INTRAMOLECULAR CYCLIZATION OF γ-ACETYLENIC ACIDS USING DENDRIMER-ENCAPSULATED Pd²⁺ CATALYSTS

Zen Maeno,¹ Takato Mitsudome,¹ Tomoo Mizugaki,¹ Koichiro Jitsukawa,¹ and Kiyotomi Kaneda^{1,2*}

¹ Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan

² Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan email: kaneda@cheng.es.osaka-u.ac.jp; Phone & Fax: +81 6-6850-6260

Abstract – Polyamine dendrimer-encapsulated Pd^{2+} catalysts were prepared by complexation of $PdCl_2$ with internal tertiary amino groups of the dendrimer. The fifth-generation Pd^{2+} dendrimer catalyst showed cooperative catalysis between Pd^{2+} species and the internal nanocavity consisting of regularly arranged tertiary amino groups to promote the intramolecular cyclization of γ -acetylenic acids efficiently.

 γ -Alkylidene- γ -butyrolactones are important chemicals as constituent units of a number of natural products and synthetic intermediates of pharmaceuticals.¹ Among the synthetic methods of γ -alkylidene- γ -butyrolactones, intramolecular cyclizations of acetylenic acids have attracted attention because of their 100% atom efficiency.²⁻⁷ To date, various transition metal catalysts, such as Pd,² Hg,³ Pt,⁴ Au,⁵ Ag,⁶ Ir, and Rh,⁷ have been reported to promote the cyclization of acetylenic acids. In particular, Pd with base catalyst systems² showed higher catalytic activities than other metal ones. Nozaki et al. first reported that PdCl₂(PhCN)₂ with triethylamine (TEA) catalyzed the intramolecular cyclization of acetylenic acids.^{2a} Hidai et al. exhibited that the combination of a cuboidal PdMo₃S₄ cluster and TEA achieved a high catalytic turnover number.^{2e} Recently, heterogeneous Pd catalysts were also developed by Michelet et al. through the immobilization of Pd complexes onto basic Zn₂AlNO₃ layered double hydroxide (Pd/LDHs).^{2g}

Dedicated to Professor Dr. Ei-ichi Negishi on his 77th birthday.

Dendrimers are well-defined macromolecules with highly branched structures and internal nanocavities composed of a core and branch units.⁸ Various guests such as organic molecules, metal ions, and

Figure 1. Structure of G₅-TEBA dendrimer

nanoparticles can be accommodated within their nanocavity,^{8b-d} giving rise to dendritic catalysis such as site-isolation as well as a high local concentration of the substrate and/or active species.⁹ Accordingly, we have demonstrated the unique dendritic catalysis using poly(propylene imine) (PPI) dendrimers encapsulating metal complexes,^{9a,d} nanoparticles,^{10a} subnano clusters^{10b,c} and quaternary ammonium groups.^{9e} Very recently, the tertiary amino group within the nanocavities of the PPI dendrimer was also found to act as an efficient organocatalyst, promoting the intramolecular cyclization.^{10d} Herein, we report the cooperative effect between Pd²⁺ species and the confined nanocavity of the PPI dendrimers on the catalytic intramolecular cyclization of acetylenic acids. The fifth-generation dendrimer encapsulating Pd²⁺ species was found to act as an efficient catalyst for the cyclization of γ -acetylenic acids.

The triethoxybenzamide terminated-PPI dendrimers (G_x -TEBA, x denotes the generation number of PPI dendrimer, (Figure 1)) were synthesized using the reported procedures.^{10a} The PPI dendrimer-encapsulated Pd²⁺ catalysts (G_x -Pd²⁺_n, n denotes the molar ratio of Pd²⁺ ions to G_x -TEBA) were prepared by treatment of G_x -TEBA with Na₂PdCl₄.^{10b,c}

The intramolecular cyclization of 4-pentynoic acid (1a) using $G_x-Pd^{2+}_n$ catalysts was examined in THF at 30 °C (Table 1).¹¹ The ratio of G₅-TEBA to Pd²⁺ (n) strongly affected the catalytic activity of G₅-Pd²⁺_n (entries 1-6). G₅-Pd²⁺₈ showed the highest activity to give γ -methylene- γ -butyrolactone (2a) in 95% yield

