bu_3SnH , AIBN, $C_6H_5CH_3$, Δ , 30 min., 93%; (b)(i) 9-BBN, THF 4 h; 1M NaOAc, H_2O_2 , 0°C, 3 h, 61%; (ii) TBDPS-Cl, Imid, DMAP, CH_2Cl_2 , RT, 4 h, 92%

assignment therefore proved the structure of the parent cyclopropane derivative 6. In the ¹H NMR spectrum of the seven-membered ring product 12, the characteristic resonances due to methylene protons were located

in the high field region δ 1.9 and 2.5 ppm, the remaining protons had expected chemical shifts. The sevenmembered ring product 12 which was obtained in 37% yield, could form a useful synthon⁵ for many biologically important polyhydroxy-cycloheptane compound subject to the Ferrier reaction or subsequent Sinay's modification⁶.

Since the mixture of 11 and 12 were difficult to separate in multigram-quantities, it was directly subjected to hydroboration-oxidation with 9-BBN-H₂O₂ followed by TBDPS-protection to give a chromatographically separable mixture of 14 and 15. The structures were assigned based on extensive ¹H NMR spectral analysis. The L-configuration of 14 was established by the chemical shift and coupling constant data of its ¹H NMR spectrum: δ_{H-1} 4.58 (d, J= 8.3 Hz), δ_{H-2} 4.82 (dd, J= 3.3, 8.3 Hz), δ_{H-3} 5.20 (t, J= 3.3 Hz).

Our next concern was the deoxygenation of 14 at C-2 for which 14 was first deacetylated and then treated with p-anisaldehyde dimethylacetal-PPTS to afford the 4-methoxybenzylidene derivative 16. Subsequent treatment with DIBAL at -78° in CH₂Cl₂ afforded 3-<u>Q</u>-PMB derivative 17 as a sole product?. The Barton deoxygenation⁸ of 17 via the phenylxanthate derivative afforded the 2-deoxy product 18 in 74% yield.

(a)(i) NaOMe, MeOH, RT, 10 min., 93%; (ii) MeO-C₆H₄CH(OMe)₂, PPTS, CH₂Cl₂, RT, 30 min., 97%; (b) DIBAL-H, CH₂Cl₂, -78°, 15 min., 81%); (c) (i) PhOC(S)COCl, Py.-DMAP, CH₂Cl₂, RT, 6 h; (ii) Bu₃SnH-AIBN, C₆H₅CH₃, Δ , 2 h, 74%; (d)(i) Bu₄NF, THF, RT, 1 h, 89%; (ii) (COCl)₂, DMSO, Et₃N, -78°C, 30 min., 91%; (iii) (MeO)₂P(O)CH(Me)CO₂Et, NaH, -78°C, 3 h, 80%; (e)(i) DIBAL-H, CH₂Cl₂, -78°C, 15 min., 81%; (ii) (COCl)₂, DMSO, Et₃N, -78°C, 30 min., 91%; (iii) Ph₃P=CHCO₂Et, C₆H₆, RT, 5 h, 77%.

Removal of TBDPS group and Swern oxidation of **18** gave the corresponding aldehyde which was subjected to Wittig-Horner reaction with $(MeO)_2P(O)CH(Me)CO_2Et$ -NaH at -78° in THF to give the Z-olefin **19** in 80% yield⁹. The corresponding E-isomer was also isolated in 10% yield¹⁰. The stereochemical assignments for **19** were based on ¹H NMR and NOE studies. Compound **19** was converted into the final product **2** (R = PMB) in three high yielding steps which involved 1) reduction of CO₂Et group with DIBAL at -78° 2) oxidation of CH₂OH group under Swern condition and 3) Wittig reaction with stabilised ylide Ph₃P=CHCOOEt¹¹.

In conclusion this communication elaborated the new synthesis of 4,5-cyclopropane sugar derivatives and novel applications to branched chain carbohydrate intermediates such as **2**.

A.C. and P.K. are grateful to CSIR for the financial support.

