3,3"-Bis(saccharin-6-ylmethyl)-1,1':3',1"-terphenyl – Precursor of A New Tetradendate Bis-bridging Ligand

Stefan Buck and Gerhard Maas

Institut für Organische Chemie I, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany

Reprint requests to Prof. Dr. Gerhard Maas. Fax: +49 731 5022803. E-mail: gerhard.maas@uni-ulm.de

Z. Naturforsch. 2012, 67b, 1070-1080 / DOI: 10.5560/ZNB.2012-0143 Received May 22, 2012

Dedicated to Professor Heribert Offermanns on the occasion of his 75th birthday

The title compound (H₂tpsac) was synthesized from 6-bromosaccharin and 3,3''-bis(bromomethyl)-*m*-terphenyl. The ability of tpsac to serve as a tetradentate bis-bridging ligand was demonstrated by the formation of the dinuclear ruthenium(I,I) complexes [Ru₂(CO)₅(μ,μ -tpsac)]₂, [Ru₂(CO)₄(μ,μ -tpsac)]_n, [Ru₂(CO)₄(PPh₃)₂(μ,μ -tpsac)], and [Ru₂(CO)₅(PPh₃)(μ,μ -tpsac)]. An X-ray crystal structure analysis of [Ru₂(CO)₄(PPh₃)₂(μ,μ -tpsac)] showed the head-to-tail (or 1,1) arrangement of the two saccharinate coordination sites.

Key words: Ruthenium Complexes, Saccharin, Ligands

Introduction

Dinuclear rhodium(II,II) carboxylates and amidates of the type $Rh_2(\mu-L)_4$ (L = bidentate ligand) are efficient catalysts for intramolecular and intermolecular carbenoid reactions of diazo compounds [1]. While experimental evidence and computational results nowadays corroborate the mechanistic hypotheses of shortlived rhodium-carbene intermediates and their chemical and stereochemical mode of interaction with substrate molecules, it is still not clear which role is played by ligand dynamics in the catalytic process and to which extent it affects the catalyst's lifetime under the reaction conditions. The mentioned complexes $Rh_2(\mu$ -L)₄ have a paddlewheel structure with the chelating ligands in equatorial positions; in a rhodium-carbene complex, the carbene ligand occupies the available axial coordination site at one rhodium center, similar to the coordination of neutral Lewis base ligands such as water, amines and nitriles (for the first X-ray crystal structure determination of a Rh₂(tBuCOO)₄ complex bearing an axial NHC ligand, see ref. [2]; for a related Ru(I,I)-NHC complex, see ref. [3]). It has generally been assumed that the tetrabridged dinuclear framework of a rhodium-carbene remains intact during

carbenoid reactions, and recent computational work seems to support this assumption (see, for example, refs. [4-6]). On the other hand, in order to explain the enantioselectivity observed for alkyne cyclopropenation with ethyl diazoacetate, Corey and co-workers have proposed a mechanism that involves the complete dissociation of one carboxylate ligand followed by [2+2] cycloaddition of the alkyne to the resulting tribridged rhodium-carbene complex [7, 8].

We have recently synthesized a variety of dinuclear tetracarbonyldiruthenium(I,I) carboxylate and amidate complexes, $Ru_2(CO)_4(\mu-L)_2$, and have studied them as alternative catalysts for carbene transfer reactions with diazo compounds [9-13]. These diruthenium complexes have the typical sawhorse structure [14] with the two bidentate ligands in cis-configuration. Examples are shown in Fig. 1. With the unsymmetrical amidate ligands, which coordinate by an N-C=O moiety, head-to-tail (or 1,1, e.g. 1 and 3) and head-tohead (or 0,2, e.g. 2 and 4) complexation is possible. Our investigations on saccharinato- (1 and 2 [12]) and 2-pyridinolato- (3 and 4 [3, 10]) tetracarbonyldiruthenium(I,I) complexes have shown that the mutual conversion of the (1,1) and (0,2) arrangements of the equatorial bidentate ligands can occur smoothly at room

© 2012 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

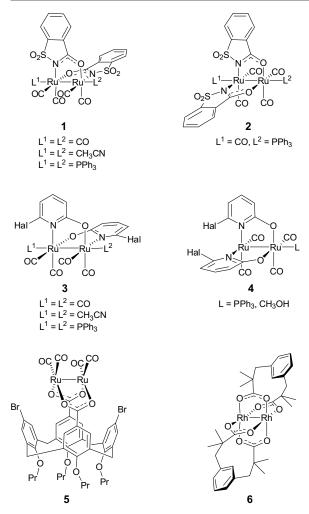


Fig. 1. Dinuclear Ru(I,I) and Rh(II,II) complexes relevant to this study.

temperature during exchange of the axial ligands. For 6-halogenopyridin-2-olato complexes $[Ru_2(CO)_4(\mu-HalpyO)_2(L_{1/2})]$, solvent- and temperature-dependent equilibria between (1,1) and (0,2) species could be observed in solution by NMR spectroscopy [3] in the temperature range where carbenoid reactions with these complexes as catalysts are usually performed.

It is obvious that the presence of constitutional equilibria in the catalytically active complexes can be an obstacle to the design of catalysts, particularly with respect to the diastereo- and enantioselectivity of the envisaged catalyzed reactions. Additionally, complete dissociation of a chelating ligand from the dinuclear core may facilitate degradation of the catalyst. Intramolecular bridging of two carboxylato or amidato moieties has been envisaged to alleviate this problem; this would prevent a dissociating ligand to leave the complex completely, and it could enhance the structural stability of the complex with respect to (1,1)/(0,2) isomerization in the case of the unsymmetrical amidato ligands. In fact, a number of dirhodium complexes with tethered dicarboxylato ligands have become known recently [15-23]. We have prepared bis(calixarenedicarboxylato)dirhodium complexes and analogous (calixarenedicarboxylato)tetracarbonyldiruthenium complexes such as 5 (Fig. 1) [17]. Both types of complexes were active catalysts for carbenoid reactions of diazo compounds (cyclopropanation, intramolecular C-H insertion) [11, 13, 17], although a significant advantage over simple dirhodium tetracarboxylates could not be seen. Taber's first dirhodium complex with a tethered dicarboxylate ligand was highly efficient and effective in an intramolecular carbenoid C-H insertion [15]. Complex $Rh_2(esp)_2$ (6) performed exceptionally effective and versatile in catalytic C-H bond amination reactions under oxidative conditions [21, see also 23], and it was better suited than simple dirhodium tetracarboxylates for the cyclopropanation of monoand *cis*-disubstituted olefins [24].