(entry 3). Interestingly, the catalytic activity increased with increasing generation of the dendrimer; the fifth-generation dendrimer catalyst showed the highest activity among $G_5-Pd^{2+}_8$, $G_4-Pd^{2+}_8$, and $G_3-Pd^{2+}_8$ (entries 3, 7, and 8). When the aliphatic tertiary amines comparable in basicity with G_5 -TEBA ($pK_a =$

	OH <u>Catalyst</u>									
	ö 30 °C, Ar, 6 h									
Entry	Catalyst	Additive base ^b	Conv. [%]	^c Yield [%] ^c						
1	G ₅ -Pd ²⁺ 4	-	55	54						
2	$G_{5}-Pd^{2+}_{6}$	-	88	88						
3	G ₅ -Pd ²⁺ 8	-	96	95 (89) ^d						
4	$G_{5}-Pd^{2+}_{10}$	-	81	80						
5	$G_{5}-Pd^{2+}_{12}$	-	62	60						
6	$G_{5}-Pd^{2+}16$	-	47	47						
7	$G_4-Pd^{2+}_8$	-	55	55						
8	G ₃ -Pd ²⁺ 8	-	27	26						
9	PdCl ₂ (PhCN) ₂	TEA	15	14						
10	PdCl ₂ (PhCN) ₂	TMPDA	43	43						
11	PdCl ₂ (PhCN) ₂	PMDPT	48	45						
12	PEI-Pd ²⁺ 8	-	17	15						

Table 1. Intramolecular cyclization of 4-pentynoic acid using various Pd²⁺ catalyst systems^a

 \cap

^a Reaction conditions: 4-pentynoic acid (0.1 mmol), catalyst (Pd: 1 μmol), THF (2 mL). ^b 8 μmol for N atoms. ^c Determined by ¹H NMR using an internal standard technique. ^d Isolated yield.

10.35)¹² were used instead of G₅-TEBA under similar conditions, these amines such as TEA ($pK_a = 10.6$),¹³ *N*,*N*,*N*',*N*'-tetramethyl-1,3-propanediamine (TMPDA, $pK_a = 9.8$),¹⁴ and *N*,*N*,*N*',*N*'',*N*''-pentamethyldipropylenetriamine (PMDPT, $pK_a = 10.0$)¹⁴ resulted in lower yields of **2a** compared to that of G₅-TEBA (entries 9-11).¹⁵ Furthermore, an irregularly branched polyamine of TEBA-modified polyethyleneimine (PEI-TEBA)¹⁶ was tested in the reaction. However, PEI-TEBA was not effective, giving only 15% yield of **2a** (entry 12). These results indicate that the encapsulation of Pd²⁺ species within the nanocavity consisting of regularly arranged tertiary amino groups of G₅-TEBA is necessary to achieve high catalytic efficiency.

Table 2 shows the substrate scope of the G_5 -Pd²⁺₈ catalyst. The cyclization of α -substituted and β -substituted γ -acetylenic acids **1b-d** proceeded efficiently to afford the corresponding γ -methylene- γ -butyrolactones **2b-d** in excellent yields (entries 2-4). β -Acetylenic acid **1e** was also easily converted to the corresponding γ -butyrolactone **2e** (entry 5). The double cyclization of dipropargyl-

Table 2. Intramolecular cyclization of various acetylenic acids using G_5 -Pd²⁺₈ or the PdCl₂(PhCN)₂-TEA system

E so for a	Substrate		Product		T 1001		G ₅ -Pd ²⁺ ^a		PdCl ₂ (PhCN) ₂ -TEA ^b	
Entry				ΓĮ°CJ	Time [n]	Conv. [%] ^c	Yield [%] ^c	Conv. [%] ^c	Yield [%] ^c	
1	Montania National Nationa National National Nat	1a	9	2a	30	6	96	95	15	14
2	MeO-O TOH	1b	OMe	2b	30	12	99	97	28	26
3	Munitary North Street North St	1c		2c	30	6	98	98	65	64
4	Mon Not	1d	9 97	2d	40	12	98	96	12	9
5	OH	1e	9	2e	40	5	>99	97	72	70
6	COOH	1f		2f	40	9	>99	99	35	35
7	лон О	1g		2g	60	12	20	20	65	63
0	×			2ha	<u> </u>	0			20	07
Ø	°~~µOH O	1h		2hb	up.	3	liace	-	38	37 (2ha:2hb = 82:18)

