DOI: 10.1002/chem.200900996

Enantiopure Aminopyrans by a Lewis Acid Promoted Rearrangement of 1,2-Oxazines: Versatile Building Blocks for Oligosaccharide and Sugar Amino Acid Mimetics

Ahmed Al-Harrasi, Fabian Pfrengle, Vladimir Prisyazhnyuk, Shahla Yekta, Peter Koóš, and Hans-Ulrich Reissig^{*[a]}

Abstract: 1,3-Dioxolanyl-substituted 1,2-oxazines, such as *syn-***1** and *anti-***1**, rearrange under Lewis acidic conditions to provide bicyclic products 2–5. Subsequent reductive transformations afforded enantiopure 3-aminopyran derivatives such as **7** and **9** or their protected diastereomers **16** and **18**, which can be regarded as carbohydrate mimetics. An alternative sequence of transformations including selective oxidation of the primary hydroxyl groups in **21** and **24** led to two protected β -amino acid derivatives with carbohydrate-like backbone (sugar amino acids). Treatment of bicyclic ester **23** with samarium diiodide cleaved the N-O bond and furnished the unusual β -lactam **27** in excellent yield. Alternatively, γ -amino acid derivative **29** was efficiently pre-

Keywords: carbohydrates • heterocycles • Lewis acids • rearrangements • samarium • sugar amino acids pared in a few steps. Fairly simple transformations gave azides 32 and 35 or alkyne 30 which are suitable substrates for the construction of oligosaccharide mimetics such as 34 by copper iodide catalyzed cycloadditions. With this report we demonstrate that enantiopure rearrangement products 2–5 are protected precursors of a variety of polyfunctionalized pyran derivatives with great potential for chemical biology.

Introduction

The biological importance of carbohydrates in living cells continuously prompts chemists to develop new syntheses of small, soluble carbohydrate-based molecules, which may combat various diseases such as bacterial and viral infections, metastasis and inflammation. These mimetics of carbohydrates inhibit carbohydrate–protein interactions for example in glycosyl transferases, glycosidases or lectins. However, improved properties with regard to stability, specificity, affinity, or synthetic availability can make them advantageous compared to the natural ligands.^[1] In this context we recently reported an approach to compounds such as 3-aminopyrans C (n=0) which can be regarded as mimetics of

[a] Dr. A. Al-Harrasi, Dipl.-Chem. F. Pfrengle, Dr. V. Prisyazhnyuk, Dr. S. Yekta, Dr. P. Koóš, Prof. Dr. H.-U. Reissig Institut für Chemie und Biochemie Freie Universität Berlin, Takustrasse 3 14195 Berlin Fax: (+49) 30-83855367 E-mail: hans.reissig@chemie.fu-berlin.de

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.200900996.

C-2 branched amino sugars without hydrolytically labile anomeric center. They are efficiently generated by Lewis acid promoted rearrangement of 1,2-oxazines **A** with bicyclic compounds **B** as key intermediates (Scheme 1).^[2] Actually, not only six-membered heterocycles but also their seven-membered relatives **C** (n=1) have been prepared by this new approach.

For all these compounds the required enantiopure 3,6-dihydro-2*H*-1,2-oxazines **A** are easily obtained in a stereocontrolled manner by [3+3]-cyclization of lithiated alkoxyallenes **D** and carbohydrate-derived aldonitrones **E** (Scheme 2).^[3] Many highly functionalized compounds such as polyhydroxylated pyrrolidines or azetidines, aminopolyols

11632

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Scheme 2. Synthesis of 3,6-dihydro-2*H*-1,2-oxazines **A** starting from lithiated alkoxyallene **D** and carbohydrate-derived nitrones **E**.

and substituted tetrahydrofurans with known or potential biological activity have already been synthesized employing compounds A as key precursors.^[4]

Here we present full details of our efforts towards the synthesis of a set of suitable building blocks for oligosaccharide or glycopeptide mimetics,^[5,6] utilizing easily available intermediates **B** as relay compounds for subsequent chemoselective transformations.

Results and Discussion

The crucial precursor 1,2-oxazines syn-1 and anti-1 smoothly underwent cyclization into bicyclic compounds 2-5 upon treatment with Lewis acids (Scheme 3). Under a variety examined Lewis acids tin tetrachloride and tert-butyldimethylsilvl triflate proved to be the best promoters giving the bicyclic products in good to excellent yields either as free alcohols 2 and 4 or directly as their TBS-protected derivatives 3 and 5.^[7,8] Whereas the reactions of syn-1 reliably provided excellent yields, those of anti-1 seem to be more dependent on the quality of the Lewis acid or other unknown factors which led to varying efficacy of this step in the anti-series. As a mechanism for these transformations we propose coordination of the Lewis acid (in equilibrium) to the external oxygen atom of the dioxolane moiety of syn/anti-1 leading to ring opening. The subsequent intramolecular attack of the resulting stabilized carbenium ion onto the enol ether double bond forms the crucial new C-C bond. Finally, a

Scheme 3. Lewis acid promoted rearrangements of *syn*-1 and *anti*-1 into bicyclic products 2–5. a) $SnCl_4$ (3 equiv), MeCN, -30 °C to RT, 6 h; b) TBSOTf, CH_2Cl_2 , RT, 20 h. TBS=*tert*-butyldimethylsilyl; OTf=tri-fluoromethane sulfonate.

fragmentation of the TMSE group generates the central carbonyl group of bicycles **2–5**. The TMSE group is important for this transformation; only the corresponding *p*-methoxybenzyl derivative gave similar results whereas other substituents examined led to a more complex outcome.^[2,9]

By a simple two-step sequence rearranged products 2 and 4 were converted into the two completely deprotected diastereomeric aminopyrans 7 and 9 (Scheme 4). Reduction with NaBH₄ afforded the corresponding alcohols 6 and 8, both as single diastereomers in excellent yields and in enantiopure form. The geminal dimethyl group apparently blocks one side of the pyran motif thus effectively leading to exclusive attack of the hydride reagent from the opposite site. Subsequent hydrogenolyses in the presence of palladium on charcoal delivered the free aminopyrans 7 and 9 in good overall yields. This strategy allows for many synthetic modifications of these compounds at all three stages (bicyclic ketone, bicyclic alcohol or aminopyran). A convenient (and if required orthogonal) protection group strategy is therefore easily accomplished. An enantiopure sulfated derivative of aminopyran 7 has already been studied as carbohydrate mimicking ligand of gold nanoparticles, which bind to Pand L-selectins with extraordinary low IC50 values (picomolar range) and with good selectivity in favor of P-selectin.^[10]

The synthetic route to aminopyran 11 demonstrates the possibility to introduce three orthogonal protecting groups in a straightforward manner (Scheme 5). The TBS group of 3 was directly introduced during the TBSOTf promoted rearrangement (Scheme 3). After reduction of the carbonyl group, the resulting alcohol 10 was benzylated followed by hydrogenolytic cleavage of the N-O bond in the presence of di-tert-butyl dicarbonate. The in situ protection of the resulting amine afforded product 11 in good overall yield. Alternatively, intermediate 10 was used for the preparation of an epimeric aminopyran by a Mitsunobu reaction.^[11] The inversion of configuration was achieved by using p-nitrobenzoic acid, which is reported to be an effective reagent for hindered secondary alcohols.^[12] A mild and selective method for the cleavage of the *p*-nitrobenzoic ester was employed to yield the configurationally inverted alcohol 12.^[13] Subsequent reaction with SmI₂ furnished the all-cis-configured aminopyran 13 by reductive cleavage of the N-O bond leaving the N-benzyl group untouched.[14]

Scheme 4. Synthesis of deprotected aminopyran derivatives 7 and 9. a) NaBH₄, EtOH, 0°C, 3 h; b) H₂, Pd/C, MeOH, RT, 6 h; c) H₂, Pd/C, MeOH, RT, 1 d.

Chem. Eur. J. 2009, 15, 11632-11641

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

- 11633

Scheme 5. Synthesis of protected pyran derivatives 11 and 13. a) NaBH₄, EtOH, 0°C, 4 h; b) NaH, BnBr, THF, 0°C to RT, 2 h; c) H₂, Pd/C, Boc₂O, RT, 1 d; d) Diethyl azodicarboxylate (DEAD), PPh₃, p-nitrobenzoic acid, benzene, RT, 6 h; e) NaN₃, MeOH, 55 °C, 2 d; f) SmI₂, THF, RT, 3 h. Boc = tert-butoxycarbonyl.

By changing the order of reaction steps we were able to generate another configuration at the aminopyran core. This is exemplified by the synthesis of aminopyrans 15/16 and diastereomeric 18 starting from rearrangement products 4 or 5 (Scheme 6). Reduction of the carbonyl group of 5 followed by cleavage of the N-O bond of intermediate 14 either by hydrogenolysis or by reaction with SmI2 afforded aminopyrans 15 or 16 with the same configuration as 9 (Scheme 4). On the other hand reductive cleavage of the N-O bond in 4 gave an access to aminopyranone 17. Hydrogenolysis with in situ protection of the resulting amine with Boc₂O was crucial for a successful performance. Finally, reduction with NaBH₄ in ethanol stereoselectively provided aminopyran $18^{[15]}$ which completes the synthesis of a set of four diastereomers (7/11, 13, 9/15 and 18). The enantiomers of these aminopyran derivatives can easily be obtained when the L-glyceraldehyde derived 1,2-oxazines ent-syn-1 and *ent-anti-1* are the precursor compounds.^[16]

Scheme 6. Synthesis of aminopyran derivatives 15-18. a) NaBH₄, EtOH, 0°C, 4 h; b) H₂, Pd/C, MeOH, RT, 1 d; c) SmI₂, THF, RT, 3 d; d) H₂, Pd/ C, Boc₂O, MeOH, RT, 18 h; e) NaBH₄, EtOH, RT, 7 h.

An example for an interesting synthetic modification of the carbonyl group of rearrangement product 3 is depicted in Scheme 7. When 3 was treated with the ylide derived from trimethylsulfoxonium iodide and n-butyllithium epoxide 19 was formed in good yield.^[17] Finally, SmI₂ reduction furnished the aminopyran derivative 20 bearing a spirooxirane moiety which can certainly be used for further transformations, for instance carbohydrate mimetics with three side chains.[18]

Scheme 7. Synthesis of spirooxirane derivative 20. a) Me₃SO⁺I⁻, nBuLi, -78°C to RT, 12 h; b) SmI₂, THF, RT, 12 h.

Sugar amino acids (SAA) are molecules that combine structural features of amino acids with those of carbohydrates.^[19] They are found in nature largely as construction elements, but are also used as polyfunctionalized bridges between carbohydrates and amino acids.^[20] Furthermore they can be incorporated into peptides allowing the engineering of carbohydrate binding sites. The bicyclic rearrangement products of this study represent excellent scaffolds for the synthesis of sugar amino acid mimetics. Benzyl protection of the secondary alcohol in 10 followed by tetrabutylammonium fluoride mediated cleavage of the TBS-group afforded compound 21 in excellent yield (Scheme 8). Subsequently, a two-step oxidation protocol delivered in one-pot carboxylic acid derivative 22, which can be regarded as an internally protected β-amino acid and should therefore provide a suitable building block for the synthesis of glycopeptide mimetics.^[21] Finally, esterification of the crude carboxylic acid 22 with trimethylsilyldiazomethane in a toluene/methanol mix-

Scheme 8. Synthesis of protected β-amino acids 23 and 25. a) NaH, BnBr, THF, 0°C to RT, 16 h; b) TBAF, THF, RT, 15 h; c) SO₃ pyridine, NEt₃, DMSO, RT, 16 h; d) NaClO₂, NaH₂PO₄, H₂O, RT, 3 h; e) TMSCHN₂, RT, 2 h. TBAF = tetrabutylammonium MeOH/toluene. fluoride DMSO = dimethylsulfoxide.

11634

www.chemeurj.org

ture furnished methyl ester **23** in good yield.^[22] Analogously to this sequence, the internally protected β -amino acid methyl ester **25** derived from the other diastereomeric series was synthesized starting from alcohol **14** via primary alcohol **24** in moderate overall yield.

Remarkably, reductive N–O bond cleavage of bicyclic ester 23 resulted in two different reaction pathways depending on the method used (Scheme 9). Hydrogenation with in situ Boc protection delivered the expected β -amino acid derivative 26 whereas after reaction with SmI₂ β -lactam 27 was isolated as the only product in excellent yield. We assume that homolytic cleavage of the N–O bond results in the formation of an aminyl radical, which is transformed into the corresponding anion by the second equivalent of SmI₂. The anion reacts with the methoxycarbonyl group under extrusion of a MeOSmI₂ species. The quite unusual bicycle 27 offers a variety of options for synthetic modifications leading to new interesting β -lactams.^[23]

Scheme 9. Synthesis of β -amino acid derivative **26** and fused β -lactam **27**. a) H₂, Pd/C, Boc₂O, MeOH, RT, 3 d; b) SmI₂, THF, RT, 30 min.