As far as we know, dinuclear complexes containing two tethered saccharin moieties as briding ligands have not been reported. For the design of a suitable ligand, we considered the solid-state structure of the diruthenium complex 1 ($L^1 = L^2 = CH_3CN$) [12], where the distance between the C-6 ring positions of the two *cis*-oriented saccharin ligands is 8.16 Å. We speculated that this distance could be bridged with a 1,1':3',1"terphenyl-3,3"-dimethyl structural moiety, more rigid

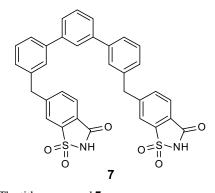
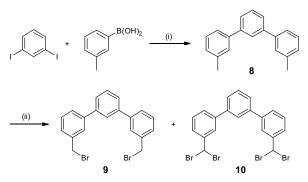
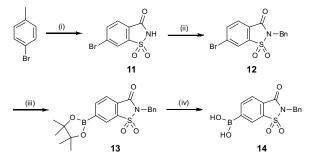


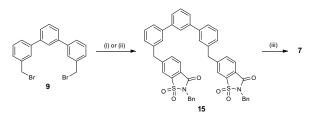
Fig. 2. The title compound 7.


than a linear alkyl chain but still flexible enough to accommodate the new bis-saccharinate ligand in a rather unstrained complex geometry. We report here on the synthesis of the ligand precursor **7** (Fig. 2) and tetracarbonyldiruthenium(I,I) complexes derived from it.

Results and Discussion


Synthesis of bis-saccharin 7 (H₂tpsac)

Bis-saccharin 7 was assembled in a convergent manner from 3,3''-bis(bromomethyl)-*m*-terphenyl (9) and saccharin building blocks 13 or 14. At first, terphenyl 8 [25] was prepared from 1,3-diiodobenzene and 3methylphenylboronic acid by a Suzuki-Miyaura reaction (Scheme 1). The conversion of 8 into the dibromide 9 was achieved by photochemical bromination with NBS in dichloromethane. Tetrabromide 10 was formed as a minor by-product (9:10 \approx 11) which could not be removed easily by crystallization or chromatography. However, it was possible to use this mixture for the subsequent coupling reaction. The usual thermally activated Wohl-Ziegler bromination (NBS and dibenzoyl peroxide in CCl₄ [20]) gave a significantly higher amount of the tetrabromide 10 (> 20% yield) even when NBS was added in small portions.


The saccharin building blocks 13 and 14 were obtained from 6-bromosaccharin (11) [26] as shown in Scheme 2. *N*-Protection with NaH/benzyl bromide in DMF [27] gave 12, which was converted into (*N*benzylsaccharin-6-yl)boronic acid pinacol ester (13) by Pd-catalyzed boration. The boration of unprotected 6-bromosaccharin (11) under the same conditions has been described in a patent [28], but the product was

Scheme 1. (i) Pd(PPh₃)₄ (cat.), Na₂CO₃, 1,4-dioxane/H₂O, 90 °C, 12 h, 88 % yield; (ii) *N*-bromosuccinimide, CH₂Cl₂, $h\nu$, mixture of **9** (46 %) and **10** (4 %).

Scheme 2. (i) ref. [26], 3 steps, overall yield 22%; (ii) 1. NaH, DMF; 2. BnBr, r. t., 2 d, then 80 °C, 3 h, 84% yield; (iii) bis(pinacolato)diboron (1.32 equiv.), KOAc (3.92 equiv.), PdCl₂(dppf)·CH₂Cl₂ (3 mol-%), 1,4-dioxane, 90 °C, 12 h, 73% yield; (iv) NaIO₄, 2 M HCl, acetone/H₂O, r. t., 12 h, 96% yield; Bn = benzyl.

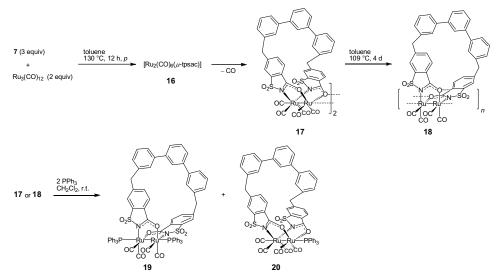
Scheme 3. (i) **13** (2.2 equiv.), $PdCl_2(dppf) \cdot CHCl_3$ (cat.), Cs_2CO_3 (2 equiv.), THF/H_2O , 80 °C, 12 h, 48% yield; (ii) **14** (2.6 equiv.), $Pd(PPh_3)_4$ (cat.), Na_2CO_3 (7 equiv.), toluene/EtOH/H₂O, 90 °C, 12 h, 76% yield; (iii) 1. HCOONH₄, Pd/C, EtOH, reflux, 12 h; 2. 1 M HCl_{aq}; 84% yield.

obtained with insufficient purity. Boronic acid ester **13** could be cleaved with sodium periodate/HCl [29] to give the (*N*-benzylsaccharin-6-yl)boronic acid **14** almost quantitatively.

The terphenyl/saccharin conjugate **15** was obtained by Suzuki-Miyaura coupling of dibromide **9** and either dioxaborolane **13** or boronic acid **14** (Scheme 3). With the boronic acid and standard reaction conditions (Pd(PPh₃)₄, Na₂CO₃, toluene/EtOH/H₂O) a significantly better yield of **15** (76%) was obtained. *N*-Deprotection of **15** was achieved by transfer hydrogenation [30] and furnished the ligand precursor H₂tpsac (**7**).

Tetracarbonyldiruthenium(*I*,*I*) *complexes with the tpsac ligand*

Based on our previous experience with the synthesis and structures of diruthenium(I,I) saccharinate com-


plexes such as 1 and 2 [12], we wondered whether similar complexes could be obtained with the bissaccharin H₂tpsac (7). Two coordination patterns could be expected - the tetradentate ligand tpsac could either coordinate intramolecularly with both N-C=O moieties at the same diruthenium core to form a discrete 1: 1 complex, or it could coordinate with each N-C=O moiety at a different Ru₂ core giving rise to oligo- or polymeric chains or supramolecular macrocyclic structures. We were pleased to find that the intramolecular coordination motif was realized. This is remarkable, because the tpsac ligand is a conformationally flexible ligand for which the two amidate coordination sites do not appear to be as much pre-organized as, e.g., in calix[4]arenedicarboxylates (compare structure 5, Fig. 1).

When H_2 tpsac was heated with $Ru_3(CO)_{12}$ in toluene under reflux conditions, a brown solid of unknown constitution was obtained which was insoluble in common organic solvents including DMSO and acetonitrile. However, when the reaction was performed at 130 °C in a closed pressure Schlenk tube (so that evolved carbon monoxide could not escape), a yellow solution was formed; after completion of the reaction and work-up, a yellow solid was isolated which after removal of most of the solvent in vacuo turned light-brown. The structure of the dimeric complex $[Ru_2(CO)_5(\mu,\mu-tpsac)]_2$ (17) is tentatively assigned to this solid, based on the presence of an IR absorption indicating an axial CO ligand ($v = 2096 \text{ cm}^{-1}$) in addition to the absorptions caused by equatorial CO ligands ($v = 2040, 2013, 1946 \text{ cm}^{-1}$), the solubility in hot chloroform, and the subsequent transformations. Unfortunately, a correct elemental analysis could not be obtained, because the solid strongly retained some toluene even when kept at $150 \,^{\circ}\text{C}/0.001 \,\text{mbar}$ for one hour. An analogous structure has been postulated for the saccharinato complex $[Ru_2(CO)_5(\mu,\mu$ sac)₂]₂ [12], and the structure of the related complex $[Ru_2(CO)_5(\mu,\mu-6-fluoropyridin-2-olate)_2]_2$ was proven by XRD analysis [31]. Notably, the anticipated precursor to 17, the hexacarbonyl complex $[Ru_2(CO)_6(\mu,\mu-tpsac)]$ (16), could neither be isolated nor observed directly, in contrast to the analogous saccharinato complex $[\operatorname{Ru}_2(\operatorname{CO})_6(\mu,\mu-\operatorname{sac})_2]$ [12]. It appears that 16 loses one or even both axial CO ligands very easily, and that a clean reaction yielding complex 17 is only possible in the presence of a carbon monoxide atmosphere.

