Temperature-Dependent Regioselective Synthesis of 1,2,4-Triazino[2,3b]indazoles and 3H-1,4-Benzodiazepines by Domino-Staudinger/Aza-Wittig/ Isomerization Reaction

Hai Xie,^[a,b] Jian-Bo Yu,^[a] and Ming-Wu Ding*^[a]

Keywords: Nitrogen heterocycles / Fused ring systems / Aza-Wittig reaction / Isomerization / Azides

o-Azidobenzaldimine **8** reacted with triphenylphosphane at 0 °C with warming to room temperature to give 1,2,4-triaz-ino[2,3-b]indazoles **12** by a domino-Staudinger/aza-Wittig/

isomerization reaction. However, when heated to 80 °C the same reaction mixture afforded 3H-1,4-benzodiazepines 14 by a tandem-Staudinger/aza-Wittig reaction.

Introduction

Domino reactions have attracted significant attention from the synthetic organic chemistry community because of their utility in the creation of structurally diverse and complex molecules from simple precursors in an efficient manner.^[1] The value of domino processes can be greatly enhanced when divergence from an intermediate is made possible with different reaction conditions.

Indazoles play an increasingly important role in drug discovery because of their structural similarity with indoles and benzimidazoles.^[2] Many indazole derivatives have exhibited anti-HIV,^[3] antiplatelet,^[4] anticancer,^[5] antimicrobial,^[6,7] and antifungal activities.^[8,9] Much effort has been invested in the synthesis of derivatives of these compounds to deduce structure–activity relationships and to discover new analogues with improved properties, especially in medicinal chemistry.

There are several regioselective methods for the preparation of 2H-indazoles.^[10] Among them, a simple but effective route for the synthesis of indazoles was provided by Molina et al. (Scheme 1).^[10b] The (indazolylimino)phosphorane derivative **3** was directly obtained from Staudinger reaction of *o*-azidobenzaldimines **1** through the intermediacy of phosphazide **2** instead of the expected *o*-(triphenylphosphoranylidene)aminobenzaldimine **4**. Further aza-Wittig reactions of **3** with isocyanates or acyl chlorides gave various fused indazoles in good yields. Aza-Wittig reactions have recently received increased attention in view of their utility

- [b] College of Chemistry & Chemical Engineering, Shanxi Datong University, Shanxi 037009, P. R. China
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201100710.

in the synthesis of many nitrogen-containing heterocycles.^[11,12] We envisioned that a domino-Staudinger/aza-Wittig reaction of suitably functionalized *o*-azidobenzaldimines **1** would provide access to fused indazoles in only one step. In support of our continued interest in the synthesis of Nheterocycles by application of the aza-Wittig reaction,^[13] we report here a temperature-dependent regioselective synthesis of previously unreported 1,2,4-triazino[2,3-*b*]indazole ring systems and 3*H*-1,4-benzodiazepines by a domino-Staudinger/aza-Wittig/isomerization reaction.

Scheme 1. Literature preparation of the (indazolylimino)phosphorane **3** by abnormal Staudinger reaction.

Results and Discussion

Vinyl azides **6**, obtained easily from condensation of azides **5** with aromatic aldehydes in the presence of piperidinium acetate,^[14] reacted with triphenylphosphane or methyldiphenyl phosphane to give iminophosphoranes **7**. Initially, aza-Wittig reactions of (triphenylimino)phosphorane **7** ($\mathbf{R} = \mathbf{Ph}$) with 2-azidobenzaldehyde were examined in ethanol, but low yields (32–35%) of **8** were obtained due to the low reactivity of **7** ($\mathbf{R} = \mathbf{Ph}$) with 2-azidobenzaldehyde. However, when more reactive (methyldi-

[[]a] Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan, 430079, P. R. China Fax: +86-27-67862041
E-mail: ding5229@yahoo.com.cn
[b] College of Chemistry & Chemical Engineering, Shanxi Datong

phenylimino)phosphorane 7 (R = Me) was used at 50 °C, good yields (82–92%) of condensed *o*-azidobenzaldimines **8** were obtained (Scheme 2, Table 1).

Scheme 2. Preparation of o-azidobenzaldimine 8.

Table 1. Preparation of o-azidobenzaldimine 8.