^a Reaction conditions: substrate (0.1 mmol), G₅-Pd²⁺₈ (Pd: 1 µmol), THF (2 mL), Ar. ^b Reaction conditions: substrate (0.1 mmol), PdCl₂ (PhCN)₂ (Pd: 1 µmol), triethylamine (N: 8 µmol), THF (2 mL), Ar. Determined by GC and ¹H NMR using an internal standard technique.

malonic acid **1f** gave the spiro lactone product **2f** quantitatively (entry 6). However, the cyclization of δ -acetylenic acid such as 5-hexynoic acid **1g** did not proceed smoothly (entry 7). A γ -acetylenic acid with an internal alkyne **1h** was intact (entry 8)¹⁷. In contrast, the PdCl₂(PhCN)₂-TEA system showed good to moderate catalytic activities for the cyclizations of **1g** and **1h** (entries 7 and 8).

The high activity of $G_5-Pd^{2+}_8$ for the formation of γ -butyrolactones was further exemplified in the competitive reaction between γ -acetylenic acid and δ -one. In the *intermolecular* competitive reaction between 1a and 1g, 1a was converted to 2a quantitatively without formation of 2g (Scheme 1). In comparison, the PdCl₂(PhCN)₂-TEA system afforded a mixture of 2a and 2g. The *intramolecular*

competitive cyclization of **1i** proceeded exclusively to give the 5-membered lactone **2i** (Scheme 2) while the reaction of **1i** using the PdCl₂(PhCN)₂-TEA system resulted in the formation of a mixture of **2i** and the 6-membered lactone **3i**. It has also been reported that the Pd/LDH catalyst converts **1i** to a mixture of **2i** and **3i** in 86% and 14% selectivity, respectively.^{2g} These results clearly show that G_5 -Pd²⁺₈ exhibits the specific activity for the cyclization of γ -acetylenic acids compared to δ -one.

Scheme 2. Intramolecular competitive cyclization between γ -acetylenic acid and δ -acetylenic acid

Figure 2. Proposed reaction intermediate

The Pd-catalyzed cyclization of acetylenic acids generally involves the intramolecular nucleophilic attack of a carboxylate anion to the acetylenic bond coordinated to a Pd center, followed by the protonolysis of

the resulting vinylpalladium species.^{2a,g} In the case of the G_5 -Pd²⁺₈ catalyst, Pd²⁺ species and the regularly arranged tertiary amino groups would cooperatively function within the sterically confined nanocavity; a carboxyl group of the substrate is oriented toward an acetylenic bond on the Pd species by the steric effect of the nanocavity of G_5 -Pd²⁺₈, resulting in facile intramolecular nucleophilic attack of the carboxyl group activated by regularly arranged tertiary amino groups (Figure 2). The specific activity of G_5 -Pd²⁺₈ for the cyclization of γ -acetylenic acids may be attributable to the steric congestion around the Pd species within the internal nanocavity of the G₅-TEBA dendrimer.¹⁸

In conclusion, the PPI dendrimer-encapsulated Pd^{2+} catalysts synthesized by the complexation of $PdCl_2$ with internal tertiary amino groups can be applied to the intramolecular cyclization of acetylenic acids. The fifth-generation dendrimer catalyst, G_5 - Pd^{2+}_8 , specifically and efficiently promoted the cyclization of γ -acetylenic acids due to the cooperative catalysis between the Pd^{2+} species and the internal nanocavity consisting of regularly arranged tertiary amino groups of G_5 -TEBA.

ACKNOWLEDGEMENTS

This work was supported by a Grant-in-Aid for Challenging Exploratory Research (23656514) from the Japan Society for the Promotion of Science (JSPS).