Heating of complex **17** in refluxing toluene for four days yielded a greenish-gray solid which was identified as the dinuclear complex $[\operatorname{Ru}_2(\operatorname{CO})_4(\mu,\mu-\operatorname{tpsac})]_n$ (**18**). The polymeric structure is maintained by headto-tail dimerization across the Ru–O bonds and requires the dinuclear repeating unit to exist in the headto-tail (1,1) arrangement of the bis-saccharinato ligand. Because of its polymeric nature, **18** is only soluble in certain donor solvents, such as in hot DMSO. In addition to an elemental analysis, the structural assignment is supported by the absence of an IR absorption for axial CO ligands and by the typical absorption pattern of an M₂(CO)₄ unit [14, 32, 33] ($\nu = 2046$ vs, 1995 s, 1962 vs cm⁻¹).

As expected, the axial Ru…O coordination in the dimeric complex 17 and in the polymeric complex 18 could be cleaved by the action of better donor ligands. Thus, complex 17 reacted with two equivalents of triphenylphosphane (relative to a monomeric Ru_2^{2+} complex unit) in dichloromethane to give a yellow solid, the ³¹P NMR spectrum of which displayed signals at δ_P (CDCl₃) = 14.4 and 23.6 ppm in a 10:1 ratio. While the major signal is attributed to the bis-PPh₃ complex [Ru₂(CO)₄(PPh₃)₂(μ , μ -tpsac)] (19), the minor signal is likely to belong to the mono-PPh₃ complex $[Ru_2(CO)_5(PPh_3)(\mu,\mu-tpsac)]$ (20). The presence of an axial CO ligand in 20 was indicated by a rather weak absorption at 2085 cm^{-1} in the IR spectrum of the mixture of 19 and 20. These observations and interpretations are in agreement with those for the analogous diruthenium complexes containing two saccharinate ligands, which in contrast to 19/20 could be separated [12]. While the tpsac ligand in complex 19 adopts the head-to-tail arrangement (vide infra), the mono- PPh_3 complex 20 is likely to have the head-to-head constitution, with the PPh₃ ligand occupying the sterically less congested axial position, in agreement with the known molecular structure of the analogous complex $[Ru_2(CO)_5(PPh_3)(\mu-sac)_2]$ [12].

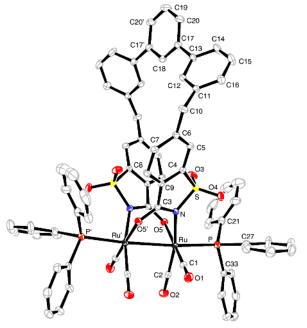
Treatment of the coordination polymer **18** with two equivalents of triphenylphosphane in CDCl₃ gave the monomeric complex [Ru₂(CO)₄(PPh₃)₂(μ , μ tpsac)] (**19**) almost quantitatively. The ³¹P NMR spectrum showed, besides the signal of **19** (δ_P = 14.4 ppm), the presence of a very minor second species (δ_P = 22.3 ppm), which could be the mono-PPh₃ complex [Ru₂(CO)₄(PPh₃)(μ , μ -tpsac)] (**20**) (however, note the small difference in δ_P values compared with **20** obtained from **17**) or the analogous complex

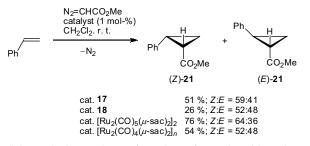
Scheme 4. Formation of dinuclear Ru(I,I) complexes 16-20.

 $[Ru_2(CO)_4(PPh_3)(\mu,\mu-tpsac)]$ with no axial CO ligand (Scheme 4).

It should be noted that the ¹H and ¹³C NMR spectra of the tpsac complexes reported here in all cases show more signals than expected from their composition. This is likely due to the presence of the *m*terphenyl-3,3"-dimethyl bridge, which can exist in different diasteroisomeric conformations that are stable on the NMR time scale. Due to signal overlap and partial line broadening, a detailed interpretation was not undertaken.

Single crystals of $[Ru_2(CO)_4(PPh_3)_2(\mu,\mu-tpsac)]$ (19, prepared from 18) were obtained, which were suited for an X-ray crystal structure determination. Fig. 3 shows the molecular structure of 19. The two amidate coordination sites of the tpsac ligand are in cis-position and assume a head-to-tail constitution; furthermore the complex has a crystallographic C_2 symmetry in the solid state. Characteristic bond geometry data are provided in Table 1. While the bond lengths agree well with the data reported for $[Ru_2(CO)_4(PPh_3)_2(\mu-sac)_2]$ (1, Fig. 1) featuring two non-tethered saccharinato ligands [12], bond angles and torsion angles in part assume different values to accommodate the steric requirements imposed by the terphenyl bridge. Thus, the N-Ru-O bond angle is 85.3° in **19** and 88.5° in **1** ($L^1 = L^2 = PPh_3$, Fig. 1), and the C6–C6' distance is 7.58 Å in the bridged complex 19 compared to 8.16 Å in the unbridged complex 1. In




Fig. 3 (color online). Solid-state structure of the C_2 -symmetrical complex **19**. Displacement ellipsoids are shown at the 20% probability level.

the terphenyl bridge, the outer phenyl rings are tilted against the central ring by about 40° .