The synthesis of stereodefined γ -amino acids can be achieved by making use of the hydroxymethyl group of the appropriately protected aminopyran **11** (Scheme 10). All our efforts to directly convert **11** into carboxylic acid **29** so far led to γ -lactam **28**. This compound is smoothly formed by oxidation of **11** with PDC, subsequent in situ cyclization of the intermediate aldehyde with the Boc-protected amine moiety and a second oxidation to the lactam stage. Hydrolysis of **28** under basic conditions cleaved the amide bond and afforded the desired γ -amino acid derivative **29** in good yield. All described amino acid derivatives with carbohydrate-like backbone are suitable candidates for couplings

Scheme 10. Synthesis of protected γ -amino acid derivative **29**. a) PDC, Ac₂O, DMF, RT, 12 h; b) LiOH, THF/H₂O, RT, 12 h. PDC = pyridinium dichromate.

Chem. Eur. J. 2009, 15, 11632-11641

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

- 11635

with proteinogenic amino $acids^{[5]}$ or other components to furnish peptide mimetics.^[24]

Very recently, the Sharpless–Meldal variation of the 1,3dipolar cycloaddition^[25] of organic azides with alkynes ("click chemistry") has frequently been used for the synthesis of oligosaccharide mimetics.^[26] Rearrangement product **2** provides an ideal starting point for the synthesis of substrates bearing either an alkyne or an azide moiety (Scheme 11). Treatment of **2** with sodium hydroxide and

Scheme 11. Synthesis of building blocks **30** and **32** suitable for copper iodide catalyzed azide/alkyne cycloaddition leading to disaccharide mimetic **34**. a) NaOH, TBAI, propargyl bromide, H₂O, CH₂Cl₂, RT, 7 d; b) NaBH₄, EtOH, 0°C, 4 h; c) MsCl, NEt₃, CH₂Cl₂, 0°C, 4 h; d) NaN₃, DMF, 80°C, 6 h; e) CuI, TBTA, Et₃N, MeCN, 40°C, 48 h. f) H₂, Pd/C, MeOH, 2 d. TBAI= tetrabutylammonium iodide; Ms=mesyl; TBTA= tris[(1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl]amine.

propargyl bromide followed by reduction of the carbonyl group with NaBH₄ provided alkyne **30**. Alternatively, compound **2** was treated with mesyl chloride quantitatively giving mesylate **31**. Subsequent reduction of the carbonyl group and treatment of the mesylate with sodium azide furnished primary azide **32** in good overall yield. The bicyclic constitution of azide derivative **32** and the configuration of the four stereogenic centers were proven by its X-ray crystal structure.^[27] This analysis also confirms the configurations of the previously prepared bicyclic products. Intermediates **30** and **32** can be regarded as protected carbohydrate mimetics and their cycloadduct **33** was obtained in excellent yield by copper iodide catalysis in the presence of TBTA.^[28] Hydrogenolytic cleavage of the N,O-bonds and debenzylation afforded the unprotected disaccharide mimetic **34**. The highly

polar compound required extensive purification to obtain it in spectroscopically pure form.

An alternative option to obtain building blocks for "click reactions" with alkynes involves the free amino group of aminopyrans such as 7 (Scheme 12). Secondary azide 35 was prepared upon treatment with nonafluorobutanesulfonyl azide^[29] in the presence of copper sulfate,^[26b] followed by acetylation of the free hydroxyl groups. Compounds like 35 can easily be prepared in gram quantities due to short syntheses and high yields. First model cycloadditions with simple alkynes afforded the triazole linked aminopyrans 36 and 37 in good yields. Further synthetic elaboration and deprotection of compounds such as 33, 36 and 37 are currently under investigation.

Scheme 12. Synthesis of azido derivative **35** and first model cycloadditions. a) Nf-N₃, K₂CO₃, CuSO₄·5H₂O, MeOH/H₂O 1:2, RT, 24 h; b) Ac₂O, pyridine, DMAP, 12 h, RT; c) alkyne, CuI, TBTA, Et₃N, MeCN, 40 °C, 24 h. Nf-N₃=nonafluorobutanesulfonyl azide; Ac₂O=acetic anhydride; DMAP=4-dimethylaminopyridine.

Conclusions

The Lewis acid promoted rearrangements of stereodefined 1,2-oxazines,^[30] such as syn-1 and anti-1, open new entries into the synthesis of uncommon amino sugar mimetics and sugar amino acids. All these compounds bear a hydrolytically stable geminal dimethyl group instead of an anomeric center. This particular structural feature can easily be modified by replacing the geminal dimethyl unit by other alkyl chains (including carbocycles) or by aryl groups.^[2a] Starting from bicyclic rearrangement products 2/3 or 4/5, four different diastereomers of enantiopure aminopyrans have been synthesized in few steps and with high yields. The enantiomers of these compounds are as easily available. Selective and orthogonal protection is possible due to the stepwise introduction of protective groups at different stages of the synthetic sequences. The introduction of these aminopyran derivatives into synthetic oligosaccharides should hence be an interesting option for the generation of new carbohydrate mimetics. For the same reason the rearrangement products 2/3 and 4/5 are excellent intermediates for the synthesis of sugar amino acid derivatives. This allows for the synthesis of peptide mimetics employing peptide coupling reactions. Alternatively, azides or alkynes derived from aminopyrans investigated in this report can be employed in 1,3-dipolar cycloadditions ("click chemistry") demonstrating the potential for other coupling processes leading to larger molecular arrangements such as **34** in an efficient fashion.

Experimental Section

General methods: See Supporting Information.

(1S,5R,8S)-2-Benzyl-8-hydroxymethyl-6,6-dimethyl-3,7-dioxa-2-aza-

bicyclo[3.3.1]nonan-9-one (2): To a solution of 1,2-oxazine syn-1 (500 mg, 1.28 mmol) in MeCN (10 mL) was added $SnCl_4$ (460 $\mu L,$ 3.84 mmol) at -30°C and the resulting solution was stirred until it slowly reached RT (6 h). Then the mixture was quenched by water. Addition of CH₂Cl₂ was followed by separation of the phases and the aqueous phase was extracted $3 \times$ with CH₂Cl₂. The combined organic phases were dried (Na₂SO₄) and the solvent was removed in vacuo. Purification by column chromatography (silica gel, hexane/EtOAc 1:1) yielded 2 (372 mg, quant.) as colorless oil. $[\alpha]_{D}^{22} = +98.8 \ (c=0.26, \text{ CHCl}_{3}); {}^{1}\text{H NMR} \ (\text{CDCl}_{3}, 500 \text{ MHz}):$ $\delta = 1.13, 1.40$ (2s, 3H each, Me), 2.15 (m, 1H, 5-H), 2.45 (brs, 1H, OH), 3.12 (m, 1H, 1-H), 3.73 (dd, J=7.2, 13.5 Hz, 1H, 4-H), 3.89 (m, 1H, 4-H), 3.91 (m, 1H, 8-H), 3.92, 4.14 (2d, J=13.1 Hz, 1H each, NCH₂), 4.50 (m, 2H, 8-CH₂), 7.21–7.29 ppm (m, 5H, Ph); ^{13}C NMR (CDCl₃, 125 MHz): $\delta = 23.9$, 26.8 (2q, Me), 58.0 (d, C-5), 59.3 (t, NCH₂), 63.2 (t, C-4), 69.0 (t, 8-CH₂), 70.4 (d, C-1), 75.0 (d, C-8), 88.1 (s, C-6), 127.6, 128.8, 129.0, 135.5 (3 d, s, Ph), 208.6 ppm (s, C-9); IR (film): $\tilde{\nu}$ = 3450 (O-H), 3060-3030 (=C-H), 2975-2875 (C-H), 1730 (C=O), 1600 cm⁻¹ (C=C); HRMS (EI, 80 eV, 120 °C): m/z: calcd for C₁₆H₂₁NO₄: 291.1471; found 291.1494 [M]+.

(1S,5R,8S)-2-Benzyl-8-(tert-butyldimethylsiloxymethyl)-6,6-dimethyl-3,7dioxa-2-azabicyclo[3.3.1]nonan-9-one (3): syn-1 (1.00 g, 2.56 mmol) was dissolved in CH₂Cl₂ (20 mL), cooled to 0°C and treated with TBSOTf (2.72 g, 10.2 mmol). After stirring at RT for 20 h, the mixture was cooled again to 0°C and treated with NEt₃ (3.92 g, 3.84 mmol). The resulting solution was stirred for 30 min at 0°C, and then sat. NH₄Cl solution was added. The layers were separated and the aqueous layer was extracted $3 \times$ with Et₂O. The combined organic layers were dried (MgSO₄) and the solvent was removed in vacuo. Filtration over silica gel (pentane/EtOAc 7:1) yielded **3** (1.04 g, quant.) as colorless crystals. M.p. 65–66 °C; $[\alpha]_{\rm D}^{22}$ = +64.5 (c = 0.36, CHCl₃); ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.08$, 0.09 (2s, 3H each, SiMe₂), 0.88 (s, 9H, tBu), 1.24, 1.42 (2s, 3H each, Me), 2.38 (dd, J=3.0, 5.8 Hz, 1H, 5-H), 3.39 (m, 1H, 1-H), 3.82 (dd, J=5.0, 7.0 Hz)1 H, 8-CH₂), 3.96 (ddt, J=1.9, 3.1, 7.0 Hz, 1 H, 8-H), 4.00 (d, J=14.0 Hz, 1H, NCH₂), 4.11 (t, J=7.0 Hz, 1H, 8-CH₂), 4.19 (d, J=14.0 Hz, 1H, NCH₂), 4.46 (dd, J=5.8, 12.0 Hz, 1H, 4-H), 4.55 (dd, J=3.0, 12.0 Hz, 1 H, 4-H), 7.26–7.41 ppm (m, 5 H, Ph); 13 C NMR (CDCl₃, 125 MHz): $\delta =$ -5.3 (q, SiMe₂), 18.1, 23.7 (s, q, tBu), 26.7, 29.7 (2 q, Me), 58.1 (d, C-5), 60.2 (t, NCH2), 61.6 (t, 8-CH2), 68.8 (t, C-4), 70.5 (d, C-1), 76.2 (d, C-8), 78.3 (s, C-6), 127.4, 128.3, 128.7, 136.5 (3d, s, Ph), 208.2 ppm (s, C-9); IR (KBr): $\tilde{\nu} = 3060-3030$ (=C-H), 2975–2875 (C-H), 1730 (C=O), 1600 cm⁻¹ (C=C); elemental analysis calcd (%) for C₂₂H₃₅NO₄Si (405.6): C 65.15, H 8.70, N 3.45; found C 65.29, H 8.44, N 3.17.

(1R,5S,8S,9S)-2-Benzyl-8-hydroxymethyl-6,6-dimethyl-3,7-dioxa-2-aza-

bicyclo[3.3.1]nonan-9-ol (6): Compound **2** (239 mg, 0.820 mmol) was dissolved in ethanol (10 mL) and cooled to 0 °C. NaBH₄ (62 mg, 1.64 mmol) was added and the mixture was stirred for 3 h at RT. Then the solvent was removed in vacuo and the residue was dissolved in CH₂Cl₂ and H₂O. The layers were separated and the aqueous phase was extracted 2× with CH₂Cl₂. The combined organic layers were dried with MgSO₄, filtered and concentrated to dryness giving pure product **6** (234 mg, 97%) as colorless crystals. M.p. 143–145 °C; $[a]_D^{22} = +71.5$ (c = 0.75, CHCl₃); ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.33$, 1.49 (2s, 3H each, Me), 1.56 (m, 1H, 5-H), 2.72 (m, 1H, 1-H), 3.06 (d, J = 3.3 Hz, 1H, OH), 3.76 (ddd, J = 3.6, 9.0, 11.7 Hz, 1H, 8-CH₂), 3.91 (m, 1H, 8-CH₂), 4.05 (d, J = 13.3 Hz, 1H, NCH₂), 4.04 (dd, J = 3.3, 6.3 Hz, 1H, 9-H), 7.21–7.32 ppm (m, 5H, Ph); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 25.9$, 26.5 (2q, Me), 42.7 (d, C-5), 57.0 (t, NCH₂),

59.5 (d, C-1), 62.6 (d, C-9), 65.6 (t, 8-CH₂), 66.2 (t, C-4), 67.0 (d, C-8), 73.3 (s, C-6), 127.6, 128.5, 128.6, 136.9 ppm (3d, s, Ph); IR (KBr): $\tilde{\nu}$ = 3360 (O–H), 3090–3030 (=C-H), 2970–2870 cm⁻¹ (C-H); elemental analysis calcd (%) for C₁₆H₂₃NO₄ (293.4): C 65.51, H 7.90, N 4.77; found C 65.45, H 7.68, N 4.47.