REFERENCES AND NOTES

1. For exhaustive reviews see - Chemical Review; 1993, 93(5), 1671.

- Horton, P.A.; Koehn, F.E.; Longley, E.E. and McConnell, O.J. J. Am. Chem. Soc., 1994, 116, 6015.
- 3. Gurjar, M.K.; Kumar, P. and Rao, B.V. Tetrahedron, Lett., 1996, 37, 8617.
- 4. Mathad, V.T.; Shefali.; Raj, K. and Bhaduri, A.P.1997, Ind. J. Chem. in press.
- 5. Kiddle, J.K. Chem. Rev., 1995, 95, 2189.
- 6. (a) Ferrier, R.J. J. Chem. Soc., Perkin Trans I, 1979, 1455; (b) Das, S.K.; Mallet, J.M. and Sinay, P, XVIIIth International Carbohydrate Symposium, Milan, Italy, 1996, p.479
- 7. Johansson, R and Samuelsson, J. Chem. Soc., Chem. Commun., 1984, 201.
- 8. Barton, D.H.R. and Subramanian, R. J. Chem. Soc., Perkin Trans I, 1977, 1718.
- 9. Tanaka, J.; Oikawa, Y.; Hamada, T.; Yonenitzu, O. Chem. Pharm. Bull, 1987, 35, 2209 and references cited therein.
- 10. The possibility of epimerisation at C-5 was ruled out by the ¹H NMR spectrum of compound **19** in which the coupling constant $J_{4,5}= 2.5$ Hz was observed for H-5 (δ_{H-5} 5.15ppm) characteristic for vicinal protons with ax-eq. relationship.
- 11. All the new compounds were characterised by ¹H NMR, Mass and HRFABMS: spectral data of some selected compounds: 6 ¹H NMR (CDCl₃) : 8 0.8-1.15 (m, 3 H), 2.10, 2.12 (2s, 6 H), 3.30 (d, 1 H, J= 12.0 Hz), 3.42 (s, 3 H), 3.90 (d, 1 H, J= 12.0 Hz), 4.78 (d, 1 H, J= 4.4 Hz), 4.90 (t, 1 H, J= 4.4 Hz), 5.36 (brs, 1 H), HRFABMS: C₁₁H₁₅O₆ (M-OMe) Calcd. <u>m/z</u> 243.0868, found 243.0872 (error 1.6 ppm). Compound: 11 ¹H NMR (CDCl₃): δ 1.10 (d, 3 H, J= 6.0 Hz), 2.00, 2.10 (2s, 6 H), 3.40 (s, 3 H), 4.45 (s, 1 H), 4.62 (s, 1 H), 4.70 (s, 1 H), 4.95 (dd, 1 H, J= 3.2, 10.0 Hz), 5.23 (brs, 1 H). Compound: 14 ¹H NMR (CDCl₃) : 8 1.03 (d, 3 H, J= 7.3 Hz), 1.07 (s, 9 H), 2.03 (s, 3 H), 2.04 (m, 1 H), 2.14 (s, 3 H), 3.47 (s, 3 H), 3.60 (dd, 1 H, J= 6.4, 10.5 Hz), 3.80 (dd, 1 H, J= 6.8, 10.5 Hz), 4.03 (m, 1 H), 4.58 (d, 1 H, J= 8.3 Hz), 4.82 (dd, 1 H, J= 3.3, 8.3 Hz), 5.20 (t, 1 H, J= 3.3 Hz), 7.4 (m, 6 H), 7.66 (m, 4 H), HRFABMS: $C_{27}H_{35}O_6Si$ (M-OMe) Calcd. m/z 483.2202, found 483.2222 (error 4.1 ppm). Compound: 19 ¹H NMR (CDCl₃): \$ 0.96 (d, 3 H, J= 7.25 Hz), 1.26 (t, 3 H, J= 7.2 Hz), 1.55-1.83 (m, 2 H), 1.94 (s, 3 H), 2.24 (m, 1 H), 3.42 (s, 3 H), 3.54 (m, 1 H), 3.78 (s, 3 H), 4.16 (q, 2 H, J= 7.2 Hz), 4.37 (d, 1 H, J= 11.0 Hz), 4.63 (brd, 2 H), 5.15 (dd, 1 H, J= 2.5, 6.6 Hz), 5.97 (d, 1 H, J= 6.6 Hz), 6.80 (d, 2 H, J= 8.2 Hz), 7.26 (d, 2 H, J= 8.2 Hz), HRFABMS: C₂₀H₂₇O₅ (M-OMe) Calcd. m/z 347.1858, found 347.1865 (error 1.9 ppm). Compound: 2 ¹H NMR (CDCl₃): δ 0.97 (d, 3 H, J= 7.1 Hz), 1.30 (t, 3 H, J= 3.5 Hz), 1.65-1.9 (m, 3 H), 1.93 (s, 3 H), 3.50 (s, 3 H), 3.64 (m, 1 H), 3.83 (s, 3 H), 4.24 (q, 2 H, J= 7.1 Hz), 4.54 (ABq, 2 H, J= 11.5 Hz), 4.78 (dd, 1 H, J= 2.5, 9.0 Hz), 5.01 (dd, 1 H, J= 2.5, 7.4 Hz), 5.83 (d, 1 H, J= 7.4 Hz), 5.95 (d, 1 H, J= 15.7 Hz), 6.9 (d, 2 H, J= 8.6 Hz), 7.35 (d, 2 H, J= 8.6 Hz), 7.85 (d, 1 H, J= 15.7 Hz), HRFABMS: C₁₅H₂₃O₄ (M-OPMB) Calcd. <u>m/z</u> 267.1596, found 267.1599 (error 1.1 ppm).

(Received in UK 12 June 1997; revised 28 July 1997; accepted 1 August 1997)