The catalytic activity of the new complexes **17** and **18** was tested on the cyclopropanation of styrene with methyl diazoacetate to give methyl 2-

S. Buck - G. Maas · 3,3"-Bis(saccharin-6-ylmethyl)-1,1':3',1"-terphenyl

Distances		Angles		Torsion angles	
Ru–Ru′	2.7504(13)	C1-Ru-Ru'	94.0(2)	N-Ru-Ru'-O5'	-24.1(4)
Ru–P	2.462(2)	C2-Ru-Ru'	88.6(2)	C1-Ru-Ru'-C1'	-117.3(4)
Ru-C1	1.814(7)	P–Ru–Ru′	172.08(5)	C1-Ru-Ru'-C2'	-30.2(4)
Ru-C2	1.860(7)	C1-Ru-C2	87.2(3)	Ru-N-C3-O5'	-5.5(8)
Ru–O5	2.117(4)	C1-Ru-O5	175.6(2)		
Ru–N	2.170(4)	C1-Ru-N	90.9(2)		
C3–N	1.334(7)	C2-Ru-O5	96.1(2)		
C3–O5′	1.259(6)	O5-Ru-N	85.3(2)		

Scheme 5. Comparison of catalysts for carbenoid cyclopropanation of styrene. Reaction conditions: the catalyst was suspended in styrene/CH₂Cl₂, and the diazoacetate dissolved in CH₂Cl₂ was gradually added; styrene : diazoester = 10:1.

phenylcyclopropane-1-carboxylates (Z)- and (E)-21 (Scheme 5). It is known that the diazo compound is able to cleave the Ru…O bonds maintaining the coordination dimer and polymer. The comparison with the results obtained by us for closely related untethered bis(saccharinato) catalysts [12] shows that the yields with 17 and 18 as catalysts are lower, and the diastereomeric ratio is more or less the same. Thus, the tethered bis-sacharinato ligand of 17 and 18 offers no advantage in this case.

Conclusion

The ability of the new tetradentate bis-saccharinato ligand tpsac to bridge a tetracarbonyldiruthenium core by μ,μ -coordination of the two amidate units has been demonstrated. Several complexes of the type $[\operatorname{Ru}_2(\operatorname{CO})_4(\mu,\mu$ -tpsac)L¹L²] were synthesized. All of them have the two bridging amidate groups in *cis*-position, but depending on the axial ligands L¹ and L², they exist either in the head-to-tail or the head-to-head constitution. Although equilibria between the two constitutions were not observed directly, it is obvious that in spite of the terphenyl bridge, constitutional changes can occur smoothly during the synthesis of the different complexes.

Experimental Section

General information

 $Ru_3(CO)_{12}$ (ABCR) and PdCl₂(dppf)·CH₂Cl₂ (ChemPur) were purchased and used as supplied; PdCl₂(dppf)·CHCl₃ was prepared as described [34]. Solvents were dried by known procedures and stored under argon, most reactions were carried out using a standard Schlenk technique. Column chromatography was performed using silica gel 60 (Macherey-Nagel, 0.063–0.2 mm). Petroleum ether with a b. p. range of 40–60 °C was used.

NMR spectra were recorded using a Bruker DRX 400 spectrometer (¹H: 400.13 MHz, ¹³C: 100.61 MHz; ³¹P: 161.98 MHz). The ¹H and ¹³C spectra were referenced to the residual proton signal of the solvent; ¹H: δ (CHCl₃) = 7.26, $\delta((CH_3)_2SO) = 2.50$, $\delta(CH_2Cl_2) = 5.31$ ppm; ¹³C: $\delta(\text{CDCl}_3) = 77.0, \ \delta((\text{CD}_3)_2\text{SO}) = 39.5, \ \delta(\text{CD}_2\text{Cl}_2) =$ 53.7 ppm. The ³¹P NMR spectra were referenced to 85% H_3PO_4 as an external standard ($\delta_P = 0$ ppm). IR spectra were recorded on KBr pellets with a Bruker Vector 22 FTIR instrument. Mass spectra: ESI(+): Waters Micromass ZMD instrument; CI(+): Finnigan-MAT SSQ-7000, 100 eV, methane as reagent gas. Elemental analyses were obtained with an elementar Hanau vario MICRO cube analyzer. Melting points were determined with a Büchi B-540 instrument at a heating rate of 2 °C min⁻¹ (if not stated otherwise). Differential scanning calorimetry (DSC): Perkin Elmer DSC 7 calorimeter.

3,3"-Dimethyl-1,1':3',1"-terphenyl (8)

A solution of 1,3-diiodobenzene (4.02 g, 12.2 mmol) and 3-methylphenylboronic acid (3.62 g, 26.6 mmol) in 1,4dioxane (20 mL) was prepared in a thick-walled Schlenk tube, and an aqueous solution of Na₂CO₃ (2 M, 30 mL) and Pd(PPh₃)₄ (0.43 g, 0.36 mmol) were added. The mixture was stirred at 90 °C overnight. After cooling, the solvent was evaporated and the residue was extracted with 2×30 mL of diethyl ether. The combined ether phases were extracted with hydrochloric acid (2 M, 10 mL) and water (20 mL). After drying (Na₂SO₄) and evaporation of the solvent, the residue was worked up by column chromatography over silica gel (140 g, petroleum ether) to give **8** as a clear viscous

Table 1. Selected bond lengths (Å), angles (deg), and torsion angles (deg) for **19** with estimated standard deviations in

parentheses.

oil (2.80 g, 88%) (lit. [25]: m. p. 54 °C). $-C_{20}H_{18}$ (258.4): calcd. C 92.98, H 7.02; found C 93.17, H 7.02. ¹H and ¹³C NMR data fully agreed with the reported ones [25].

3,3''-Bis(bromomethyl)-1,1':3',1''-terphenyl (9)

A solution of terphenyl 8 (1.96 g, 7.6 mmol) and Nbromosuccinimide (3.00 g, 16.9 mmol) in dichloromethane (50 mL) was placed in a round-bottom glass flask and irradiated for 4 d with an electrical light bulb (Osram, Krypton 60 W). After extraction with saturated aqueous NaHCO3 solution (10 mL) and water (2×10 mL), the reaction solution was dried (Na₂SO₄), the solvent was evaporated, and the remaining oil was stirred in diethyl ether (2 mL) and petroleum ether (10 mL) until crystallization took place. The colorless solid obtained after drying (22 °C/0.001 mbar) consisted of dibromide 9 (1.56 g, 46% yield) and tetrabromide 10 (0.16 g, 4% yield). This mixture was used without separation for the subsequent transformation. The NMR data of 9 were in agreement with lit. [25]. 3,3"-Bis(dibromomethyl)-1,1':3',1''-terphenyl (10) was identified by the following NMR data: ¹H NMR (CDCl₃): $\delta = 6.74$ (s, 2 H, CHBr₂), 7.47-7.50 (m, 2 H, Haryl), 7.60-7.64 (m, 7 H, Haryl), 7.78 (s, 1 H, H_{arvl}), 7.82 (s, 2 H, H_{arvl}) ppm. – ¹³C NMR (CDCl₃): $\delta = 40.8, 125.3, 125.6, 126.1, 126.7, 128.7, 129.2, 129.5,$ 140.9, 141.5, 142.5 ppm.