(2S,3R,4S,5S)-3-Amino-2,5-bis(hydroxymethyl)-6,6-dimethyltetrahydro-

pyran-4-ol (7): A suspension of palladium on charcoal (10% Pd, 250 mg) in MeOH (6 mL) was saturated with hydrogen for 1 h. After addition of bicyclic alcohol 6 (173 mg, 0.590 mmol) in MeOH (4 mL), hydrogen was bubbled through the mixture for another 30 min and finally the reaction mixture was stirred under an atmosphere of hydrogen for 6 h. Filtration through a short pad of Celite and concentration of the solution to dryness yielded 7 (100 mg, 83%) as colorless crystals. M.p. 131–133 °C; $[\alpha]_{D}^{22} =$ +26.7 (c = 0.15, MeOH); ¹H NMR (CD₃OD, 500 MHz): $\delta = 1.21$, 1.35 (2s, 3H each, Me), 1.71 (ddd, J=5.1, 5.7, 7.5 Hz, 1H, 5-H), 2.86 (dd, J=3.8, 4.9 Hz, 1 H, 3-H), 3.61 (dd, J=5.1, 11.2 Hz, 1 H, 5-CH₂), 3.62-3.65 (m, 3H, 4-H, 2-CH₂), 3.81 (dd, J=5.7, 11.2 Hz, 1H, 5-CH₂), 3.97 ppm (dt, J= 3.8, 6.3 Hz, 1 H, 2-H); ¹³C NMR (CD₃OD, 125 MHz): δ = 24.9, 26.9 (2 q, Me), 49.0 (d, C-5), 55.7 (d, C-3), 62.2 (t, 2-CH₂), 62.4 (t, 5-CH₂), 70.4 (d, C-2), 75.3 (d, C-4), 75.4 ppm (s, C-6); IR (KBr): v=3370 (O-H), 2970-2900 cm⁻¹ (C-H); HRMS (ESI-TOF): m/z: calcd for C₉H₂₀NO₄: 206.1392; found 206.1395 [M+H]+.

$(1R, 5S, 8S, 9R) \hbox{-} 2- Benzyl-8-(\textit{tert-butyldimethylsiloxymethyl}) \hbox{-} 6, 6- dimethyl-10, 6- dimethyl-10$

3,7-dioxa-2-azabicyclo[**3.3.1]nonan-9-ol** (**12**): Bicyclic alcohol **10** (725 mg, 1.78 mmol) was dissolved in benzene (40 mL). PPh₃ (2.34 g, 8.92 mmol) and *p*-nitrobenzoic acid (1.30 g, 7.78 mmol) were added to the stirred solution. To this solution, DEAD (1.59 mL, 8.77 mmol) was added dropwise at -10° C. The mixture was stirred at this temperature for 1 h and then, at RT for 6 h. The volatile components were removed in vacuo and the resulting residue was subjected to column chromatography (silica gel, pentane/EtOAc 7:1) to yield (1*S*,*SR*,*SS*,*9R*)-4-nitrobenzoic acid 2-benzyl-8-(*tert*-butyldimethylsiloxymethyl)-6,6-dimethyl-3,7-dioxa-2-azabicyclo-

[3.3.1]non-9-yl ester (797 mg, 81 %) as colorless crystals. M.p. 108-110°C; $[a]_{D}^{22} = -3.9$ (c = 0.39, CHCl₃); ¹H NMR (CDCl₃, 500 MHz): $\delta = -0.07$, -0.04 (2s, 3H each, SiMe2), 0.79 (s, 9H, tBu), 1.26, 1.44 (2s, 3H each, Me), 2.94 (ddd, J=7.5, 8.1, 9.6 Hz, 1H, 5-H), 3.43 (dd, J=7.4, 7.8 Hz, 1H, 9-H), 3.59–3.65 (m, 3H, 8-H, 8-CH₂), 3.67 (d, J = 12.4 Hz, 1H, NCH₂), 3.92 (dd, J=7.5, 9.5 Hz, 1H, 4-H), 4.13 (d, J=12.4 Hz, 1H, NCH₂), 4.25 (dd, J=8.1, 9.5 Hz, 1H, 4-H), 5.03 (t, J=9.6 Hz, 1H, 1-H), 7.03-7.26 (m, 5H, Ph), 7.94 (d, J=7.6 Hz, 2H, pNO₂C₆H₄), 8.21 ppm (d, J = 7.6 Hz, 2H, $pNO_2C_6H_4$); ¹³C NMR (CDCl₃, 125 MHz): $\delta = -5.3, -5.2$ (2q, SiMe₂), 18.2, 25.8 (s, q, tBu), 26.6, 28.2 (2q, Me), 48.8 (d, C-5), 60.2 (t, NCH₂), 63.3 (d, C-9), 64.3 (t, 8-CH₂), 68.0 (t, C-4), 69.7 (d, C-1), 71.6 (s, C-6), 71.8 (d, C-8), 127.5, 128.4, 128.9, 135.5 (3 d, s, Ph), 123.3, 130.9, 136.7, 150.4 (2 d, 2 s, $pNO_2C_6H_4$), 163.6 ppm (s, CO); IR (KBr): $\tilde{\nu} = 3120-$ 3040 (=C-H), 2980-2860 (-C-H), 1760 (C=O), 1530 cm⁻¹ (N=O); elemental analysis calcd (%) for $C_{29}H_{40}N_2O_7Si$ (556.7): C 62.57, H 7.24, N 5.03; found C 62.26, H 7.03, N 4.95.

The obtained product (100 mg, 0.180 mmol) was dissolved in MeOH (9 mL). To this solution, NaN₃ (160 mg, 1.46 mmol) was added and the solution was stirred at 55°C for 2 d. Removal of MeOH in vacuo was followed by addition of water, then extraction with CH2Cl2 and concentration in vacuo to yield 88 mg of colorless oil. This crude product was subjected to column chromatography (silica gel, pentane/EtOAc 7:1) to give **12** (57 mg, 78%) as colorless oil. $[\alpha]_D^{22} = +29.7$ (c = 0.56, CHCl₃); ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.06$ (s, 6H, SiMe₂), 0.88 (s, 9H, *t*Bu), 1.18, 1.36 (2s, 3H each, Me), 2.78 (dt, J=6.5, 10.3 Hz, 1H, 5-H), 3.05 (brs, 1H, OH), 3.22 (dd, J=6.5, 9.7 Hz, 1H, 9-H), 3.49 (dt, J=5.0, 9.7 Hz, 1 H, 8-H), 3.55 (t, J=9.7 Hz, 1 H, 1-H), 3.74 (t, J=10.3 Hz, 1 H, 4-H), 3.75 (ddd, J=1.7, 9.7, 10.2 Hz, 1H, 8-CH₂), 3.78 (d, J=13.0 Hz, 1H, NCH₂), 3.79 (dd, J=5.0, 10.2 Hz, 1H, 8-CH₂), 4.10 (d, J=13.0 Hz, 1H, NCH₂), 4.13 (m, 1H, 4-H), 7.25–7.38 ppm (m, 5H, Ph); ¹³C NMR (CDCl₃, 125 MHz): $\delta = -5.4$ (q, SiMe₂), 18.2, 25.8 (s, q, tBu), 26.6, 28.3 (2q, Me), 48.7 (d, C-5), 61.3 (t, NCH2), 65.4 (t, 8-CH2), 67.1 (d, C-9), 67.6 (t, C-4), 67.9 (d, C-1), 71.4 (d, C-8), 71.7 (s, C-6), 127.5, 128.5, 129.0, 137.1 ppm (3d, s, Ph); IR (film): v=3430 (O-H), 3085-3030 (=C-H), 2950-2860 (C-H), 1550 cm⁻¹ (C-O); HRMS (EI, 80 eV, 100 °C): m/z: calcd for C₂₁H₃₄NO₄Si: 407.2492; found 407.2484 [M]+.

$(3S,\!4R,\!5R,\!6S) \text{--}5\text{--Benzylamino-}6\text{-}(\textit{tert-butyldimethylsiloxymethyl})\text{--}3\text{--}hy\text{--}by\text{--}$

droxymethyl-2,2-dimethyltetrahydropyran-4-ol (13): 1,2-Diiodoethane (230 mg, 0.810 mmol) and samarium (200 mg, 1.34 mmol) were transferred into a dried flask. THF (10 mL) was added. After the solution turned blue, the mixture was stirred for further 2 h. Compound 12 (100 mg, 0.245 mmol) was added and the reaction mixture was stirred for 3 h at RT. After addition of sat. NaHCO₃ solution the solution was decanted from the residue and the solvent was removed in vacuo. Product **13** (81 mg, 81%) was obtained as pale yellow oil. $[\alpha]_{D}^{22} = -24.1$ (c = 0.40, CHCl₃); ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.08$, 0.09 (2s, 3H each, SiMe₂), 0.89 (s, 9H, tBu), 1.15, 1.32 (2s, 3H each, Me), 2.12 (dd, J=9.1, 10.5 Hz, 1H, 3-H), 3.34 (dd, J=3.8, 10.2 Hz, 1H, 5-H), 3.53 (ddd, J=3.8, 4.5, 8.6 Hz, 1 H, 6-H), 3.64 (d, J=12.5 Hz, 1 H, NCH₂), 3.65 (dd, J=8.6, 9.6 Hz, 1 H, 6-CH₂), 3.87 (dd, J=4.5, 9.6 Hz, 1 H, 6-CH₂), 3.90 (dd, J= 9.1, 10.2 Hz, 1 H, 4-H), 3.94 (m, 1 H, 3-CH₂), 4.03 (d, J=12.5 Hz, 1 H, NCH₂), 4.08 (m, 1H, 3-CH₂), 7.24–7.31 ppm (m, 5H, Ph); ¹³C NMR $(CDCl_3, 125 \text{ MHz}): \delta = -5.7, -5.6 (2 \text{ q}, SiMe_2), 18.1, 25.8 (s, q, tBu), 24.5,$ 27.6 (2 q, Me), 41.3 (d, C-3), 51.6 (t, NCH2), 60.9 (d, C-5), 62.3 (t, 3-CH₂), 67.0 (t, 6-CH₂), 70.4 (d, C-4), 72.0 (d, C-6), 74.4 (s, C-2), 127.3, 128.3, 128.4, 138.8 ppm (3 d, s, Ph); IR (film): v=3310 (N-H, O-H), 3090-3030 (=C-H), 2950-2855 (C-H), 1250 cm⁻¹ (C-O); HRMS (EI, 80 eV, 105°C): m/z: calcd for C₂₂H₃₉NO₄Si: 409.2648; found 409.2662 $[M]^+$

(3R,4R,5S,6S)-5-Benzylamino-6-(tert-butyldimethylsiloxymethyl)-3-hy-

droxymethyl-2,2-dimethyltetrahydropyran-4-ol (16): 1,2-Diiodoethane (114 mg, 0.410 mmol) and samarium (67 mg, 0.44 mmol) were transferred into a round-bottomed flask under argon. THF (5 mL) was added. After the solution turned blue, the mixture was stirred for further 2 h. Compound 14 (50 mg, 0.123 mmol) was added and the reaction mixture was stirred for 3 d at RT. After addition of sat. NaHCO₃ solution, the solution was decanted from the residue and the solvent was removed in vacuo. Product 16 (36 mg, 72%) was obtained as pale yellow oil. $[\alpha]_D^{22} = +94.4$ $(c=0.47, \text{ CHCl}_3)$; ¹H NMR (CDCl₃, 500 MHz): $\delta=0.06, 0.08$ (2s, 3H each, SiMe2), 0.10 (s, 9H, tBu), 1.05, 1.26 (2s, 3H each, Me), 1.69 (ddd, J=3.2, 4.8, 8.0 Hz, 1 H, 3-H), 2.66 (dt, J=1.1, 9.9 Hz, 1 H, 5-H), 3.20 (brs, 1H, OH), 3.43 (m, 1H, 6-H), 3.65 (d, J=13.9 Hz, 1H, NCH₂), 3.67 (m, 1H, 4-H), 3.76 (d, J=13.9 Hz, 1H, NCH₂), 3.78 (dd, J=4.8, 11.3 Hz, 1H, 3-CH₂), 3.86 (dd, J=3.2, 11.3 Hz, 1H, 3-CH₂), 3.94 (dd, J=1.3, 13.0 Hz, 1H, 6-CH₂), 4.04 (dd, J=0.5, 13.0 Hz, 1H, 6-CH₂), 7.25-7.37 ppm (m, 5H, Ph); ¹³C NMR (CDCl₃, 125 MHz): $\delta = -5.3$, -5.0 (2q, SiMe₂), 18.4, 25.9 (s, q, tBu), 20.1, 29.3 (2q, Me), 52.1 (t, 6-CH2), 53.0 (d, C-3), 62.8 (d, C-5), 64.3 (t, CH₂Ph), 65.1 (t, 3-CH₂), 72.1 (d, C-6), 73.8 (d, C-4), 74.3 (s, C-2), 127.6, 128.4, 128.7, 139.3 ppm (3 d, s, Ph); IR (film): $\tilde{\nu} = 3360$ (N-H), 3340 (O–H), 3090–3030 (=CH), 2950–2860 (C–H), 1250 cm⁻¹ (C–O); HRMS (EI, 80 eV, 120°C): m/z: calcd for C22H39NO4Si: 409.2648; found 409.2656 [M]+.