REFERENCES AND NOTES

- (a) S. S. C. Koch and A. R. Chamberlin, 'Studies in Natural Products Chemistry' Vol. 16, ed. by Atta-ur-Rahman, Elsevier Science, Amsterdam, 1995, 687; (b) M. Seitz and O. Reiser, *Curr. Opin. Chem. Biol.*, 2005, 9, 285; (c) E.-I. Negishi and M. Kotora, *Tetrahedron*, 1997, 53, 6707.
- Pd catalysis (a) C. Lambert, K. Utimoto, and H. Nozaki, *Tetrahedron Lett.*, 1984, 25, 5323; (b) A. Arcadi, A. Burini, S. Cacchi, M. Delmastro, F. Marinelli, and B. R. Pietroni, *J. Org. Chem.*, 1992, 57, 976; (c) M. Cavicchioli, D. Bouyssi, J. Goré, and G. Balme, *Tetrahedron Lett.*, 1996, 37, 1429; (d) X. Wang and X. Lu, *J. Org. Chem.*, 1996, 61, 2254; (e) T. Wakabayashi, Y. Ishii, K. Ishikawa, and M. Hidai, *Angew. Chem.*, *Int. Ed. Engl.*, 1996, 35, 2123; (f) Z. Huo, N. T. Patil, T. Jin, N. K. Pahadi, and Y. Yamamoto, *Adv. Synth. Catal.*, 2007, 349, 680; (g) F. Neatu, L. Protesescu, M. Florea, V. I. Párvulescu, C. M. Teodorescu, N. Apostol, P. Y. Toullec, and V. Michelet, *Green. Chem.*, 2010, 12, 2145; (h) K. Ogata, D. Sasano, T. Yokoi, K. Isozaki, H. Seike, H. Takaya, and M. Nakamura, *Chem. Lett.*, 2012, 41, 498.
- Hg catalysis (a) M. Yamamoto, J. Chem. Soc., Perkin Trans. 1, 1981, 582; (b) R. A. Amos and J. A. Katzenellenbogen, J. Am. Chem. Soc., 1981, 103, 5459; (c) A. Jellal, J. Grimaldi, and M. Santelli, *Tetrahedron Lett.*, 1984, 25, 3179; (d) R. W. Spencer, T. F. Tam, E. Thomas, V. J. Robinson, and A. Krants, J. Am. Chem. Soc., 1986, 108, 5589; (e) H. Imagawa, Y. Fujikawa, A. Tsuchihiro, A.

Kinoshita, T. Yoshinaga, H. Takao, and M. Nishizawa, Synlett, 2006, 639.