6-Bromobenzo[d]isothiazol-3(2H)-one 1,1-dioxide (6-bromosaccharin) (11)

This compound was prepared from 4-bromotoluene via 2-chlorosulfonyl-4-bromotoluene and 2-aminosulfonyl-4-bromotoluene as described in ref. [26], but without complete purification of the intermediate products, in 22% overall yield. Crystallization from ethanol-water gave colorless long needles, m. p. 227-228 °C (lit. [26]: 216-217 °C). -IR (KBr): v = 3407 br m, 3096 br m, 2659 w, 1737 vs (C=O), 1705 vs (C=O), 1587 s, 1344 vs, 1331 vs, 1268 m, 1248 m, 1177 vs, 1143 m, 1123 m, 1076 m, 886 m, 854 m cm^{-1} . – ¹H NMR (CDCl₃/[D₆]DMSO = 9/1): δ = 7.73 (d, ${}^{3}J = 8.1$ Hz, 1 H, H_{aryl}), 7.87 (dd, ${}^{3}J = 8.1$ Hz, ${}^{4}J = 1.5$ Hz, 1 H, H_{aryl}), 7.96 (d, ${}^{4}J = 1.5$ Hz, 1 H, H_{aryl}), 8.50 (br s, 1 H, NH) ppm. – ¹³C NMR (CDCl₃/[D₆]DMSO = 9/1): $\delta = 123.5, 125.9, 126.5, 129.1, 136.9, 140.7, 159.5$ (NC=O) ppm. – MS (CI+): m/z (%) = 264 (100)/262 (94, [M+H]⁺, ^{81/79}Br). – C₇H₄BrNO₃S (262.1): calcd. C 32.08, H 1.54, N 5.34; found C 32.19, H 1.55, N 5.32.

2-Benzyl-6-bromobenzo[d]isothiazol-3(2H)-one 1,1-dioxide (N-benzyl-6-bromosaccharin) (12)

6-Bromosaccharin (**11**, 0.42 g, 1.6 mmol) was dissolved in dry DMF (10 mL), sodium hydride (80% in mineral oil, 53 mg, 1.8 mmol) was gradually added, and the mixture was stirred until gas evolution had ceased. After addition of benzyl bromide (0.22 mL, 1.9 mmol), the reaction mixture was stirred at r. t. for two days, then at 80 °C for 3 h. Water (5 mL) was added, and the mixture was extracted with ethyl acetate $(3 \times 15 \text{ mL})$. The organic phase was washed with aq. HCl (1 M, 5 mL), saturated aqueous NaHCO3 solution (5 mL) and brine (5 mL), then dried with Na₂SO₄. After filtration the solvent was evaporated, and the residue was stirred in petroleum ether (10 mL), yielding product 12 as a colorless solid (0.47 g, 84%), m. p. 160-162 °C. - IR (KBr): v = 3091 w, 3073 w, 1746 vs (C=O), 1587 m, 1454 m, 1392 m, 1334 vs, 1319 s, 1278 s, 1241 s, 1169 vs, 1076 m, 1043 m, 947 m, 846 m, 747 m, 698 m, 669 m, 592 m, 522 m cm⁻¹. – ¹H NMR (CDCl₃): δ = 4.89 (s, 2 H, NCH₂), 7.30–7.38 (m, 3 H, H_{phenyl}), 7.49 (d, J = 7.1 Hz, 2 H, H_{phenyl}), 7.88 (d, J = 8.1 Hz, 1 H, H_{aryl}), 7.93 (dd, ${}^{3}J = 8.1$ Hz, ${}^{4}J = 1.5$ Hz, 1 H, H_{aryl}), 8.05 (d, ${}^{4}J = 1.5$ Hz, 1 H, CH_{arvl}) ppm. – ¹³C NMR (CDCl₃): δ = 42.9 (NCH₂), 124.2, 126.0, 126.4, 128.3, 128.68, 128.71, 129.8, 134.1, 137.6, 139.1, 158.1 (C=O) ppm. – MS (CI+): *m/z* (%) = 354 (100)/352 (90) [M + H]⁺, $\frac{81}{79}$ Br; 289 (18)/287 (18) [M -SO₂]⁺. - C₁₄H₁₀BrNO₃S (352.2): calcd. C 47.74, H 2.86, N 3.98; found C 47.72, H 2.87, N 3.93.

2-Benzyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (13)

In a thick-walled Schlenk tube, a solution of Nbenzyl-6-bromosaccharin (12, 0.99 g, 2.8 mmol) and bis(pinacolato)diboron (0.94 g, 3.7 mmol) in dry 1,3dioxane (30 mL) was prepared, and potassium acetate (1.08 g, 11.0 mmol) was added. After degassing and saturation with argon PdCl₂(dppf)·CH₂Cl₂ (70 mg, 86 μ mol) was added, and the mixture was kept with stirring at 90 °C overnight. After cooling the solvent was replaced by ethyl acetate, the solution was passed over a plug of silica gel to remove a polar impurity, and the solid obtained after evaporation of the solvent was treated with boiling petroleum ether for 10 min to remove last traces of ethyl acetate. The solid was filtered off and dried at r.t./0.001 mbar for 1 h to leave a light-beige powder (0.81 g, 73%), m. p. 169.9-170.3 °C. - IR (KBr): v = 2978 w, 1732 vs (C=O), 1400 m, 1364 s, 1339 vs, 1276 m, 1239 m, 1189 s, 1146 m, 1134 m, 1091 m, 845 m, 703 m, 691 m, 593 m, 525 m cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 1.37$ (s, 12 H, 4 CH₃), 4.90 (s, 2 H, CH₂), 7.30–7.38 (m, 3 H, H_{phenyl}), 7.51 (dd, ${}^{3}J = 6.6$ Hz, 2 H, H_{phenvl}), 8.01 (d, J = 7.6 Hz, 1 H, H_{arvl}), 8.21 (d, J = 7.1 Hz, 1 H, H_{aryl}), 8.34 (s, 1 H, H_{aryl}) ppm. - ¹³C NMR (CDCl₃): $\delta = 24.9$ (CH₃), 42.7 (NCH₂), 85.1, 124.2, 126.9, 128.2, 128.7, 128.8, 129.0, 134.5, 137.1, 140.4, 159.0 (C=O) ppm. – MS (CI+): m/z (%) = 400 (100) [M+H]⁺. - C₂₀H₂₂BNO₅S (399.3): calcd. C 60.16, H 5.55, N 3.51; found C 60.02, H 5.39, N 3.42.

(2-Benzyl-1,1-dioxido-3-oxo-2,3-dihydrobenzo[d]isothiazol-6-yl)boronic acid [(N-benzylsaccharin-6-yl)boronic acid] (14)