[(2S,3R,5R)-2,5-Bis(hydroxymethyl)-6,6-dimethyl-4-oxotetrahydropyran-3-yl]carbamic acid tert-butyl ester (17): A suspension of palladium on charcoal (10% Pd, 100 mg) in MeOH (2 mL) was saturated with hydrogen for 1 h. After addition of ketone 4 (130 mg, 0.446 mmol) and Boc₂O (149 mg, 0.675 mmol) in MeOH (1 mL), hydrogen was bubbled through the mixture for another 30 min and finally the reaction mixture was stirred under an atmosphere of hydrogen for 18 h. Filtration through a short pad of celite and concentration of the solution was followed by column chromatographic purification (silica gel, hexane/EtOAc 2:1) to yield **17** (68 mg, 50%) as colorless crystals. M.p. 135–138 °C; $[\alpha]_D^{22} = -18.8$ $(c=0.93, \text{ CHCl}_3)$; ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.00, 1.41$ (2s, 3H each, Me), 1.41 (s, 9H, tBu), 2.45 (brs, 1H, OH), 2.82 (dd, J=3.0, 8.4 Hz, 1H, 5-H), 3.38 (dd, J=2.1, 9.7 Hz, 1H, 2-H), 3.56 (dd, J=3.0, 11.6 Hz, 1H, 5'-H), 3.66–3.75 (m, 2H, 2'-H), 3.89 (dd, J=8.4, 11.6 Hz, 1H, 5'-H), 3.96 (brs, 1H, OH), 4.40 (dd, J=7.0, 9.7 Hz, 1H, 3-H), 5.61 ppm (d, J= 7.0 Hz, 1 H, NH); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 21.2$, 28.9 (2 q, Me), 28.1 (q, tBu), 57.7 (d, C-3), 58.3 (t, C-5'), 61.7 (d, C-5), 62.3 (t, C-2'), 77.9 (d, C-2), 78.3, 81.0 (2s, tBu, C-6), 156.7 (s, NCO), 207.0 ppm (s, C-4); IR (KBr): $\tilde{\nu} = 3600 - 3150$ (O-H, N-H), 2990-2850 (C-H), 1680 cm⁻¹ (C=O); HRMS (EI, 80 eV, 60 °C): m/z: calcd for C14H25NO6: 303.1682; found 303.1680 [M]+.

A EUROPEAN JOURNAL

[(2S, 3S, 4S, 3R)-4-Hydroxy-2, 5-bis(hydroxymethyl)-6, 6-dimethyl tetrahy-

dropyran-3-yl]carbamic acid tert-butyl ester (18): Compound 17 (40 mg, 0.13 mmol) was dissolved in ethanol (3 mL) and cooled to 0 °C. Sodium borohydride (12 mg, 0.32 mmol) was added and the mixture was stirred for 7 h at RT. Then CH₂Cl₂ and H₂O were added. The layers were separated and the aqueous phase was extracted 3× with CH₂Cl₂ and 1 time with EtOAc. The combined organic layers were dried with MgSO₄, filtered and concentrated. Purification by column chromatography (silica gel, hexane/EtOAc 1:2) gave $\mathbf{18}$ (25 mg, 63 %) as colorless crystals. M.p. 187–189 °C; $[a]_{D}^{22} = +34.5$ (c=0.24, CHCl₃); ¹H NMR (CD₃OD, 500 MHz): $\delta = 1.24$, 1.25 (2s, 3H each, Me), 1.44 (s, 9H, tBu), 1.63 (ddd, J=2.9, 4.3, 9.2 Hz, 1 H, 5-H), 3.38 (dd, J=2.9, 10.5 Hz, 1 H, 3-H), 3.55 (dd, J=5.6, 12.0 Hz, 1 H, 2'-H), 3.58 (dd, J=4.3, 10.7 Hz, 1 H, 5'-H), 3.62 (dd, J=2.1, 12.0 Hz, 1H, 2'-H), 3.69 (dd, J=9.2, 10.7 Hz, 1H, 5'-H), 3.69 (m, 1 H, 2-H), 4.08 ppm (t, J = 2.9 Hz, 1 H, 4-H); ¹³C NMR (CD₃OD, 125 MHz): $\delta = 23.0, 31.9 (2q, Me), 29.6 (q, tBu), 53.4 (d, C-3), 53.6 (d, C-3),$ 5), 61.7 (t, C-5'), 65.0 (t, C-2'), 68.4 (d, C-4), 71.6 (d, C-2), 75.6 (s, tBu), 81.4 (s, C-6), 159.0 ppm (s, NCO); IR (KBr): $\tilde{v} = 3550 - 3250$ (O-H, N-H), 3050–2850 (C–H), 1670 cm⁻¹ (C=O); MS (FAB): m/z (%): 328 [M⁺ +Na+H], 306 (16) $[M^+$ +H], 250 (30) $[M^+$ +H-C₄H₈], 206 (100) $[M^+$ $+C_5H_8O_2$], 57 (81) [tBu⁺].

(1*R*,5*S*,8*S*,9*S*)-(2-Benzyl-9-benzyloxy-6,6-dimethyl-3,7-dioxa-2-azabicyclo-[3.3.1]non-8-yl)methanol (21): To a solution of (1*R*,5*S*,8*S*,9*S*)-2-benzyl-9benzyloxy-8-*tert*-butyldimethylsiloxymethyl-6,6-dimethyl-3,7-dioxa-2-

azabicyclo[3.3.1]nonane (200 mg, 0.402 mmol, for the synthesis see preparation of 11) in THF (10 mL) was added TBAF (1 M solution in THF containing 5% of H₂O, 2.00 mL, 2.00 mmol). The solution was stirred at RT for 15 h. The reaction mixture was quenched with sat. NaHCO₃ solution and the aqueous layer was extracted 3× with CH2Cl2. The combined organic layers were dried (MgSO₄) and concentrated. Purification by column chromatography (silica gel, hexane/EtOAc 1:1) yielded 21 (150 mg, 97%) as colorless oil. $[\alpha]_D^{22} = +63.5$ (c=1.0, CHCl₃); ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.39$, 1.52 (2s, 3H each, Me), 1.80 (ddd, J = 2.0, 2.4, 3.2 Hz, 1H, 5-H), 2.76 (dd, J=1.6, 3.2 Hz, 1H, 1-H), 3.32 (brs, 1H, OH), 3.73 (dd, J=4.0, 11.4 Hz, 1H, 8-CH₂), 3.90 (dd, J=5.1, 11.4 Hz, 1H, 8-CH₂), 4.08, 4.24 (AB system, J_{AB}=12.9 Hz, 2H, NCH₂), 4.16 (m, 1H, 8-H), 4.16 (dd, J=2.0, 12.0 Hz, 1H, 4-H), 4.19 (dd, J=2.4, 12.0 Hz, 1 H, 4-H), 4.29 (t, J = 3.2 Hz, 1 H, 9-H), 4.50, 4.66 (AB system, $J_{AB} =$ 12.0 Hz, 2H, OCH₂Ph), 7.25–7.39 ppm (m, 10H, Ph); ¹³C NMR (CDCl₃, 125 MHz): δ = 29.4, 25.9 (2 q, Me), 39.6 (d, C-5), 56.7 (d, C-1), 57.2 (t, NCH₂), 65.2 (t, 8-CH₂), 66.6 (t, 4-CH₂), 68.0 (d, C-8), 70.2 (t, OCH₂Ph), 70.7 (d, C-9), 73.2 (s, C-6), 127.3, 128.5, 128.6, 128.9, 129.2, 129.9 (6d, Ph), 136.7, 137.7 ppm (s, Ph); IR (film): v=3440 (O-H), 3110-3030 (=C-H), 2970-2880 cm⁻¹ (C-H); HRMS (EI, 80 eV, 140 °C): m/z: calcd for C₂₃H₂₉NO₄: 383.2100; found 383.2122 [M]⁺.

 $(1R, 5S, 8S, 9S) \hbox{-} 2-Benzyl-9-benzyloxy-6, 6-dimethyl-3, 7-dioxa-2-azabicyclo-2-benzyloxy-6, 7-dioxa-2-benzyloxy-6, 7-dioxa-2-benzyloxy-2-benzyloxy-6, 7-dioxa-2-benzyloxy-6, 7-dioxa$ [3.3.1]nonane-8-carboxylic acid (22): To a solution of alcohol 21 (303 mg, 0.790 mmol) in DMSO (10 mL) were added SO3 pyridine (377 mg, 2.37 mmol) and Et₃N (600 µL, 3.96 mmol). The resulting mixture was stirred at RT for 16 h. A solution of NaClO₂ (80%, 447 mg, 3.96 mmol) in H₂O (5 mL) and a solution of NaH₂PO₄ (546 mg, 3.96 mmol) in H₂O (5 mL) were added. After stirring the reaction mixture for 3 h at RT 0.1 M HCl was added to adjust pH \approx 3. The resulting solution was extracted $3 \times$ with Et₂O/toluene 1:1. The combined organic layers were washed with water, dried with $MgSO_4$ and concentrated giving 22 (332 mg, quant.) as yellow oil. $[\alpha]_D^{22} = +16.3$ (c=0.33, CHCl₃); ¹H NMR $(CDCl_3, 500 \text{ MHz}): \delta = 1.42, 1.55 (2s, 3H each, Me), 1.79 (m, 1H, 5-H),$ 3.53 (brs, 1H, 1-H), 4.08, 4.19 (AB system, J_{AB}=13.8 Hz, 2H, NCH₂), 4.09 (m, 1H, 4-H), 4.20 (dd, J=2.3, 12.4 Hz, 1H, 4-H), 4.40 (m, 1H, 9-H), 4.64, 4.65 (AB system, $J_{AB} = 11.3$ Hz, 2H, OC H_2 Ph), 4.80 (d, J =2.2 Hz, 1H, 8-H), 7.23–7.57 ppm (m, 10H, Ph); $^{13}\mathrm{C}\,\mathrm{NMR}$ (CDCl₃, 125 MHz): $\delta = 26.1$, 29.1 (2 q, Me), 39.1 (d, C-5), 57.7 (d, C-1), 58.0 (t, NCH2), 68.3 (t, C-4), 69.0 (d, C-8), 70.9 (t, OCH2Ph), 73.4 (d, C-9), 76.0 (s, C-6), 127.4, 127.6, 128.0, 128.5, 128.8, 129.3, 137.1, 137.6 (6d, 2s, Ph), 172.0 ppm (s, CO₂); IR (film): $\tilde{\nu}\!=\!3370$ (O–H), 3090–3010 (=C-H), 2980– 2870 (C-H), 1750 cm⁻¹ (C=O); HRMS (EI, 80 eV, 120 °C): m/z: calcd for C₂₃H₂₇NO₅: 397.1889; found 397.1880 [*M*]⁺.

(1R,5S,8S,9S)-2-Benzyl-9-benzyloxy-6,6-dimethyl-3,7-dioxa-2-azabicyclo-[3.3.1]nonane-8-carboxylic acid methyl ester (23): Crude acid 22 (119 mg, 0.300 mmol) was dissolved in MeOH/toluene 1:1 (10 mL) and treated with TMSCHN₂ (2 m in Et₂O, 300 µL, 0.600 mmol) at RT. The reaction mixture was stirred for 2 h and all volatile compounds were removed in vacuo. Purification by column chromatography (silica gel, hexane/EtOAc 3:1 \rightarrow 1:1) yielded 25 (110 mg, 91% from 21) as yellowish oil. $[\alpha]_{\rm D}^{22} = +$ 12.8 (c=1.08, CHCl₃); ¹H NMR (CDCl₃, 500 MHz): δ =1.46, 1.56 (2s, 3H each, Me), 1.76 (ddd, J=1.8, 2.5, 3.3 Hz, 1H, 5-H), 3.36 (dd, J=2.1, 3.3 Hz, 1 H, 1-H), 3.74 (s, 3 H, OMe), 3.99 (dd, J=1.8, 12.2 Hz, 1 H, 4-H), 4.03, 4.08 (AB system, $J_{AB} = 13.6$ Hz, 2H, NCH₂), 4.23 (dd, J = 2.5, 12.2 Hz, 1H, 4-H), 4.27 (t, J=3.3 Hz, 1H, 9-H), 4.60, 4.67 (AB system, J_{AB}=11.9 Hz, 2 H, OCH₂Ph), 4.87 (d, J=2.1 Hz, 1 H, 8-H), 7.23–7.40 ppm (m, 10 H, Ph); 13 C NMR (CDCl₃, 125 MHz): $\delta = 25.5$, 29.0 (2 q, Me), 39.2 (d, C-5), 52.0 (q, OMe), 57.8 (t, NCH₂), 57.9 (d, C-1), 67.8 (t, C-4), 69.2 (d, C-8), 70.4 (t, OCH₂Ph), 74.0 (s, C-6), 74.4 (d, C-9), 127.2, 127.9, 128.0, 128.3, 128.5, 128.6, 137.4, 137.5 (6 d, 2 s, Ph), 172.1 ppm (s, CO₂); IR (film): $\tilde{\nu} = 3160 - 3030$ (=C-H), 2990 - 2870 (C-H), 1760 cm⁻¹ (C=O); HRMS (EI, 80 eV, 100 °C): m/z: calcd for C24H29NO5: 411.2046; found 411.2053 [M]+.