Entry		R	Ar ¹	Ar ²	Conditions	Yield (%)[a]
1	8 a	Ph	Ph	Ph	50 °C/8 h	35
2		Me			50 °C/4 h	90
3	8b	Ph	Ph	$4-ClC_6H_4$	50 °C/7 h	32
4		Me			50 °C/4 h	92
5	8c	Me	Ph	$4-FC_6H_4$	50 °C/6 h	75
6	8d	Me	Ph	$4-CH_3C_6H_4$	50 °C/4 h	88
7	8 e	Me	$4-ClC_6H_4$	Ph	50 °C/4 h	86
8	8 f	Me	$4-ClC_6H_4$	$4-ClC_6H_4$	50 °C/5 h	84
9	8g	Me	$4-ClC_6H_4$	$4-FC_6H_4$	50 °C/6 h	83
10	8h	Me	$4-ClC_6H_4$	$4-CH_3C_6H_4$	50 °C/4 h	90
	1		1 0106114	1 011306114	50 6/11	

[a] Isolated yields.

When o-azidobenzaldimines 8 were treated with triphenylphosphane in CH₂Cl₂ at 0 °C for 2 h, and then at room temperature for another 2 h, previously unreported 1,2,4-triazino[2,3-b]indazoles 12 were isolated directly in high yields (84-91%) (Scheme 3, Table 2). The domino formation of 1,2,4-triazino[2,3-b]indazoles 12 can be viewed as an initial Staudinger reaction between o-azidobenzaldimine 8 and triphenylphosphane to create phosphazide intermediate 9, which cyclizes to give iminophosphorane 10. Further intramolecular aza-Wittig reaction of 10 produces cyclized compound 11, in which an isomerization reaction takes place to give 1,2,4-triazino[2,3-b]indazole 12. It is noteworthy that the reaction proceeds under mild conditions to give various substituted 1,2,4-triazino[2,3-b]indazoles, and the overall transformation is run in a simple one-pot procedure from azides 8.

It is interesting to note that 3H-1,4-benzodiazepines 14 were obtained instead when *o*-azidobenzaldimines 8 were allowed to react with triphenylphosphane in toluene at 80 °C for 8 h (Scheme 4, Table 3). The formation of 3H-1,4benzodiazepines 14 can be viewed as an initial Staudinger reaction between *o*-azidobenzaldimine 8 and triphenylphosphane to give the iminophosphorane 13, through loss of N₂ from phosphazide intermediate 9 under higher temperature. Further intramolecular aza-Wittig reaction of 13 produces 3H-1,4-benzodiazepine 14. It is deduced that phosphazide intermediate 9 tends to decompose at higher temperature to give the iminophosphorane 13 instead of the (indazolyl-

Scheme 3. Preparation of 1,2,4-triazino[2,3-*b*]indazoles **12** by a domino-Staudinger/aza-Wittig/isomerization reaction.

Table 2. Preparation of 1,2,4-triazino[2,3-b]indazoles 12.

Entry		Ar^{1}	Ar ²	Yield (%)[a]
1	12a	Ph	Ph	91
2	12b	Ph	$4-ClC_6H_4$	90
3	12c	Ph	$4-FC_6H_4$	84
4	12d	Ph	$4-CH_3C_6H_4$	86
5	12e	$4-ClC_6H_4$	Ph	89
6	12f	$4-ClC_6H_4$	$4-ClC_6H_4$	86
7	12g	$4-ClC_6H_4$	$4-FC_6H_4$	88
8	12h	$4-ClC_6H_4$	$4-CH_3C_6H_4$	87
9	12i	$4-ClC_6H_4$	$4-CH_3OC_6H_4$	89
10	12j	$4-ClC_6H_4$	$4-CF_3C_6H_4$	90

[a] Isolated yields.

Scheme 4. Preparation of 3*H*-1,4-benzodiazepines **14** by a tandem-Staudinger/aza-Wittig reaction.

imino)phosphorane **10**. Notably, 1,4-benzodiazepine skeletons are one of the most important and central building blocks in medicinal and pharmaceutical chemistry. Many 1,4-benzodiazepines are found in a wide variety of biologically active substances, which show sedative, anxiolytic, anticonvulsant, hypnotic, raf protein kinase and cysteine protease inhibitory activities.^[15–17] The above tandem-Staudinger/aza-Wittig reaction provides an efficient synthesis of 3H-1,4-benzodiazepines under mild reaction conditions. Analogous 1,4-benzodiazepin-5-ones have also been prepared previously by application of the tandem-Staudinger/aza-Wittig reaction by other groups.^[18]

Table 3. Preparation of 3H-1,4-benzodiazepines 14.