Sodium periodate (NaIO₄, 0.81 g, 3.8 mmol) and boronic acid ester 13 (0.50 g, 1.3 mmol) were stirred in acetone/water (3/1, 30 mL) until a homogeneous solution was formed. After addition of 2 M hydrochloric acid (0.4 mL), the solution was stirred overnight. The colorless precipitate was filtered off with suction and washed with a small amount of cold acetone. The solid was discarded, and to the combined filtrates water was added until the solution became turbid. It was then left overnight in an open vessel (hood!) to allow acetone to evaporate. The formed precipitate of colorless needles was collected and dried at r.t./0.001 mbar for 1 h. Yield of 14: 0.38 g (96%), m.p. $180-181 \,^{\circ}\text{C.} - \text{IR}$ (KBr): v = 3553 s, 3358 br s, 3078 w,2915 w, 1743 vs (C=O), 1453 m, 1427 s, 1350 vs, 1320 vs, 1285 vs, 1180 s, 1154 s, 1126 m, 1061 m, 958 m, 688 s, 599 m, 513 m cm⁻¹. – ¹H NMR (CD₃OD): $\delta = 4.88$ (s, 2 H, NCH₂), 7.26–7.35 (m, 3 H, H_{phenyl}), 7.45 (d, J =7.1 Hz, 2 H, H_{phenyl}), 8.01 (d, J = 3.8 Hz, 1 H, H_{aryl}), 8.23 (d, J = 4.1 Hz, 1 H, H_{aryl}), 8.29 (s, 1 H, H_{aryl}) ppm. – ¹³C NMR (CD₃OD): $\delta = 43.3$ (NCH₂), 125.0, 126.7, 129.0, 129.1, 129.4, 129.6, 136.5, 138.5, 140.9, 160.6 (C=O) ppm. - MS (CI+): m/z (%) = 274 (100) [M - B(OH)₂ + 2 H]⁺, 184 (17) $[M - B(OH)_2 - Bn + 2 H]^+$. - $C_{14}H_{12}BNO_5S$ (317.1): calcd. C 53.02, H 3.81, N 4.42; found C 52.99, H 3.82, N 4.40.

6,6'-((1,1':3',1"-Terphenyl)-3,3"-diylbis(methylene))bis(2benzylbenzo[d]isothiazol-3(2H)-one 1,1-dioxide [3,3"-bis-(N-benzylsaccharin-6-ylmethyl)-1,1':3',1"-terphenyl] (15)

Method A: A suspension of boronic acid ester 13 (0.50 g, 1.3 mmol), bis(bromomethyl)terphenyl 9 (0.25 g, 0.6 mmol, contaminated with a small amount of tetrabromide 10, see above) and Cs₂CO₃ (0.86 g, 2.6 mmol) in THF (35 mL) and water (4 mL) was prepared in a thick-walled Schlenk tube, degassed, and saturated with argon. After addition of $PdCl_2(dppf) \cdot CHCl_3$ (76 mg, 89 μ mol, 14.8 mol-% based on 9), the mixture was kept with stirring at 80 °C overnight. After cooling the solvent was evaporated, the black residue was dissolved in dichloromethane (50 mL), and this solution was extracted with water (40 mL) to which 2 M aqueous HCl was added to facilitate the phase separation. The organic phase was washed with water $(2 \times 40 \text{ mL})$ to remove traces of acid, then dried with Na₂SO₄. A brown oil (0.53 g) was left after evaporation of the solvent, which was pre-purified by passing it through a short silica gel column (elution with ethyl acetate). Further separation was achieved by column chromatography on silica gel [140 g, elution with cyclohexane/ethyl acetate (4/1] to yield 0.23 g (48%) of 15 as a colorless solid. - M. p. 138-144 °C (from THF/diisopropyl ether).

– IR (KBr): v = 3032 w, 2933 w, 1732 vs (C=O), 1600 m, 1338 s, 1324 s, 1261 s, 1171 s, 698 m, 595 m, 518 m cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 4.22$ (s, 4 H, ArCH₂Ar), 4.89 (s, 4 H, NCH₂), 7.16 (d, J = 8.1 Hz, 2 H), 7.28–7.36 (m, 6 H), 7.41–7.57 (m, 13 H), 7.65–7.67 (m, 2 H), 7.72–7.75 (m, 3 H), 7.95 (d, J = 8.1 Hz, 2 H) (all arom. H) ppm. – ¹³C NMR (CDCl₃): $\delta = 42.0$, 42.6, 121.0, 125.3, 126.2, 126.4, 127.9, 128.1, 128.2, 128.61, 128.62, 129.3, 129.5, 134.5, 134.9, 138.1, 138.7, 141.3, 141.9, 149.7, 158.8 (C=O) ppm. – MS (CI+): m/z (%) = 801 (100) [M]⁺. – C₄₈H₃₆N₂O₆S₂ (800.9): calcd. C 71.98, H 4.53, N 3.50; found C 71.79, H 4.63, N 3.45.

Method B: In a thick-walled Schlenk tube, boronic acid **14** (1.40 g, 2.6 mmol), bis(bromomethyl)terphenyl **9** (0.70 g, 1.7 mmol, contaminated with a small amount of tetrabromide **10**) and 2 M aqueous Na₂CO₃ (5.9 mL, 11.8 mmol) were mixed with toluene (40 mL) and ethanol (2 mL). The mixture was degassed and saturated with argon, then Pd(PPh₃)₄ (0.290 g, 0.25 mmol, 9.6 mol-% based on **14**) was added, and the mixture was kept with stirring at 90 °C overnight (a homogeneous phase was formed). After cooling dichloromethane (30 mL) was added, the solution was extracted with 3×20 mL of water, and the organic phase was dried with Na₂SO₄. After evaporation of the solvent, a foam remained which was separated by column chromatography on silica gel (140 g, elution with cyclohexane/ethyl acetate (5/1)), yielding 1.00 g (75%) of **15** as an off-white solid.

$6,6'-((1,1':3',1''-Terphenyl)-3,3''-diylbis(methylene))bis-(benzo[d]isothiazol-3(2H)-one 1,1-dioxide [bis(saccharin-6-ylmethyl)-1,1':3',1''-terphenyl] (H_2tpsac, 7)$

Benzyl-protected bis-saccharin 15 (0.20 g, 0.25 mmol), ammonium formate (0.310 g, 5 mmol) and palladium on coal (Pd/C 10%, 0.10 g, 0.09 mmol) in ethanol (30 mL) were kept overnight with stirring at reflux temperature. The catalyst was filtered off, the solvent was evaporated, and the residual solid was suspended in 1 M aqueous HCl (30 mL) and exposed to ultrasonic irradiation for 5 min. The colorless jellylike solid was filtered off with suction, washed with water and dried for 2 h at 140 °C/0.001 mbar. A colorless solid (0.13 g, 84%) was obtained. A DSC measurement indicated a glass transition at $T_g = 119$ °C. – IR (KBr): v = 3436br s, 3285 br s, 3057 br m, 2677 br w, 1735 vs (C=O), 1600 s, 1482 m, 1338 vs, 1248 s, 1171 vs, 1137 s, 1115 m, 886 m, 788 m, 716 m, 597 m, 521 m cm⁻¹. - ¹H NMR $(CDCl_3/[D_6]DMSO (9/1)): \delta = 4.16 (s, 4 H, ArCH_2Ar),$ 7.12 (d, J = 7.6 Hz, 2 H), 7.35 (t, J = 7.6 Hz, 2 H), 7.41-7.48(m, 7 H), 7.60–7.66 (m, 5 H), 7.81 (d, J = 8.1 Hz, 2 H) (all H-arom.) ppm. – ¹³C NMR (CDCl₃/[D₆]DMSO (9/1)): δ = 41.3 (ArCH₂Ar), 120.2, 124.5, 125.3, 125.4, 125.69, 125.74, 127.3, 127.6, 128.8, 128.9, 134.1, 138.6, 139.7, 140.7, 141.1, 149.0, 160.2 (C=O) ppm. – MS (CI+): m/z (%) = 621 (100)
$$\label{eq:masses} \begin{split} &[M+H]^+.-C_{34}H_{24}N_2O_6S_2\ (620.7);\ calcd.\ 65.79,\ H\ 3.90,\\ &N\ 4.51;\ found\ C\ 65.68,\ H\ 4.02,\ N\ 4.50. \end{split}$$