(2S,3R,4S,5S)-4-Benzyloxy-3-tert-butoxycarbonylamino-5-hydroxymethyl-6,6-dimethyltetrahydropyran-2-carboxylic acid methyl ester (26): A stirred suspension of Pd on charcoal (10% Pd, 178 mg) in MeOH (5 mL) was saturated with hydrogen for 1 h. Then, a solution of methyl ester 23 (172 mg, 0.418 mmol) and Boc₂O (137 mg, 0.630 mmol) in MeOH (5 mL) was added and the mixture was stirred for 3 d under an atmosphere of hydrogen at RT. Filtration through a short pad of celite and concentration of the solution to dryness was followed by column chromatographic purification (silica gel, hexane/EtOAc 1:1) giving 26 (115 mg, 86%) as colorless oil. $[a]_{D}^{22} = +25.1$ (c = 3.42, CHCl₃); ¹H NMR (CDCl₃, 500 MHz): δ=1.46, 1.51 (2s, 3H each, Me), 1.47 (s, 9H, tBu), 1.89 (m, 1H, 5-H), 2.76 (m, 1H, OH), 3.60-3.70 (m, 2H, 5-CH₂), 3.70 (s, 3H, OMe), 3.78 (m_c, 1H, 4-H), 4.27 (m, 1H, 3-H), 4.65, 4.85 (AB system, $J_{AB} = 11.4 \text{ Hz}, 2 \text{ H}, \text{ CH}_2\text{Ph}), 4.71 \text{ (d, } J = 3.0 \text{ Hz}, 1 \text{ H}, 2 \text{-H}), 5.74 \text{ (d, } J = 3.0 \text{ Hz}, 1 \text{ H}, 2 \text{-H})$ 9.5 Hz, 1 H, NH), 7.32–7.42 ppm (m, 5 H, Ph); ¹³C NMR (CDCl₃, 125 MHz): δ=25.5, 26.7 (2 q, Me), 26.7 (q, tBu), 47.3 (d, C-5), 51.1 (d, C-3), 51.9 (q, OMe), 62.7 (t, 5-CH₂), 69.9 (d, C-2), 71.9 (t, CH₂Ph), 75.4 (s, C-6), 79.5 (d, C-4), 79.6 (s, tBu), 127.4, 127.7, 128.4, 137.6 ppm (3d, s, Ph); IR (film): v=3490 (O-H), 3440 (N-H), 3110-3030 (=C-H), 2980-2870 (C-H), 1760, 1710 cm⁻¹ (C=O); HRMS (EI, 80 eV, 100 °C): m/z: calcd for C₂₂H₃₃NO₇: 423.2257; found 423.2246 [M]+

(1S,4S,5S,6R)-7-Benzyl-5-benzyloxy-4-hydroxymethyl-3,3-dimethyl-2-oxa-7-azabicyclo[4.2.0]octan-8-one (27): 1,2-Diiodoethane (136 mg, 0.480 mmol) and samarium (79 mg, 0.53 mmol) were transferred into a dried flask. THF (7 mL) was added. After the solution turned blue, the mixture was stirred for further 2 h. Methyl ester 23 (90 mg, 0.22 mmol) in THF (3 mL) was added and the reaction mixture was stirred for 30 min. After addition of sat. NaHCO₃ solution the mixture was extracted 3× with EtOAc. The solution was dried with MgSO4 and the solvent was removed in vacuo. Product 27 (79 mg, 95%) was obtained in analytically pure form as colorless crystals. M.p. 112–113 °C; $[a]_{D}^{22} = +25.0$ (c=0.02, CHCl₃); ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.21$, 1.31 (2s, 3 H each, Me), 1.66 (td, J=5.2, 10.5 Hz, 1H, 4-H), 3.68 (m, 2H, 4-CH₂), 3.70 (dd, J=4.6, 5.1 Hz, 1H, 6-H), 3.89 (dd, J = 4.6, 10.5 Hz, 1H, 5-H), 4.23, 4.79 (AB system, $J_{AB} = 15.7$ Hz, 2 H, NCH₂), 4.30, 4.42 (AB system, $J_{AB} = 11.0$ Hz, 2H, OCH₂Ph), 4.91 (d, J=5.1 Hz, 1H, 1-H), 7.14–7.37 ppm (m, 10H, Ph); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 23.5$, 27.6 (2 q, Me), 44.7 (t, NCH₂), 49.8 (d, C-4), 58.9 (d, C-6), 61.9 (t, 4-CH₂), 72.1 (t, OCH₂Ph), 76.7 (d, C-5), 77.3 (d, C-1), 78.7 (s, C-3), 127.2, 127.5, 128.4, 128.7, 128.9, 129.3, 135.3, 136.9 (6 d, 2 s, Ph), 168.8 ppm (s, C-8); IR (KBr): $\tilde{\nu} = 3430$ (O-H), 3110-3030 (=C-H), 2960-2860 (C-H), 1750 cm⁻¹ (C=O); HRMS (EI, 80 eV, 200 °C): m/z: calcd for C23H27NO4: 381.1940; found 381.1944 $[M]^+$.

$(1S,\!4S,\!5R,\!8S)\text{-}8\text{-}Benzy loxy\text{-}4\text{-}(\textit{tert}\text{-}butyl dimethyls iloxymethyl)\text{-}2,\!2\text{-}di-$

methyl-7-oxo-3-oxa-6-azabicyclo[3.2.1]octane-6-carboxylic acid *tert*-butyl ester (28): Alcohol 11 (320 mg, 0.629 mmol) was dissolved in DMF (10 mL), then PDC (946 mg, 2.52 mmol) and Ac₂O (240 μ L, 2.50 mmol) were added. The mixture was stirred for 12 h at RT. Then, Et₂O and H₂O

```
11638 -
```

were added and the layers were separated. The organic layer was successively washed with H₂O, dried (MgSO₄), and the solvent was removed in vacuo. Purification by column chromatography (silica gel, hexane/EtOAc 4:1 \rightarrow 1:1) yielded **28** (250 mg, 79%) as colorless crystals. M.p. 64–65 °C; $[\alpha]_{D}^{22} = +14.1$ (c=1.43, CHCl₃); ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.05$, 0.06 (2s, 3H each, SiMe₂), 0.88 (s, 9H, tBu), 1.29, 1.47 (2s, 3H each, Me), 1.51 (s, 9H, tBu), 2.43 (dd, J=1.6, 4.9 Hz, 1H, 5-H), 3.57 (dd, J= 6.5, 10.6 Hz, 1H, 4-CH₂), 3.58 (dd, J=6.5, 10.6 Hz, 1H, 4-CH₂), 4.15 (t, J=6.5 Hz, 1H, 4-H), 4.15 (t, J=4.9 Hz, 1H, 8-H), 4.30 (dd, J=1.6, 4.9 Hz, 1H, 1-H), 4.60 (brs, 2H, CH₂Ph), 7.25-7.38 ppm (m, 5H, Ph); ¹³C NMR (CDCl₃, 500 MHz): $\delta = -5.3$, -5.1 (2 q, SiMe₂), 18.1 (s, *t*Bu), 24.5, 29.0 (2q, Me), 25.9 (q, tBu), 28.0 (q, tBu), 53.3 (d, C-5), 55.0 (d, C-1), 63.7 (t, 4-CH₂), 68.1 (d, C-4), 71.8 (t, CH₂Ph), 72.9 (d, C-2), 75.6 (d, C-8), 83.1 (s, tBu), 127.5, 128.1, 128.6, 136.8 (3 d, s, Ph), 149.4 (s, NCO₂), 170.9 ppm (s, NCO); IR (KBr): $\tilde{\nu}$ = 3120–3030 (=C-H), 2960–2860 (C-H), 1790 cm⁻¹ (C=O); elemental analysis calcd (%) for $C_{27}H_{43}NO_6Si$ (505.3): C 64.12, H 8.57, N 2.77; found C 64.22, H 8.75, N 2.78.

(3S,4S,5R,6S)-4-Benzyloxy-5-tert-butoxycarbonylamino-6-tert-butyldimethylsiloxymethyl-2,2-dimethyltetrahydropyran-3-carboxylic acid (29): To a solution of y-lactam 28 (434 mg, 0.858 mmol) in THF/H₂O 2:1 (9 mL) was added LiOH (103 mg, 4.29 mmol). The resulting mixture was stirred for 12 h. To the reaction mixture was added 0.1 M HCl to adjust pH ~3. The solution was extracted with EtOAc. The combined organic layers were washed with H₂O, dried with MgSO₄ and concentrated to dryness to yield **29** (392 mg, 85%) as colorless oil. $[\alpha]_D^{22} = -6.1$ (c = 0.45, CHCl₃); ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.06$ (s, 6H, SiMe₂), 0.89 (s, 9H, *t*Bu), 1.26 (s, 9H, tBu), 1.31, 1.52 (2s, 3H each, Me), 2.30 (d, J=4.8 Hz, 1H, 3-H), 3.51 (dd, J=7.3, 10.5 Hz, 1H, 6-CH₂), 3.63 (dd, J=4.4, 10.5 Hz, 1H, 6-CH₂), 3.70 (dd, J=2.3, 4.8 Hz, 1 H, 5-H), 4.01 (dd, J=4.4, 7.3 Hz, 1 H, 6-H), 4.21 (t, J = 4.8 Hz, 1H, 4-H), 4.60, 4.69 (AB system, $J_{AB} = 11.7$ Hz, 2H, CH₂Ph), 5.78 (brs, 1H, NH), 7.23–7.37 ppm (m, 5H, Ph); ¹³C NMR (CDCl₃, 125 MHz): $\delta = -5.2$ (q, SiMe₂), 18.3 (s, tBu), 21.4 (q, tBu), 24.9 (q, tBu), 29.3, 29.7 (2 q, Me), 50.8 (d, C-5), 52.5 (d, C-3), 63.5 (t, 6-CH₂), 66.2 (d, C-6), 71.8 (s, C-2), 72.2 (t, CH₂Ph), 77.2 (s, tBu), 77.8 (d, C-4), 127.6, 128.0, 128.6, 139.5 (3d, s, Ph), 157.7 (s, NCO₂), 175.0 ppm (s, CO₂H); IR (film): v=3490-3340 (O-H, N-H), 3090-3000 (=C-H), 2980-2930 (C-H), 1740, 1730 cm⁻¹ (C=O); HRMS (EI, 80 eV): m/z: calcd for C₂₇H₄₅NO₇Si: 523.2965; found 523.2956 [M]⁺.