- 4. Pt catalysis (a) J. Alemán, V. del Solar, and C. Navarro-Ranning, *Chem. Commun.*, 2010, 46, 454;
 (b) J. Alemán, V. del Solar, L. Cubo, A. G. Quiroga, and C. Navarro-Ranning, *Dalton Trans.*, 2010, 39, 10601.
- Au catalysis (a) E. Genin, P. Y. Toullec, S. Antoniotti, C. Brancour, J.-P. Genét, and V. Michelet, J. Am. Chem. Soc., 2006, 128, 3112; (b) H. Harkat, J.-M. Weibel, and P. Pale, *Tetrahedron Lett.*, 2006, 47, 6273; (c) E. Marchal, P. Uriac, B. Legoin, L. Toupet, and P. van de Weghe, *Tetrahedron*, 2007, 63, 9979.
- Ag catalysis (a) J. Castaner and J. Pascual, J. Chem. Soc., 1958, 3962; (b) P. Pale and J. Chuche, *Tetrahedron Lett.*, 1987, 28, 6447; (c) V. Dalla and P. Pale, *Tetrahedron Lett.*, 1994, 35, 3525; (d) V. Dalla and P. Pale, *New J. Chem.*, 1999, 23, 803; (e) C. H. Oh, H. J. Yi, and J. H. Lee, *New J. Chem.*, 2007, 31, 835.
- Ir and Rh catalysis (a) S. Elgafi, L. D. Field, and B. A. Messerle, *J. Organometal. Chem.*, 2000, 607, 97; (b) E. Mas-Marzá, E. Peris, I. Castro-Rodriguez, and K. Meyer, *Organometallics*, 2005, 24, 3158; (c) S.-G. Lim, B.-I. Kwon, M.-G. Choi, and C.-H. Jun, *Synlett*, 2005, 1113; (d) J. H. H. Ho, D. S. C. Black, B. A. Messerle, J. K. Clegg, and P. Turner, *Organometallics*, 2006, 25, 5800; (e) E. Mas-Marzá, J. A. Mata, and E. Peris, *Angew. Chem. Int. Ed.*, 2007, 46, 3729.
- (a) S. Campagna, P. Ceroni, and F. Puntoriero, 'Designing Dendrimers' John Wiley & Sons, Inc., Hoboken, New Jersey, 2012; (b) K. Yamamoto and T. Imaoka, *Bull. Chem. Soc. Jpn.*, 2006, **79**, 511;
 (c) D. Astruc, E. Boisselier, and C. Omelas, *Chem. Rev.*, 2010, **110**, 1857; (d) V. S. Myers, M. G. Weir, E. V. Carino, D. F. Yancey, S. Pande, and R. M. Crooks, *Chem. Sci.*, 2011, **2**, 1632.
- (a) M. Ooe, M. Murata, T. Mizugaki, K. Ebitani, and K. Kaneda, J. Am. Chem. Soc., 2004, 126, 1604; (b) C. Muller, L. J. Ackerman, J. N. H. Reek, P. C. J. Kamer, and P. W. N. M. V. Leeuwen, J. Am. Chem. Soc., 2004, 126, 14960; (c) B. Helms, C. O. Liang, C. J. Hawker, and J. M. J. Fréchet, Macromolecules, 2005, 38, 5411; (d) T. Mizugaki, Y. Miyauchi, M. Murata, K. Ebitani, and K. Kaneda, Chem. Lett., 2005, 34, 286; (e) T. Mizugaki, C. E. Hetrick, M. Murata, K. Ebitani, M. D. Amiridis, and K. Kaneda, Chem. Lett., 2005, 34, 420; (f) B. Helms and M. J. Frechet, Adv. Synth. Catal., 2006, 348, 1125; (g) A. K. Diallo, E. Boisselier, L. Liang, J. Ruiz, and D. Astruc, Chem. Eur. J., 2010, 16, 11832; (h) T. Imaoka, Y. Kawana, M. Tsuji, and K. Yamamoto, Chem. Eur. J., 2010, 16, 11003.
- (a) M. Ooe, M. Murata, T. Mizugaki, K. Ebitani, and K. Kaneda, *Nano Lett.*, 2002, 2, 999; (b) T. Mizugaki, T. Kibata, K. Ota, T. Mitsudome, K. Ebitani, K. Jitsukawa, and K. Kaneda, *Chem. Lett.*, 2009, 38, 1118; (c) Z. Maeno, T. Kibata, T. Mitsudome, T. Mizugaki, K. Jitsukawa, and K. Kaneda, *Chem. Lett.*, 2011, 40, 180; (d) Z. Maeno, T. Mitsudome, T. Mizugaki, K. Jitsukawa, and K. Kaneda, *Chem. Lett.*, 2011, 40, 180; (d) Z. Maeno, T. Mitsudome, T. Mizugaki, K. Jitsukawa, and K. Kaneda, *Chem. Lett.*, 2011, 40, 180; (d) Z. Maeno, T. Mitsudome, T. Mizugaki, K. Jitsukawa, and K. Kaneda, *Chem. Lett.*, 2011, 40, 180; (d) Z. Maeno, T. Mitsudome, T. Mizugaki, K. Jitsukawa, and K. Kaneda, *Chem. Lett.*, 2011, 40, 180; (d) Z. Maeno, T. Mitsudome, T. Mizugaki, K. Jitsukawa, and K. Kaneda, *Chem. Lett.*, 2011, 40, 180; (d) Z. Maeno, T. Mitsudome, T. Mizugaki, K. Jitsukawa, and K. Kaneda, *Chem. Lett.*, 2011, 40, 180; (d) Z. Maeno, T. Mitsudome, T. Mizugaki, K. Jitsukawa, and K. Kaneda, *Chem. Lett.*, 2011, 40, 180; (d) Z. Maeno, T. Mitsudome, T. Mizugaki, K. Jitsukawa, and K. Kaneda, *Chem. Lett.*, 2011, 40, 180; (d) Z. Maeno, T. Mitsudome, T. Mizugaki, K. Jitsukawa, and K. Kaneda, *Chem. Lett.*, 2011, 40, 180; (d) Z. Maeno, T. Mitsudome, T. Mizugaki, K. Jitsukawa, and K. Kaneda, *Chem. Lett.*, 2011, 40, 180; (d) Z. Maeno, T. Mitsudome, T. Mizugaki, K. Jitsukawa, and K. Kaneda, *Chem. Lett.*, 2011, 40, 180; (d) Z. Maeno, T. Mitsudome, T. Mizugaki, K. Jitsukawa, and K. Kaneda, M. Kaneda,

Chem. Lett., 2012, 41, 801.