Entry		Ar^1	Ar ²	Yield (%) ^[a]
1	14a	Ph	Ph	91
2	14b	Ph	$4-ClC_6H_4$	90
3	14c	Ph	$4-FC_6H_4$	84
4	14d	Ph	$4-CH_3C_6H_4$	86
5	14e	$4-ClC_6H_4$	Ph	89
6	14f	$4-ClC_6H_4$	$4-ClC_6H_4$	86
7	14g	$4-ClC_6H_4$	$4-FC_6H_4$	88
8	14h	$4-ClC_6H_4$	$4-CH_3C_6H_4$	87
9	14i	$4-ClC_6H_4$	$4-CH_3OC_6H_4$	82
10	14j	$4-ClC_6H_4$	$4-CF_3C_6H_4$	90

[a] Isolated yields.

The structures of the 1,2,4-triazino[2,3-b]indazoles 12 and 3H-1,4-benzodiazepines 14 were confirmed on the basis of spectroscopic data. Furthermore, single crystals of 12i

Figure 1. ORTEP diagram of the crystal structure of 14j (30% thermal ellipsoids).

Figure 2. ORTEP diagram of the crystal structure of **12i** (30% thermal ellipsoids).

and 14j were obtained from the CH_2Cl_2 solution of 12i and 14j and X-ray structure analysis verified the proposed structures (Figures 1 and 2).

Conclusions

In conclusion, we report here a new temperature-dependent regioselective synthesis of 1,2,4-triazino[2,3-b]indazoles or 3H-1,4-benzodiazepines, by using a domino-Staudinger/ aza-Wittig/isomerization reaction or tandem-Staudinger/ aza-Wittig reaction. Due to the availability of the synthetic approach and the neutral ring closure conditions, this new synthetic approach has potential applications in the synthesis of various 1,2,4-triazino[2,3-b]indazoles and 3H-1,4benzodiazepines, which are of considerable interest as biologically active compounds or pharmaceuticals.

Experimental Section

General: All reactions were performed in round-bottom flasks. Column chromatography purifications were performed under "flash" conditions using 400–630 mesh silica gel, except where otherwise noted. Analytical thin-layer chromatography (TLC) was carried out on silica gel 60 F_{254} plates, which were visualized by exposure to ultraviolet light.

Instrumentation: Melting points were determined with an X-4 model apparatus (Beijing Taike Company, Beijing, People's Republic of China). IR spectra were recorded with a PE-983 infrared spectrometer (Perkin–Elmer) as KBr pellets with absorption in cm⁻¹. MS were measured with a Finnigan Trace MS spectrometer (Thermo Fisher Scientific Company). ¹H NMR spectra were recorded in CDCl₃ with a Varian Mercury Plus 600 (600 MHz) spectrometer and chemical shifts (δ) are reported in ppm using (CH₃)₄Si as an internal reference (δ = 0 ppm). Elemental analyses were obtained with a Vario EL III elementary analysis instrument.

General Procedure for Preparation of Azides 8: To a well-stirred solution of azide 6 (4 mmol) in absolute ethanol (15 mL) was added methyldiphenylphosphane (0.80 g, 4 mmol) in ethanol (5 mL) at room temp. After the mixture was stirred for 3 h, 2-azidobenzalde-hyde (0.59 g, 4 mmol) was added and the mixture was stirred at 50 °C for 4–8 h. The solvent was partly removed under reduced pressure and the yellow precipitated solid was collected by filtration and recrystallized from CH₂Cl₂/ethanol to give azide 8.

2-(Azidobenzylideneamino)-1,3-diphenylprop-2-en-1-one (8a): Yellow crystals (1.27 g, 90%), m.p. 84–85 °C. IR (KBr): $\tilde{v} = 3069$, 2134, 1652, 1592, 1448, 1251, 1126 cm⁻¹. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.82$ (s, 1 H, N=CH), 8.28–7.23 (m, 14 H, Ar-H), 6.71 (s, 1 H, =CH) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 193.8$, 158.9, 145.2, 140.9, 137.5, 134.6, 132.7, 132.3, 131.3, 131.2, 129.8, 129.7, 129.3, 128.7, 128.3, 128.2, 127.7, 127.6, 127.1, 124.8, 118.5 ppm. C₂₂H₁₆N₄O (352.39): calcd. C 74.98, H 4.58, N 15.90; found C 75.19, H 4.88, N 16.12.