$(1R,\!5S,\!8S,\!9S)\text{-}2\text{-}Benzyl\text{-}6,\!6\text{-}dimethyl\text{-}8\text{-}[(prop\text{-}2\text{-}ynyloxy)methyl]\text{-}3,\!7\text{-}dimethyl\text{-}8\text{-}[(prop\text{-}2\text{-}ynyloxy)methyl]\text{-}3,\!7\text{-}dimethyl\text{-}8\text{-}[(prop\text{-}2\text{-}ynyloxy)methyl]\text{-}3,\!7\text{-}dimethyl\text{-}8\text{-}[(prop\text{-}2\text{-}ynyloxy)methyl]\text{-}3,\!7\text{-}dimethyl\text{-}8\text{-}[(prop\text{-}2\text{-}ynyloxy)methyl]\text{-}3,\!7\text{-}dimethyl\text{-}8\text{-}[(prop\text{-}2\text{-}ynyloxy)methyl]\text{-}3,\!7\text{-}dimethyl\text{-}8\text{-}[(prop\text{-}2\text{-}ynyloxy)methyl]\text{-}3,\!7\text{-}dimethyl\text{-}8\text{-}[(prop\text{-}2\text{-}ynyloxy)methyl]\text{-}3,\!7\text{-}dimethyl\text{-}8\text{-}[(prop\text{-}2\text{-}ynyloxy)methyl]\text{-}3,\!7\text{-}dimethyl\text{-}8\text{-}[(prop\text{-}2\text{-}ynyloxy)methyl]\text{-}3,\!7\text{-}dimethyl\text{-}8\text{-}[(prop\text{-}2\text{-}ynyloxy)methyl]\text{-}3,\!7\text{-}dimethyl\text{-}8\text{-}[(prop\text{-}2\text{-}ynyloxy)methyl]\text{-}3,\!7\text{-}dimethyl\text{-}8\text{-}[(prop\text{-}2\text{-}ynyloxy)methyl]\text{-}3,\!7\text{-}dimethyl\text{-}8\text{-}[(prop\text{-}2\text{-}ynyloxy)methyl]\text{-}3,\!7\text{-}dimethyl\text{-}8\text{-}[(prop\text{-}2\text{-}ynyloxy)methyl]\text{-}3,\!7\text{-}dimethyl\text{-}8\text{-}[(prop\text{-}2\text{-}ynyloxy)methyl]\text{-}3,\!7\text{-}dimethyl\text{-}8\text{-}[(prop\text{-}2\text{-}ynyloxy)methyl]\text{-}3,\!7\text{-}dimethyl\text{-}8\text{-}[(prop\text{-}2\text{-}ynyloxy)methyl]\text{-}3,\!7\text{-}dimethyl]$

oxa-2-azabicyclo[3.3.1]nonan-9-ol (30): To a solution of NaOH (2.77 g, 70.0 mmol) in H₂O (10 mL) was added CH₂Cl₂ (10 mL), compound 2 (415 mg, 1.40 mmol), TBAI (197 mg, 0.500 mmol) and propargyl bromide (80% wt in toluene, 1.4 mL, 7.0 mmol). The mixture was stirred for 7 d at RT. After extraction of the mixture $3 \times$ with CH₂Cl₂ the combined organic layers were dried (Na₂SO₄) and concentrated. Purification by column chromatography (Al₂O₃, hexane/EtOAc 15:1) yielded (15,55,85)-2-benzyl-8-((prop-2-ynyloxy)methyl)-6,6-dimethyl-3,7-dioxa-2-azabicyclo-[3.3.1]nonan-9-one (374 mg, 72%) as colorless oil. $[a]_{\rm D}^{22} = +77.0$ (c = 1.00, CHCl₃); ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.21$, 1.41 (2s, 3H each, Me), 2.33 (m, 1H, 5-H), 2.37 (t, J=2.3 Hz, 1H, C=CH), 3.23 (m, 1H, 1-H), 3.78 (dd, J = 5.6, 9.1 Hz, 1H, 4-H), 3.90 (dd, J = 7.0, 9.1 Hz, 1H, 4-H), 3.97 (d, J=13.6 Hz, NCH₂), 4.13 (m, 2H, NCH₂, 8-H), 4.08 (d, J= 15.8 Hz, 1 H, $CH_2C\equiv CH$), 4.09 (d, J=15.8 Hz, 1 H, $CH_2C\equiv CH$), 4.47 (dt, J=5.5, 12.1 Hz, 1 H, 8-CH₂), 4.54 (dd, J=2.9, 12.1 Hz, 1 H, 8-CH₂), 7.25-7.37 ppm (m, 5H, Ph); ¹³C NMR (CDCl₃, 125 MHz): δ =23.8, 26.7 (2 q, Me), 58.0 (t, NCH₂), 58.6 (t, CH₂C=CH), 59.9 (d, C-5), 68.9 (d, C-1), 69.1 (t, 8-CH₂), 70.2 (t, C-4), 74.1 (d, C-8), 74.8 (s, C-6), 78.4 (s, C=CH), 79.3 (d, C=CH), 127.6, 128.3, 128.8, 136.2 (3 d, s, Ph), 207.9 ppm (s, CO); IR (film): $\tilde{\nu} = 3280 \ (\equiv \text{C-H}), \ 3090-2870 \ (= \text{C-H}, \ \text{C-H}), \ 2120 \ (\text{C} \equiv \text{C}), \ 1730 \ \text{cm}^{-1}$ (C=O); HRMS (EI, 80 eV): m/z: calcd for C19H23NO4: 329.1627; found 329.1620 [M]+.

NaBH₄ (35 mg, 0.93 mmol) was added to a solution of the obtained product (90 mg, 0.27 mmol) in EtOH (5 mL) at 0 °C. The reaction was stirred for 1.5 h at that temperature. The solvent was removed in vacuo and CH₂Cl₂ and H₂O were added. The organic layer was separated and the aqueous layer was extracted $2\times$ with CH₂Cl₂. The combined organic layers were dried with MgSO₄ and concentrated in vacuo. Purification by column chromatography yielded **30** (80 mg, 89%) as colorless crystals. M.p. 101–103 °C; $[a]_{D}^{22} = +92.5$ (c = 1.00, CHCl₃); ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.31$, 1.48 (2s, 3H each, Me), 1.60 (m, 1H, 5-H), 2.00 (d, J = 2.6 Hz, 1H, OH), 2.39 (t, J = 2.4 Hz, 1H, C=CH), 2.69 (t, J = 1.8 Hz, 1H, 1-H), 3.76 (dd, J = 5.9, 9.1 Hz, 1H, 4-H), 3.86 (dd, J = 6.5, 9.1 Hz, 1H, 4-H), 4.08 (dd, J = 2.4, 15.8 Hz, 1H, $CH_2C=CH$), 4.13 (m, 3H, NCH₂, 8-CH₂), 4.17 (dd, J = 2.4, 15.8 Hz, 1H, $CH_2C=CH$), 4.31 (d, J = 13.6 Hz, 1H, NCH₂), 4.40 (dt, J = 2.0, 6.4 Hz, 1H, 8-H), 4.67 (d, J = 2.5 Hz, 1H, 9-H), 7.25–7.37 ppm (m, 5H, Ph); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 26.5$, 29.5 (2q, Me), 42.6 (d, C-5), 57.5 (t, NCH₂), 57.7 (d, C-1), 58.4 (t, CH₂C=CH), 65.1 (d, C-9), 66.5 (t, 8-CH₂), 67.3 (d, C-8), 70.8 (t, C-4), 73.2 (s, C-6), 74.4 (s, C=CH), 79.8 (d, C=CH), 127.3, 128.3, 128.5, 137.6 ppm (3d, s, Ph); IR (KBr): $\tilde{\nu} = 3440$ (O-H), 3280 (\equiv C-H), 3090–2870 (=C-H, C-H), 2120 cm⁻¹ (C=C); HRMS (ESI-TOF): m/z: calcd for 332.1867 [C₁₉H₂₅NO₄+H]⁺; elemental analysis calcd (%) for C₁₉H₂₅NO₄ (331.4): C 68.86, H 7.60, N 4.23; found C 68.36, H 7.62, N 4.21.

(15,5R,8S)-Methanesulfonic acid (2-benzyl-6,6-dimethyl-9-oxo-3,7-dioxa-2-azabicyclo[3.3.1]non-8-yl)methyl ester (31): Methanesulfonyl chloride (63 μ L, 0.78 mmol) and Et₃N (0.25 mL, 1.7 mmol) were added to a stirred solution of bicyclic ketone 2 (100 mg, 0.343 mmol) in dry CH₂Cl₂ (5 mL). After 4 h, the reaction mixture was diluted with dichloromethane and washed excessively with sat. NaHCO3 solution. The crude product (176 mg) was purified by column chromatography (silica gel, hexane/ EtOAc 1:1) to yield product 31 (129 mg, quant.) as colorless crystals. M.p. 124–126°C; $[\alpha]_{D}^{22} = +58.3$ (c = 0.60, CHCl₃); ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.20$, 1.41 (2s, 3 H each, Me), 2.28 (td, J = 2.0, 4.0 Hz, 1 H, 5-H), 2.94 (s, 3H, Ms), 3.05 (t, J=2.0 Hz, 1H, 1-H), 3.93 (d, J=13.1 Hz, 1H, NCH₂), 4.17 (d, J=13.1 Hz, 1H, NCH₂), 4.18 (ddd, J=2.0, 5.5, 6.4 Hz, 1 H, 8-H), 4.35 (dd, J=5.5, 10.4 Hz, 1 H, 8-CH₂), 4.52 (dd, J=2.0, 12.4 Hz, 1H, 4-H), 4.53 (dd, J=6.4, 10.4 Hz, 1H, 8-CH₂), 4.60 (dd, J= 4.0, 12.4 Hz, 1 H, 4-H), 7.25–7.34 ppm (m, 5H, Ph); $^{13}\mathrm{C}\,\mathrm{NMR}$ (CDCl₃, 125 MHz): $\delta = 23.6$, 26.6 (2q, Me), 37.3 (q, Ms), 57.7 (d, C-5), 58.4 (t, NCH2), 68.2 (d, C-1), 68.8 (t, 8-CH2), 69.2 (t, C-4), 72.9 (d, C-8), 78.6 (s, C-6), 127.9, 128.5, 129.1, 135.2 (3 d, s, Ph), 207.5 ppm (s, CO); IR (KBr): $\tilde{\nu} = 3090-3030 \ (=C-H), \ 2980-2880 \ (C-H), \ 1730 \ (C=O), \ 1340 \ cm^{-1} \ (SO_2);$ elemental analysis calcd (%) for $C_{17}H_{23}NO_6S$ (369.4): C 55.27, H 6.28, N 3.79: found C 54.90. H 6.01. N 3.43.

(1R,5S,8R,9S)-8-Azidomethyl-2-benzyl-6,6-dimethyl-3,7-dioxa-2-aza-

bicyclo[3.3.1]nonan-9-ol (32): Compound 31 (713 mg, 1.93 mmol) was dissolved in ethanol (20 mL). The solution was cooled to 0°C and NaBH₄ (130 mg, 3.44 mmol) was added. The resulting mixture was stirred for 3 h at RT. Then, the solvent was removed in vacuo and the residue was dissolved in CH2Cl2 and H2O. The layers were separated and the aqueous phase was extracted $2\times$ with $CH_2Cl_2\!.$ The combined organic layers were dried with MgSO4, filtered and concentrated to dryness giving (1R,5S,8S,9S)-methanesulfonic acid 2-benzyl-9-hydroxy-6,6-dimethyl-3,7dioxa-2-azabicyclo[3.3.1]non-8-ylmethyl ester (672 mg, 98%) as colorless crystals. A solution of the obtained product (360 mg, 1.01 mmol) in DMF (3 mL) was treated with NaN₃ (196 mg, 3.03 mmol). The reaction mixture was heated to 80°C and stirred for 6 h at this temperature. Then EtOAc (3 mL) was added and the mixture was washed with water, dried with Na2SO4 and concentrated. Recrystallization (hexane/EtOAc 2:1) yielded the pure product 32 (261 mg, 81%) as colorless crystals. M.p. 146–149°C; $[\alpha]_{D}^{22} = +83.9$ (c=0.25, CHCl₃); ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.32$, 1.51 (2s, 3H each, Me), 1.58 (m, 1H, 5-H), 2.16 (brs, 1H, OH), 2.57 (t, J=1.7 Hz, 1H, 1-H), 3.34 (dd, J=5.6, 12.2 Hz, 1H, 4-H), 3.72 (dd, J= 7.3, 12.2 Hz, 1 H, 4-H), 4.05 (d, J=13.3 Hz, 1 H, NCH₂), 4.08 (dd, J=2.4, 12.3 Hz, 1H, 8-CH₂), 4.16 (dd, J=1.9, 12.3 Hz, 1H, 8-CH₂), 4.31 (d, J= 13.3 Hz, 1H, NCH₂), 4.31 (m, 1H, 8-H), 4.68 (m, 1H, 9-H), 7.25-7.34 ppm (m, 5H, Ph); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 26.4$, 29.4 (2q, Me), 42.6 (d, C-5), 52.6 (t, C-4), 57.8 (t, NCH2), 64.4 (d, C-1), 66.0 (d, C-9), 67.5 (t, 8-CH₂), 73.5 (d, C-8), 78.5 (s, C-6), 127.5, 128.4, 128.6, 137.4 ppm, (3 d, s, Ph); IR (KBr): v=3450 (O-H), 3090-3030 (=C-H), 2980–2850 (C-H), 2100 cm⁻¹ (N₃); HRMS (EI, 80 eV, 120 °C): m/z: calcd for C₁₆H₂₂N₄O₃: 318.1692; found 318.1686 [M]⁺.