$[Ru_2(CO)_5(\mu,\mu-tpsac)]_2$ (17)

 $Ru_3(CO)_{12}$ (0.10 g, 0.16 mmol), H₂tpsac (7, 0.15 g, 0.24 mmol) and dry toluene (30 mL) were placed in a thickwalled Schlenk tube and kept with stirring at 130 °C overnight. The solution was allowed to come to r.t., and petroleum ether (30 mL) was added. The formed yellow precipitate was isolated and stirred in refluxing cyclohexane for 1 h. The solvent was evaporated, and the residue was dried at 150 °C/0.001 mbar. A light-brown solid (0.12 mg) was obtained, which still contained some toluene that could not be removed even after longer drying at 150 °C/0.001 mbar. The complex decomposed above 380 °C (heating rate $10 \,^{\circ}$ C min⁻¹). NMR spectra indicate the presence of two or more species. – IR (KBr): v = 2926 w, 2851 w, 2096 s (COax), 2040 vs (COeq), 2013 vs (COeq), 1946 s (COeq), 1614 s (C=O, sac), 1577 s (C=O, sac), 1376 m, 1322 m, 1163 s, 959 m cm⁻¹. – ¹H NMR (CDCl₃, 325 K): $\delta = 3.99-4.20$ (m, 8 H, CH₂), 7.06-7.72 (m, 36 H, H_{arvl}) ppm. – ¹³C NMR (CDCl₃, 325 K): δ = 42.1– 42.2, 120.8-122.4, 124.2-129.4, 133.8-134.9, 138.6-139.2, 140.8–143.3, 148.4–148.6, 172.0, 175.5, 176.2, 178.5, 179.4, 194.1-199.3 ppm.

$[Ru_2(CO)_4(\mu,\mu-tpsac)]_n$ (18)

In a round-bottom flask fitted with a reflux condenser, complex 17 (55 mg) was heated for 4 d in toluene at 109 °C (50 mL). After cooling and evaporation of the solvent in vacuo, the residue was dried at 150 °C/0.001 mbar for 1 h. A greenish-grey solid of complex 18 was left (47 mg, 45% yield based on Ru₃(CO)₁₂), which turned yellow in contact with toluene or dichloromethane. Decomp. > 220 °C (heating rate $10 °C min^{-1}$). – IR (KBr): v = 3059 w, 2926 w, 2046 vs (CO_{eq}), 1995 s (CO_{eq}), 1963 vs (CO_{eq}), 1614 s (C=O, sac), 1577 s (C=O, sac), 1311 m, 1156 s, 957 m cm⁻¹. – The NMR spectra indicate the presence of more than one species. - ¹H NMR ([D₆]DMSO, 350 K): $\delta = 4.05 - 4.30$ (m, 4 H, CH₂), 7.05-8.02 (m, 18 H, CH_{ar}) ppm. – ¹³C NMR ([D₆]DMSO, 350 K): $\delta = 40.4, 40.5, 119.9-121.1, 123.6-128.9, 133.8-134.2,$ 139.7-141.6, 148.8-149.3, 175.9-177.2, 197.0-200.1 ppm. $-C_{38}H_{22}N_2O_{10}Ru_2S_2$ (932.9): C 48.93, H 2.38, N 3.00; found C 48.79, H 2.38, N 2.84.

$[Ru_2(CO)_4(PPh_3)_2(\mu,\mu-tpsac)]$ (19) and $[Ru_2(CO)_5(PPh_3)(\mu,\mu-tpsac)]$ (20)

A mixture of complex 17 (1 equiv.), triphenylphosphane (2 equiv.) and dichloromethane (1 mL for 8μ mol) was

stirred until a clear solution was formed. The solvent was evaporated, and the residue was extracted while hot with two portions of cyclohexane (1 mL for 6 μ mol) in order to remove residual PPh₃ (control by TLC). The yellow solid was dried at 100 °C/0.001 mbar for 1 h. A ³¹P NMR spectrum suggested the presence of complexes **19** and **20** in a 10 : 1 molar ratio. – Decomp. > 220 °C (heating rate 10 °C min⁻¹). – IR (KBr): $\nu = 3058$ w, 2924 w, 2085 w (CO_{ax}, **20**), 2034 vs (CO_{eq}), 1996 m (CO_{eq}), 1963 s (CO_{eq}), 1952 s (CO_{eq}), 1610 s (C=O, sac), 1571 s (C=O, sac), 1481 m, 1435 m, 1322 m, 1164 m, 695 m cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 3.85$ –4.09 (m, 4 H, CH₂, **19 + 20**), 6.87–7.77 (m, 52 H, H_{aryl}, **19 + 20**) ppm. – ³¹P NMR (CDCl₃): $\delta = 14.4$ (**19**), 23.6 (**20**) ppm.

When complex **18** was allowed to react with two molar equivalents of triphenylphosphane in CDCl₃ solution (NMR tube), complex **19** was formed almost exclusively, with only traces of **20** detectable. ³¹P NMR: $\delta = 14.4$ (**19**), 22.3 (slightly different from value given above for **20**).

X-Ray structure determination of $[Ru_2(CO)_4(PPh_3)_2(\mu,\mu-tpsac)]$ (19)

Suitable yellow crystals were obtained by slow evaporation of a toluene–dichloromethane solution at $7 \,^{\circ}$ C.

Table 2. Crystal structure data for $[Ru_2(CO)_4(PPh_3)_2(\mu,\mu-tpsac)]$ (19).

Formula	$C_{74}H_{52}N_2O_{10}P_2Ru_2S_2\\$
M _r	1457.38
Crystal size, mm ³	$0.23 \times 0.23 \times 0.19$
Crystal system	monoclinic
Space group	C2/c
<i>a</i> , Å	18.232(5)
<i>b</i> , Å	20.782(5)
<i>c</i> , Å	18.252(4)
α , deg	90
β , deg	118.89(3)
γ, deg	90
<i>V</i> , Å ³	6055(2)
Ζ	4
$D_{\rm calcd}, {\rm g}{\rm cm}^{-3}$	1.60
$\mu(MoK_{\alpha}), cm^{-1}$	6.9
<i>F</i> (000), e	2960
hkl range	$\pm 21, \pm 24, \pm 21$
θ range, deg	2.34-24.41
Refl. measured/unique/ R_{int}	23 399/4955/0.1003
Param. refined/restraints	416/0
$R(F)/wR(F^2)^{\mathrm{a}}$ $(I > 2\sigma(I))$	0.0510/0.1103
$R(F)/wR(F^2)^a$ (all reflexions)	0.0928/0.1223
GoF $(F^2)^{b}$	0.876
$\Delta \rho_{\rm fin}$ (max/min), e Å ⁻³	1.26 / -0.39