2-(Azidobenzylideneamino)-3-(4-chlorophenyl)-1-phenylprop-2en-1-one (8b): Yellow crystals (1.42 g, 92%), m.p. 148–149 °C. IR (KBr): $\tilde{v} = 3095$, 2133, 1651, 1448, 1250, 1069 cm⁻¹. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.81$ (s, 1 H, N=CH), 8.23–7.22 (m, 13 H, Ar-H), 6.64 (s, 1 H, =CH) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 193.8, 159.2, 159.1, 145.5, 141.1, 137.4, 134.6, 133.2, 132.9, 132.5, 129.9, 129.8, 128.6, 128.4, 128.0, 127.8, 127.7, 127.1, 124.9,

FULL PAPER

118.6 ppm. $C_{22}H_{15}CIN_4O$ (386.84): calcd. C 68.31, H 3.91, N 14.48; found C 68.52, H 4.08, N 14.22.

2-(Azidobenzylideneamino)-3-(4-fluorophenyl)-1-phenylprop-2-en-1one (8c): Yellow crystals (1.11 g, 75%), m.p. 112–114 °C. IR (KBr): $\tilde{v} = 3072, 2133, 1655, 1594, 1450, 1296, 1127, 1069 cm⁻¹. ¹H NMR$ $(600 MHz, CDCl₃): <math>\delta = 8.83$ (s, 1 H, N=CH), 8.24–7.03 (m, 13 H, Ar-H), 6.67 (s, 1 H, =CH) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 193.7, 163.5, 161.8, 159.0, 144.6, 140.8, 137.4, 133.2, 132.7, 132.3, 130.8, 129.7, 128.4, 128.2, 127.5, 126.9, 124.8, 118.5, 115.4, 115.2 ppm. C₂₂H₁₅FN₄O (370.38): calcd. C 71.34, H 4.08, N 15.13; found C 71.19, H 4.28, N 15.22.

2-(Azidobenzylideneamino)-1-phenyl-3-(*p***-tolyl)prop-2-en-1-one (8d):** Yellow crystals (1.29 g, 88%), m.p. 134–136 °C. IR (KBr): $\tilde{v} = 3124$, 2132, 1653, 1575, 1449, 1123, 1069 cm^{-1.} ¹H NMR (600 MHz, CDCl₃): $\delta = 8.82$ (s, 1 H, N=CH), 8.28–7.16 (m, 13 H, Ar-H), 6.71 (s, 1 H, =CH), 2.35 (s, 3 H, CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 193.8$; 158.8, 144.5, 140.9, 139.1, 137.8, 132.6, 132.2, 131.8, 131.4, 130.1, 129.7, 129.1, 128.2, 127.7, 127.2, 124.9, 118.5, 21.4, 21.2 ppm. C₂₃H₁₈N₄O (366.42): calcd. C 75.39, H 4.95, N 15.29; found C 75.49, H 4.88, N 15.42.

2-(Azidobenzylideneamino)-1-(4-chlorophenyl)-3-phenylprop-2en-1-one (8e): Yellow crystals (1.33 g, 86%), m.p. 90–92 °C. IR (KBr): $\tilde{v} = 3128$, 2126, 1649, 1583, 1278, 1070 cm⁻¹. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.78$ (s, 1 H, N=CH), 8.26–7.22 (m, 13 H, Ar-H), 6.68 (s, 1 H, =CH) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 192.6, 159.0, 145.1, 141.0, 138.7, 135.8, 134.4, 132.8, 131.3, 131.2, 129.3, 128.9, 128.6, 128.4, 127.7, 127.0, 124.9, 118.6 ppm. C₂₂H₁₅ClN₄O (386.84): calcd. C 68.31, H 3.91, N 14.48; found C 68.59, H 3.99, N 14.22.