Compound 33: To a solution of alkyne **30** (30 mg, 0.09 mmol) and azide **32** (30 mg, 0.090 mmol) in MeCN (2.5 mL) were added solutions of NEt₃ (1.9 mL, 0.02 mmol, 10 mM in MeCN), TBTA (1.9 mL, 0.02 mmol, 10 mM in MeCN), and CuI (1.9 mL, 0.02 mmol, 10 mM in MeCN). Argon was

A EUROPEAN JOURNAL

bubbled through the mixture for 15 min and the reaction was stirred for 48 h at 40 °C. H₂O (5 mL) and EtOAc (5 mL) were added. The organic layer was separated and the aqueous layer was extracted 2× with EtOAc. The combined organic layers were dried (MgSO₄) and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, 3 $\%\,$ MeOH in $CH_2Cl_2)$ to give 33 (58 mg, 95 %) as a colorless solid. M.p. 210–212°C; $[\alpha]_{D}^{22} = +50.0$ (c=1.0, CHCl₃); ¹H NMR (CDCl₃ with 2% CD₃OD, 500 MHz): $\delta = 1.31$, 1.37, 1.40, 1.57 (4s, 3H each, Me), 1.59 (m, 1H), 1.67 (m, 1H), 2.73 (brs, 1H), 3.15 (brs, 1H), 3.63 (dd, J = 5.1, 10.1 Hz, 1 H), 3.74 (d, J = 13.6 Hz, 1 H), 3.98–4.14 (m, 10H), 4.22–4.36 (m, 5H), 4.47–4.56 (m, 6H), 4.75 (t, J=3.3 Hz, 1H), 5.41 (brs, 1H), 6.82 (m, 1H, Ph), 6.89 (t, J=7.3 Hz, 2H, Ph), 7.19-7.24 (m, 3H, Ph), 7.29 (m, 2H, Ph), 7.64 ppm (s, 1H, triazole); ¹³C NMR (CDCl₃, with 2 % CD₃OD, 125 MHz): δ = 26.3 (q), 29.3 (q), 41.8 (d), 42.0 (d), 52.6 (t), 57.0 (t), 57.1 (t), 57.2 (d), 57.6 (d), 63.0 (d), 63.8 (t), 64.1 (d), 66.1 (t), 66.3 (t), 66.9 (d), 67.6 (d), 70.7 (t), 73.4 (s), 73.8 (s), 77.2 (d), 124.0 (d, triazole), 127.1, 127.6, 128.1, 128.4, 128.5, 128.9, 137.1, 137.7 (6 d, 2 s, Ph), 144.0 (s, triazole); IR (KBr): $\tilde{\nu} = 3430$ (O-H), 3120–2970 cm⁻¹ (C-H, =C-H); HRMS (ESI-TOF): m/z: calcd for C₃₅H₄₇N₅O₇: 650.3554; found 650.3575 [M+H]+.

(35,45,5R,6R)-5-Amino-6-{[4-({[(25,3R,45,5S)-3-amino-4-hydroxy-5-(hydroxymethyl)-6,6-dimethyltetrahydro-2*H*-pyran-2-yl]methoxy}methyl)-1*H*-1,2,3-triazol-1-yl]methyl}-3-(hydroxymethyl)-2,2-dimethyltetrahydro-

2H-pyran-4-ol (34): A suspension of Pd/C in MeOH (10 mL) containing substrate 33 (250 mg, 0.385 mmol) was saturated with H₂ for 1 h, then the mixture was stirred for 2d, filtered through a pad of celite and MeOH was removed in vacuo. The crude product was purified by column chromatography (silica gel, CH2Cl2/MeOH (sat. with NH3) 7:3) to yield product 34 (50 mg, 28%) as colorless oil. $[\alpha]_D^{22} = +31.6$ (c=0.50, MeOH); ¹H NMR (CD₃OD, 700 MHz): $\delta = 1.12, 1.19, 1.23, 1.36$ (4s, 3H each, Me), 1.70-1.73 (m, 2H, 3a-H, 5b-H), 2.88 (dd, J=3.5, 4.7 Hz, 1H, 5a-H), 2.94 (dd, J=3.7, 4.9 Hz, 1H, 3b-H), 3.60-3.63 (m, 4H, 3a-CH₂, 5b-CH₂, 2b-CH₂), 3.68 (dd, J=4.7, 7.7 Hz, 1H, 4a-H), 3.70 (dd, J=4.9, 7.0 Hz, 1H, 4b-H), 3.81 (dd, J=5.7, 11.5 Hz, 1H, 3a-CH₂ or 5b-CH₂), 3.84 (dd, J=5.4, 11.4 Hz, 1 H, 3a-CH₂ or 5b-CH₂), 4.16 (m, 1 H, 2b-H), 4.23 (td, J=3.5, 9.6 Hz, 1H, 6a-H), 4.45 (dd, J=9.6, 14.1 Hz, 1H, 6a-CH₂), 4.62 (dd, J=3.5, 14.1 Hz, 1H, 6a-CH₂), 4.66 (d, J=3.1 Hz, 2H, OCH_2 -triazole), 8.00 ppm (s, 1 H, triazole); ¹³C NMR (CD₃OD, 175 MHz): δ=25.2, 25.8, 27.2, 27.7 (4q, Me), 49.2, 49.4 (2 d, C-3a, C-5b), 52.6 (t, 6a-CH₂), 56.0 (d, C-5a), 56.7 (d, C-3b), 62.8, 62.9 (2 t, 3a-CH₂, 5b-CH₂), 65.1 (t, OCH₂-triazole), 68.8 (d, C-2b), 70.3 (d, C-6a), 71.0 (t, 2b- $CH_2), \ 74.9 \ (d, \ C-4b), \ 76.0 \ (d, \ C-4a), \ 76.3, \ 76.5 \ (2\,s, \ C-2a, \ C-6b), \ 126.0,$ 145.3 pm (d, s, triazole); IR (film): v=3430 (N-H, O-H), 2930 (C-H), 1620 cm⁻¹ (C=C); HRMS (ESI-TOF): m/z: calcd for $C_{21}H_{39}N_5O_7$: 474.2928; found 474.2957 [M+H]+.

Acetic acid (3S,4S,5R,6S)-3.6-bis(acetoxymethyl)-5-azido-2,2-dimethyltetrahydropyran-4-yl ester (35): To a solution of amino alcohol 7 (150 mg, 0.730 mmol) in MeOH/H2O 2:1 (3 mL) at RT were added CuSO4·5H2O (18 mg, 0.073 mol, 1 M solution in H₂O) and K₂CO₃ (101 mg, 0.73 mmol), followed by slow addition of Nf-N₃ (475 mg, 1.46 mmol). The mixture was stirred for 24 h, then glycine hydrochloride (554 mg, 5.00 mmol) was added in order to quench the reaction and the suspension was stirred for another 24 h. The mixture was filtered and the solvents were removed in vacuo. The crude solid was dissolved in pyridine (6 mL) and cooled to 0°C. Then DMAP (3 mg, 0.02 mmol) and Ac₂O (690 µL, 7.30 mmol) were added and the mixture was stirred at RT for 12 h. The residue was taken up in Et2O and washed with 1 M solution of HCl and brine followed by sat. NaHCO3 solution. The organic layer was dried with MgSO4 and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, hexane/EtOAc 9:1 \rightarrow 3:2) to give 35 (150 mg, 57%) as colorless oil. $[a]_{D}^{22} = +28.0$ (c = 0.50, CHCl₃); ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.21$, 1.37 (2s, 3H each, Me), 2.01 (m, 1H, 3-H), 2.08 (s, 6H, Ac), 2.10 (s, 3H, Ac), 3.60 (dd, J=2.5, 3.8 Hz, 1H, 5-H), 4.09-4.19 (m, 4H, 3-CH₂, 6-CH₂, 4-H), 4.40 (dd, J = 6.5, 11.4 Hz, 1H, 3-CH₂), 5.35 ppm (dd, J = 4.2, 5.2 Hz, 1 H, 4-H); ¹³C NMR (CDCl₃, 125 MHz): $\delta =$ 20.8, 20.9, 21.1 (3 q, Ac), 26.0, 26.3 (2 q, Me), 42.6 (d, C-3), 60.1 (d, C-5), 62.2 (t, 6-CH₂), 63.7 (t, 3-CH₂), 66.4 (d, C-4), 69.7 (d, C-6), 74.0 (s, C-2), 169.6, 170.6, 170.7 ppm (3s, Ac); IR (film): \tilde{v} =2980–2720 (C-H), 2110

(N₃), 1750 cm⁻¹ (C=O); HRMS (EI, 80 eV): m/z: calcd for C₁₃H₂₀N₃O₆: 314.1349; found 314.1352 [M-CH₃CO]⁺.

Acetic acid (3S,4S,5R,6S)-4-acetoxy-6-acetoxymethyl-2,2-dimethyl-5-[4-(2-trimethylsilyl)ethoxymethyl-1H-1,2,3-triazol-1-yl]-tetrahydropyran-3ylmethyl ester (36): To a solution of azide 35 (15 mg, 42 µmol) and trimethyl(2-(prop-2-ynyloxy)ethyl)silane (7.0 mg, 42 µmol) in MeCN (0.78 mL) were added solutions of NEt3 (840 $\mu L,~8.4~\mu mol,~10~mM$ in MeCN), TBTA (840 µL, 8.4 µmol, 10 mM in MeCN), and CuI (840 µL, 8.4 µmol, 10 mM in MeCN). Argon was bubbled through the mixture for 15 min and the reaction was stirred for 24 h at 40 °C. H₂O (3 mL) and EtOAc (3 mL) were added. The organic layer was separated and the aqueous layer was extracted 2× with EtOAc. The organic layers were dried (MgSO₄) and concentrated in vacuo. The crude product was purified by column chromatography (silica gel, hexane/EtOAc 3:2 \rightarrow EtOAc) to give 36 (20 mg, 93%) as a yellow oil. $[\alpha]_{D}^{22} = +9.0$ (c=0.50, CHCl₃); ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.97$ (m, 2H, CH₂TMS), 1.34, 1.39 (2s, 3H each, Me), 1.97, 1.99, 2.03 (3s, 3H each, OAc), 2.34 (m, 1H, 3-H), 3.59 (m, 2H, OCH₂), 3.63 (dd, J=7.3, 11.9 Hz, 1H, 6-CH₂), 3.72 (dd, J=5.4, 11.9 Hz, 1 H, 6-CH₂), 4.01 (dd, J=5.4, 11.9 Hz, 1 H, 3-CH₂), 4.22 (dd, J=5.8, 11.9 Hz, 1 H, 3-CH₂), 4.42 (m, 1 H, 6-H), 4.62 (s, 2 H, triazole-CH₂), 5.05 (dd, J=5.0, 6.9 Hz, 1H, 5-H), 5.44 (dd, J=6.9, 12.3 Hz, 1H, 4-H), 7.76 ppm (s, 1H, triazole); 13 C NMR (CDCl₃, 125 MHz): $\delta =$ -1.41 (q, SiMe₃), 18.1, 20.6, 20.8 (3 q, Ac), 23.5, 25.9 (2 q, Me), 44.1 (d, C-3), 61.2 (t, 6-CH₂), 61.9 (t, 3-CH₂), 63.8 (t, triazole-CH₂), 65.1 (d, C-5), 67.8 (t, OCH2), 67.7 (d, C-6), 72.0 (d, C-4), 76.6 (s, C-2), 121.1 (d, triazole), 146.5 (s, triazole), 169.6, 170.6, 170.7 ppm (3s, Ac); IR (film): $\tilde{\nu}$ = 3140 (C=C), 2850-2980 (C-H), 1750 cm⁻¹ (C=O); HRMS (ESI-TOF): m/z: calcd for C₂₃H₄₁N₃O₈: 514.2579; found 514.2585 [*M*+H]⁺.

All other compounds: See the Supporting Information for syntheses and analytical data.

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft (RE 514/11 and SFB 765), the Deutscher Akademischer Austauschdienst (PhD fellowships for A.A. and V.P.), the Fonds der Chemischen Industrie (PhD fellowship for F.P.), the Alexander von Humboldt Foundation (post-doctoral fellowships for S.Y.) and Bayer Schering Pharma for generous support. We also thank Dr. Fei Yu (Freie Universität Berlin) for improving the yields for two compounds.