^a $R(F) = \sum ||F_0| - |F_c|| / \sum |F_o|; \ wR(F^2) = [\sum (w(F_o^2 - F_c^2)^2) / \sum w(F_o^2)^2]^{1/2}; \ ^b$ GoF = $[\sum w(|F_o| - |F|_c)^2 / (N_{obs} - N_{param})]^{1/2}.$

Data collection was performed at 190 K on an image-plate diffractometer (Stoe IPDS) using monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å). The structure was solved by Direct Methods and refined (F^2 values) using a full-matrix least-squares method. Hydrogen atom positions were calculated geometrically and treated as riding on their bond neighbors in the refinement procedure. Software

- M. P. Doyle, M. A. McKervey, T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, John Wiley & Sons, New York, NY 1998.
- [2] J. P. Snyder, A. Padwa, T. Stengel, A. J. Arduengo III, A. Jockisch, H.-J. Kim, *J. Am. Chem. Soc.* 2001, *123*, 11318-11319.
- [3] L. Schäffler, S. Buck, G. Maas, *Inorg. Chim. Acta* 2008, 361, 109–122.
- [4] D. T. Nowlan III, T. M. Gregg, H. M. L. Davies, D. A. Singleton, J.Am. Chem Soc. 2003, 125, 15902-15911.
- [5] D. T. Nowlan III, D. A. Singleton, J. Am. Chem. Soc. 2005, 127, 6190-6191.
- [6] J. A. S. Howell, *Dalton Trans.* **2007**, 1104–1114.
- [7] Y. Lou, M. Horikawa, R. A. Kloster, N. A. Hawryluk, E. J. Corey, J. Am. Chem. Soc. 2004, 126, 8916–8918.
- [8] Y. Lou, T. P. Remarchuk, E. J. Corey, J. Am. Chem. Soc. 2005, 127, 14223 – 14230.
- [9] G. Maas, T. Werle, M. Alt, D. Mayer, *Tetrahedron* 1993, 49, 881–888.
- [10] T. Werle, L. Schäffler, G. Maas, J. Organomet. Chem. 2005, 690, 5562–5569.
- [11] M. Grohmann, S. Buck, L. Schäffler, G. Maas, Adv. Synth. Catal. 2006, 348, 2203–2211.
- [12] S. Buck, G. Maas, J. Organomet. Chem. 2006, 691, 2774–2784.
- [13] M. Grohmann, G. Maas, *Tetrahedron* 2007, 63, 12172-12178.
- [14] Review: B. Therrien, G. Süss-Fink, Coord. Chem. Rev. 2009, 253, 2639–2664.
- [15] D. F. Taber, R. P. Meagley, J. P. Louey, A. L. Rheingold, *Inorg. Chim. Acta* **1995**, 239, 25-28.
- [16] R. P. Bonar-Law, T. D. McGrath, N. Singh, J. F. Bickley, C. Femoni, A. Steiner, *J. Chem. Soc., Dalton Trans.* 2000, 4343–4347.
- [17] G. Maas, J. Seitz, Chem. Commun. 2002, 338-339.
- [18] J. Seitz, Doctoral Thesis, University of Ulm, Ulm (Germany) 2002.
- [19] J. Bickley, R. Bonar-Law, T. McGrath, N. Singh, A. Steiner, *New. J. Chem.* **2004**, *28*, 425–433.
- [20] F. A. Cotton, P. Lei, C. Lin, C. A. Murillo, X. Wang, S.-Y. Yu, Z.-X. Zhang, J. Am. Chem. Soc. 2004, 126, 1518–1525.

for structure solution and refinement: SHELX-97 [35, 36]; molecule plot: ORTEP-3 [37]. Further details are provided in Table 2.

CCDC 882161 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

- [21] C. G. Espino, K. W. Fiori, M. Kim, J. Du Bois, J. Am. Chem. Soc. 2004, 126, 15378-15379.
- [22] D. N. Zalatan, J. Du Bois, J. Am. Chem. Soc. 2009, 131, 7558–7559.
- [23] B. H. Brodsky, J. Du Bois, Chem. Commun. 2006, 4715–4717.
- [24] F. González-Bobes, M. D. B. Fenster, S. Kiau, L. Kolla, S. Kolotuchin, M. Soumeillant, Adv. Synth. Catal. 2008, 350, 813-816.
- [25] Terphenyl 8 and other *m*-terphenyls have been prepared before from 1,3-dibromo-2-iodobenzene and Ph-MgBr by a tandem aryne reaction: H. Hart, P. Rajakumar, *Tetrahedron* 1995, *51*, 1313–1336.
- [26] S.-K. Kwon, M.-S. Park, Arzneim.-Forsch./Drug Res. 1996, 46, 966–971.
- [27] J. E. Semple, D. Rideout, R. F. Nutt, M. Shernderovich, J. Wang, S. Mylvaganam, F. Wu, C.-Y. Tsai, V. Yalamoori, C. J. Loweth (Cengent Therapeutics, Inc.), WO 20069876 2006.
- [28] M. J. I. Andrews, P. Edwards, M. S. Chambers, W. Schmidt, J. A. Clase, G. Bar, K. L. Hirst, A. MacLeod (Galapagos N. V.), WO 2007138072 2007.
- [29] J. R. Falck, M. Bondlela, S. K. Venkataraman, D. Srinivas, J. Org. Chem. 2001, 66, 7148-7150.
- [30] C. Subramanyam, M. R. Bell (Sterling Winthrop Inc.), US 5306818 1994.
- [31] L. Schäffler, B. Müller, G. Maas, *Inorg. Chim. Acta* 2006, 359, 970–977.
- [32] P. L. Andreu, J. A. Cabeza, V. Riera, Y. Jeannin, D. Miguel, J. Chem. Soc., Dalton Trans. 1990, 2201– 2206.
- [33] G. Süss-Fink, G. Herrmann, P. Morys, J. Ellermann, A. Veit, J. Organomet. Chem. 1985, 284, 263–273.
- [34] T. A. K. Al-Allaf, H. Schmidt, K. Merzweiler, C. Wagner, D. Steinborn, J. Organomet. Chem. 2003, 678, 48-55.
- [35] G. M. Sheldrick, SHELXS-97, Program for the Solution of Crystal Structures, University of Göttingen, Göttingen (Germany) 1997. See also: G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467–473.
- [36] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen,

Göttingen (Germany) **1997**. See also: G. M. Sheldrick, *Acta Crystallogr.* **2008**, *A64*, 112–122.

[37] C. K. Johnson, M. N. Burnett, ORTEP-3 (version 1.0.2), Rep. ORNL-6895, Oak Ridge National Laboratory, Oak Ridge, TN (USA) **1996**. Windows version: L. J. Farrugia, University of Glasgow, Glasgow (Scotland) **1997–2008**. See also: L. J. Farrugia, *J. Appl. Crystallogr.* **1997**, *30*, 565.