2-(Azidobenzylideneamino)-1,3-bis(4-chlorophenyl)prop-2-en-1-one (**8f**): Yellow crystals (1.41 g, 84%), m.p. 169–170 °C. IR (KBr): $\tilde{v} = 3126$, 2126, 1648, 1583, 1483, 1281, 1084 cm⁻¹. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.77$ (s, 1 H, N=CH), 8.22–7.22 (m, 12 H, Ar-H), 6.62 (s, 1 H, =CH) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 192.6$, 159.3, 145.4, 141.1, 139.0, 135.5, 134.8, 133.1, 132.5, 131.3, 128.7, 128.6, 127.9, 127.7, 126.9, 125.0, 118.7 ppm. C₂₂H₁₄Cl₂N₄O (421.28): calcd. C 62.72, H 3.35, N 13.30; found C 62.59, H 3.49, N 13.12.

2-(Azidobenzylideneamino)-1-(4-chlorophenyl)-3-(4-fluorophenyl)prop-2-en-1-one (8g): Yellow crystals (1.34 g, 83%), m.p. 142– 144 °C. IR (KBr): $\tilde{v} = 3130, 2131, 1648, 1584, 1247, 1129, 1070 cm^{-1}.$ ¹H NMR (600 MHz, CDCl₃): $\delta = 8.79$ (s, 1 H, N=CH), 8.23–7.04 (m, 12 H, Ar-H), 6.66 (s, 1 H, =CH) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 192.7,163.7, 162.0, 159.3, 144.6, 141.1, 138.8, 135.7, 133.3, 133.0, 131.2, 130.8, 128.7, 128.4, 127.6, 126.9, 125.0, 118.7, 115.6, 115.4 ppm. C₂₂H₁₄CIFN₄O (404.83): calcd. C 65.27, H 3.49, N 13.84; found C 65.43, H 3.58, N 13.92.$

2-(Azidobenzylideneamino)-1-(4-chlorophenyl)-3-(*p***-tolyl)prop-2-en-1-one (8h):** Yellow crystals (1.44 g, 90%), m.p. 130–132 °C, IR (KBr): $\tilde{v} = 3128$, 2124, 1646, 1602, 1505, 1247, 1069 cm⁻¹. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.79$ (s, 1 H, N=CH), 8.26–7.16 (m, 12 H, Ar-H), 6.68 (s, 1 H, =CH), 2.35 (s, 3 H, CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 192.6$, 158.9, 144.4, 140.9, 139.3, 138.6, 136.0, 132.7, 131.7, 131.4, 131.2, 130.0, 129.2, 128.6, 127.7, 127.1, 124.9, 118.6, 21.4 ppm. C₂₃H₁₇CIN₄O (400.87): calcd. C 68.91, H 4.27, N 13.98; found C 69.14, H 4.16, N 14.11.

2-(Azidobenzylideneamino)-1-(4-chlorophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (8i): Yellow crystals (1.43 g, 86%), m.p. 112– 113 °C. IR (KBr): \tilde{v} = 3130, 2126, 1647, 1582, 1279, 1069 cm⁻¹. ¹H NMR (600 MHz, CDCl₃): δ = 8.81 (s, 1 H, N=CH), 8.27–6.89 (m, 12 H, Ar-H), 6.70 (s, 1 H, =CH), 3.82 (s, 3 H, OCH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 192.6, 160.3, 158.9, 143.3, 140.9, 138.4, 136.3, 133.3, 132.7, 131.1, 130.6, 128.5, 127.6, 127.3, 127.2, 124.9, 118.6, 114.0, 55.2 ppm. C₂₃H₁₇ClN₄O₂ (416.87): calcd. C 66.27, H 4.11, N 13.44; found C 66.39, H 4.28, N 13.66.

2-(Azidobenzylideneamino)-1-(4-chlorophenyl)-3-[4-(trifluoromethyl)phenyl]prop-2-en-1-one (8j): Yellow crystals (1.49 g, 82%), m.p. 174–176 °C. IR (KBr): $\tilde{v} = 3116, 2125, 1647, 1585, 1328, 1278,$ 1069 cm^{-1.} ¹H NMR (600 MHz, CDCl₃): $\delta = 8.77$ (s, 1 H, N=CH), 8.22–7.22 (m, 12 H, Ar-H), 6.64 (s, 1 H, =CH) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 192.6, 159.5, 146.8, 141.3, 139.3, 137.9,$ 135.2, 133.3, 131.4, 131.2, 129.9, 128.8, 127.7, 126.7, 126.4, 125.2, 125.1, 125.0, 124.9, 118.8, 118.7 ppm. C₂₃H₁₄ClF₃N₄O (454.84): calcd. C 60.74, H 3.10, N 12.32; found C 60.49, H 3.28, N 12.47.