- Reviews: a) Carbohydrate Mimetics-Concepts and Methods (Ed.: Y. Chapleur), Wiley-VCH, Weinheim, 1998; b) P. Sears, C.-H. Wong, Angew. Chem. 1999, 111, 2446–2471; Angew. Chem. Int. Ed. 1999, 38, 2300–2324; c) P. Sears, C.-H. Wong, Acc. Chem. Res. 1999, 32, 376–385; d) T. Skrydstrup, B. Vauzeilles, J.-M. Beau in Carbohydrates in Chemistry and Biology (Eds.: B. Ernst, G. W. Hart, P. Sinaÿ), Wiley-VCH, Weinheim, 2000, pp. 493–530; e) B. Werschkun, J. Thiem, Top. Curr. Chem. 2001, 215, 293–325; f) M. H. D. Postema, J. L. Piper, R. L. Betts, Synlett 2005, 1345–1358. Selected contributions: g) E. R. Palmacci, P. H. Seeberger, Org. Lett. 2001, 3, 1547–1550; h) R. B. Hossany, M. A. Johnson, A. A. Eniade, B. M. Pinto, Bioorg. Med. Chem. 2004, 12, 3743–3754; i) P. Wipf, J. G. Pierce, N. Zhuang, Org. Lett. 2005, 7, 483–485.
- [2] a) A. Al-Harrasi, H.-U. Reissig, Angew. Chem. 2005, 117, 6383–6387; Angew. Chem. Int. Ed. 2005, 44, 6227–6231. For a related rearrangement leading to compounds bearing an anomeric center, see: b) F. Pfrengle, D. Lentz, H.-U. Reissig, Angew. Chem. 2009, 121, 3211–3215; Angew. Chem. Int. Ed. 2009, 48, 3165–3169. For rearrangements of 1,2-oxazines leading to tricyclic structures, see: c) F. Pfrengle, A. Al-Harrasi, I. Brüdgam, H.-U. Reissig, Eur. J. Org. Chem. 2009, 282–291.
- [3] a) W. Schade, H.-U. Reissig, *Synlett* 1999, 632–634; b) M. Helms, W. Schade, R. Pulz, T. Watanabe, A. Al-Harrasi, L. Fisera, I. Hlobilova, G. Zahn, H.-U. Reissig, *Eur. J. Org. Chem.* 2005, 1003–1019.

11640 -

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

- [4] a) R. Pulz, T. Watanabe, W. Schade, H.-U. Reissig, *Synlett* 2000, 983–986; b) V. Dekaris, H.-U. Reissig, unpublished results; c) R. Pulz, A. Al-Harrasi, H.-U. Reissig, *Synlett* 2002, 817–819; d) R. Pulz, A. Al-Harrasi, H.-U. Reissig, *Org. Lett.* 2002, *4*, 2353–2355; e) B. Bressel, B. Egart, A. Al-Harrasi, R. Pulz, H.-U. Reissig, I. Brüdgam, *Eur. J. Org. Chem.* 2008, 467–474.
- [5] For a preliminary communication of selected experiments, see: S. Yekta, V. Prisyazhnyuk, H.-U. Reissig, *Synlett* 2007, 2069–2072.
- [6] We want to concentrate in this contribution on the geminal dimethyl substituted derivatives for simplicity, for other alkyl substituents and aryl groups see ref. [2a]. The geminal dimethyl substituted pyran motif can be found as subunits of several biologically active natural products: a) X. M. Yu, G. Shen, B. S. J. Blagg, J. Org. Chem. 2004, 69, 7375–7378; b) Y.-S. Zhen, X.-Y. Ming, B. Yu, T. Otani, H. Sito, Y. Yanada, J. Antibiot. 1989, 42, 1294–1299; c) A. Arnone, G. Nasini, J. Chem. Soc. Perkin Trans. 1 1987, 1353–1359.
- [7] The reaction can also be run catalytically with trimethylsilyl triflate (0.05 equiv) giving the TMS-protected rearrangement product in 79% yield, see ref. [2a].
- [8] In case of the rearrangement of 1,2-oxazine *anti*-1 the yield strongly depends on the quality of the Lewis acid, the purity of the starting material, and on the dryness of the solvent used.
- [9] For a Lewis acid catalyzed Mukaiyama-type aldol condensation of silyl enol ethers and acetals leading to tetrahydropyran-4-ones, see: G.S. Cockerill, P. Kocienski, J. Chem. Soc. Perkin Trans. 1 1985, 2093-2100. For the use of silyl triflates as Lewis acids in Mukaiyama-type aldol additions to acetals, see: a) S. Murata, M. Suzuki, R. Noyori, J. Am. Chem. Soc. 1980, 102, 3248-3249; b) S. Murata, M. Suzuki, R. Noyori, Tetrahedron 1988, 44, 4259-4275. For a Grignard-reagent induced aldol-cyclization of an acetal onto a ketone leading to tricyclic tetrahydropyran-4-ones, see: c) X. Gao, P. P. Seth, J. K. Bitok, N. I. Totah, Synlett 2005, 819-823. For intramolecular aldol reactions toward pyran derivatives, see: d) S. Das, L.-S. Li, S. C. Sinha, Org. Lett. 2004, 6, 123-126; e) K. N. Cossey, R. L. Funk, J. Am. Chem. Soc. 2004, 126, 12216-12217. For a recent review on tetrahydropyran synthesis towards natural products, see: f) P. A. Clarke, S. Santos, Eur. J. Org. Chem. 2006, 2045-2053. For selected recent examples on tetrahydropyran syntheses, see: g) H. Lee, K. W. Kim, J. Park, H. Kim, S. Kim, D. Kim, X. Hu, W. Yang, J. Hong, Angew. Chem. 2008, 120, 4268-4271; Angew. Chem. Int. Ed. 2008, 47, 4200-4203; h) R. Kartika, R. E. Taylor, Angew. Chem. 2007, 119, 6998-7001; Angew. Chem. Int. Ed. 2007, 46, 6874-6877; i) G.-Q. Tian, M. Shi, Org. Lett. 2007, 9, 2405-2408; j) F. Liu, T. P. Loh, Org. Lett. 2007, 9, 2063-2066.
- [10] J. Dernedde, S. Enders, H.-U. Reissig, M. Roskamp, S. Schlecht, S. Yekta, *Chem. Commun.* 2009, 932–934.
- [11] Reviews: a) O. Mitsunobu, Synthesis 1981, 1–28; b) D. L. Hughes, Org. React. 1992, 42, 335–656.
- [12] B. R. Castro, Org. React. 1983, 29, 1-162.
- [13] J. A. Gómez-Vidal, M. T. Forrester, R. B. Silverman, Org. Lett. 2001, 3, 2477–2479.
- [14] For the cleavage of N,O-bonds by SmI₂, see: a) G. E. Keck, S. F. McHardy, T. T. Wager, *Tetrahedron Lett.* **1995**, *36*, 7419–7422;
 b) J. L. Chiara, C. Destabel, P. Gallego, J. Marco-Contelles, *J. Org. Chem.* **1996**, *61*, 359–360; c) J. Revuelta, S. Cicchi, A. Brandi, *Tetrahedron Lett.* **2004**, *45*, 8375–8377; d) I. S. Young, J. L. Williams, M. A. Kerr, *Org. Lett.* **2005**, *7*, 953–955. See also ref. [4d].
- [15] The configuration was assigned by comparing the coupling constants of aminopyrans with different configurations: F. Pfrengle, Diploma thesis, Freie Universität Berlin (Germany), 2006.
- [16] For reaction sequences also employing the enantiomeric 1,2-oxazines, see ref. [2b], [4b] or [4e].
- [17] Y. Kwon, Y. Lee, K. Lee, K. Kim, Org. Lett. 2004, 6, 3901-3904.
- [18] Spirodioxaoctane derivatives of type 20 can also be found as substructures in natural products: H. Motoyoshi, M. Horigome, K. Ishigami, T. Yoshida, S. Horimouchi, M. Yoshida, H. Watanabe, T. Kitahara, *Biosci. Biotechnol. Biochem.* 2004, 68, 2178–2182.

- [19] Reviews: a) S. A. W. Gruner, E. Locardi, E. Lohof, H. Kessler, *Chem. Rev.* 2002, 102, 491–514; b) F. Schweizer, *Angew. Chem.* 2002, 114, 240–264; *Angew. Chem. Int. Ed.* 2002, 41, 230–253; c) T. K. Chakraborty, P. Srinivasu, S. Tapadar, B. K. Mohan, *Glycoconjugate J.* 2005, 22, 83–93.
- [20] a) M. Raunkjaer, F. El Oualid, G. A. van der Marel, H. S. Overkleeft, M. Overhand, Org. Lett. 2004, 6, 3167–3170; b) F. Sicherl, V. Wittmann, Angew. Chem. 2005, 117, 2133–2136; Angew. Chem. Int. Ed. 2005, 44, 2096–2099; c) S. Schröder, A. K. Schrey, A. Knoll, P. Reiss, B. Ziemer, U. Koert, Eur. J. Org. Chem. 2006, 2766–2776; d) A. Dondoni, A. Massi, Acc. Chem. Res. 2006, 39, 451–463.
- [21] Cleavage of the N,O-bond by hydrogenation can be regarded as a deprotection since it delivers a free amino and a free hydroxyl group derived from a chemically fairly inert precursor compound.
- [22] F. Caturla, N. Carmen, V. Montserrat, *Tetrahedron Lett.* 1999, 40, 5957–5960.
- [23] β-Lactams fused to different heterocycles are important structural motifs of β-lactam antibiotics: a) B. K. Hubbard, C. T. Walsh, Angew. Chem. 2003, 115, 752–789; Angew. Chem. Int. Ed. 2003, 42, 730–765; b) R. Nau, A. Eiffert, Clin. Microbiol. Rev. 2002, 15, 95–110; c) C. I. Samarendra, N. Maiti, R. Micetich, M. Daneshtalab, K. Atchison, O. A. Phillips, C. Kunugita, J. Antibiot. 1994, 47, 1030–1040. Pyran or sugar-fused β-lactams are intermediates in the synthesis of aminodeoxysugars: d) J. Gallucci, D.-C. Ha, D. J. Hart, Tetrahedron 1989, 45, 1283–1292, or of β-lactam antibiotics such as clavams or carbapenems: e) M. Chmielewski, J. Grodner, J. Carbohydr. Chem. 1992, 11, 691–698; f) A. Knierzinger, A. Vasella, J. Chem. Soc. Chem. Commun. 1984, 9–11.
- [24] Reviews: a) P. V. Murphy, *Eur. J. Org. Chem.* 2007, 4177–4187; b) J.
 Vagner, H. Qu, V. J. Vruby, *Curr. Opin. Chem. Biol.* 2008, 12, 292–296; c) Special Issue on peptidomimetics: *Acc. Chem. Res.* 2008, 41, 1231–1438.
- [25] a) R. Huisgen, Angew. Chem. 1963, 75, 604–637; Angew. Chem. Int. Ed. Engl. 1963, 2, 565–598; b) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. 2002, 114, 2708–2711; Angew. Chem. Int. Ed. 2002, 41, 2596–2599; c) C. W. Tornoe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057–3064; d) Recent review: M. Meldal, C. W. Tornoe, Chem. Rev. 2008, 108, 2952–3015.
- [26] For examples of triazole-linked oligosaccharide mimetics, see: a) S. Hotha, S. Kashyap, J. Org. Chem. 2006, 71, 364–367; b) H. S. G. Beckmann, V. Wittmann, Org. Lett. 2007, 9, 1–4; c) H. Isobe, K. Cho, N. Solin, D. B. Werz, P. H. Seeberger, E. Nakamura, Org. Lett. 2007, 9, 4611–4614. Reviews: d) S. Dedola, S. A. Nepogodiev, R. A. Field, Org. Biomol. Chem. 2007, 5, 1006–1017; e) A. Dondoni, Chem. Asian J. 2007, 2, 700–708.
- [27] A. Al-Harrasi, I. Brüdgam, H. Hartl, H.-U. Reissig, Z. Kristallogr. New Cryst. Struct. 2005, 220, 599–600.
- [28] T. R. Chan, R. Hilgraf, K. B. Sharpless, V. V. Fokin, Org. Lett. 2004, 6, 2853–2855.
- [29] P. B. Alper, S.-C. Hung, C.-H. Wong, *Tetrahedron Lett.* 1996, 37, 6029–6032.
- [30] For 1,2-oxazine derivatives in synthesis, reviews: a) T. L. Gilchrist, *Chem. Soc. Rev.* 1983, *12*, 53–73; b) P. G. Tsoungas, *Heterocycles* 2002, 57, 915–953; c) P. G. Tsoungas, *Heterocycles* 2002, 57, 1149– 1178. Selected publications of our group: d) R. Pulz, S. Cicchi, A. Brandi, H.-U. Reissig, *Eur. J. Org. Chem.* 2003, 1153–1156; e) E. Schmidt, H.-U. Reissig, R. Zimmer, *Synthesis* 2006, 2074–2084. Review: f) M. Brasholz, H.-U. Reissig, R. Zimmer, *Acc. Chem. Res.* 2009, *42*, 45–56. Selected recent publications of other groups: g) I. S. Young, M. A. Kerr, *Angew. Chem.* 2003, *115*, 3131–3134; *Angew. Chem. Int. Ed.* 2003, *42*, 3023–3026; h) F. Cardona, A. Goti, *Angew. Chem.* 2005, *117*, 8042–8045; *Angew. Chem. Int. Ed.* 2005, *44*, 7832–7835.

Received: April 15, 2009 Published online: September 24, 2009

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org