- 11. A typical cyclization reaction of acetylenic acid was carried out in a Schlenk glass tube. The glass tube was charged with acetylenic acid (0.1 mmol), THF (2 mL), and G₅-Pd²⁺₈ (Pd: 1 μmol). The reaction mixture was vigorously stirred at 30 °C. After the reaction, the reaction mixture was analyzed by GC and ¹H NMR using an internal standard technique.
- 12. G. J. M. Koper, M. H. P. van Genderen, C. Elissen-Román, M. W. P. L. Baars, E. W. Meijer, and M. Borkovec, *J. Am. Chem. Soc.*, 1997, **119**, 6512.
- 13. O. Urs, B. Zbigniew, X. Aiping, R. Bruno, and S. Gabriela, Anal. Chem., 1986, 58, 2285.
- 14. R. von Rometsch, A. Marxer, and K. Miescher, Helv. Chim. Acta, 1951, 34, 1611.
- 15. The ratio of tertiary amino groups to Pd^{2+} in the $PdCl_2(PhCN)_2$ -aliphatic tertiary amine systems was adjusted to that in G_5 - Pd^{2+}_{8} catalyst.
- 16. TEBA-modified polyethyleneimine (PEI-TEBA) was synthesized as follows: to a THF solution (100 mL) of polyethyleneimine (0.50 g, 3.15, 3.15, and 2.7 mmol for primary, secondary, and tertiary amine, respectively) and TEA (3.07 g, 30.4 mmol) was added a THF solution (20 mL) of 3,4,5-triethoxybenzoyl chloride dropwise (2.39 g, 8.8 mmol) at 30 °C for 5 min. The mixture was stirred at 40 °C for 48 h, then concentrated under reduced pressure. The residue was washed with 1 M NaOH aqueous solution (3 x 200 mL) and water (5 x 200 mL), and dried under vacuum for 24 h to give PEI-TEBA as a brownish solid (1.48 g). ¹H NMR (400 MHz, CDCl₃, TMS, 50 °C), δ 0.66-1.47 (1512H, br, CH₃CH₂O-), 2.01-2.95 (444H, br, (CH₂)₃N), 2.96-4.55 (1512H, br, $(CH_2)_2NCOAr + CH_2NHCOAr + CH_3CH_2O_-)$, 6.08-6.70 (168H, br, $(CH_2)_2NCOAr)$, 6.78-7.18 (168H, br, CH₂NHCOAr), 7.50-8.29 (84H, br, CH₂NHCOAr). ¹³C{¹H} NMR (100 MHz, CDCl₃. TMS, 50 °C), 14.9, 15.6, 38.4, 53.5, 64.8, 68.8, 106.5, 129.3, 131.2, 139.2, 141.2, 152.8, 167.6, 171.8. IR (KBr, cm⁻¹), 3329 (N-H stretch), 3016 (Aromatic C-H stretch), 1629 (C=O stretch), 1580 (N-H vend), 1215 (C-N stretch), 1030 (Ar-O-CH₂ stretch), 755 (Aromatic C-H vend), 668 (-NH vibration). Anal. Calcd for C₂₆₆₄H₃₈₈₈N₂₄₀O₆₇₂: C, 63.95; H, 7.83; N, 6.71. Found: C, 63.56; H, 8.01; N, 6.59. PEI-Pd²⁺₈ was prepared in a similar way by treatment of PEI-TEBA with Na₂PdCl₄ aqueous solution. See refs 10a and 10b.
- The low reactivity of **1h** might be due to the steric hindrance of the methyl group which inhibits the coordination of the alkyne group to Pd²⁺.
- Several transition metal complex catalysts having bulky ligands were reported to show extremely lower catalytic activity for the cyclization of 5-hexynoic acid than that of 4-pentynoic acid. See refs 2e, 7b, and 7d.