General Procedure for Preparation of 1,2,4-Triazino[2,3-b]indazoles 12: A solution of triphenylphosphane (1.5 mmol, 0.39 g) in dry CH_2Cl_2 (10 mL) was added dropwise under nitrogen to a wellstirred solution of azides 8 (1.5 mmol) in CH_2Cl_2 (10 mL) at 0 °C. After the stirring was continued for 2 h, the mixture was slowly warmed to room temp. while the stirring was continued for 2 h. The solvent was evaporated under reduced pressure, and the residue was chromatographed on a silica gel column using petroleum ether and ether (10:1) as eluent to give 1,2,4-triazino[2,3-b]indazoles 12 as yellow solids.

2-Benzyl-3-phenyl-1,2,4-triazino[2,3-*b***]indazole (12a):** Yellow crystals (0.46 g, 91%); m.p.168–169 °C. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.37-7.02$ (m, 14 H, Ar-H), 4.40 (s, 2 H, CH₂) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 150.9$, 148.9, 147.4, 137.1, 135.8, 134.3, 130.0, 129.8, 129.4, 128.7, 126.5, 128.4, 128.3, 126.7, 122.5, 120.6, 117.3, 112.3, 41.3 ppm. MS: *m/z* (%) = 336 (100) [M⁺], 204 (39), 102 (26), 91 (32), 77 (18). C₂₂H₁₆N₄ (336.40): calcd. C 78.55, H 4.79, N 16.66; found C 78.64, H 4.68, N 16.69.

2-(4-Chlorobenzyl)-3-phenyl-1,2,4-triazino[2,3-*b***]indazole (12b): Yellow crystals (0.49 g, 90%); m.p. 141–142 °C. ¹H NMR (600 MHz, CDCl₃): \delta = 8.34–6.94 (m, 13 H, Ar-H), 4.35 (s, 2 H, CH₂) ppm. ¹³C NMR (150 MHz, CDCl₃): \delta = 150.7, 148.9, 146.7, 135.7, 135.6, 134.2, 132.6, 130.1, 129.9, 129.3, 128.6, 125.5, 122.6, 120.6, 117.3, 112.3, 40.6 ppm. MS:** *m***/***z* **(%) = 370 (100) [M⁺], 204 (36), 125 (45), 102 (32), 88 (17). C₂₂H₁₅ClN₄ (370.84): calcd. C 71.25, H 4.08, N 15.11; found C 71.54, H 3.94, N 15.23.**

2-(4-Fluorobenzyl)-3-phenyl-1,2,4-triazino[2,3-*b***]indazole (12c): Yellow crystals (0.45 g, 84%); m.p. 141–142 °C. ¹H NMR (600 MHz, CDCl₃): \delta = 8.36–6.87 (m, 13 H, Ar-H), 4.36 (s, 2 H, CH₂) ppm. ¹³C NMR (150 MHz, CDCl₃): \delta = 162.4, 160.8, 150.7, 148.9, 147.1, 135.7, 134.2, 132.7, 130.3, 130.0, 129.8, 129.3, 128.6, 122.5, 120.5, 117.2, 115.3, 115.2, 112.3, 40.5 ppm. MS:** *m***/***z* **(%) = 354 (100) [M⁺], 222 (40), 109 (52), 102 (21), 88 (9). C₂₂H₁₅FN₄ (354.39): calcd. C 74.56, H 4.27, N 15.81; found C 74.42, H 4.38, N 15.53.**

2-(4-Methylbenzyl)-3-phenyl-1,2,4-triazino[2,3-b]indazole (12d): Yellow crystals (0.45 g, 86%); m.p. 175–177 °C. ¹H NMR (600 MHz, CDCl₃): δ = 8.37–6.91 (m, 13 H, Ar-H), 4.35 (s, 2 H, CH₂), 2.28 (s, 3 H, CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 150.9, 148.9, 147.7, 136.3, 135.9, 134.4, 134.1, 130.0, 129.7, 129.4, 129.2, 128.6, 128.5, 122.4, 120.7, 120.6, 119.5, 117.3, 117.2, 112.3, 40.8, 20.9 ppm. MS: *m*/*z* (%) = 350 (100) [M⁺], 218 (11), 204 (17), 105 (18), 102 (9). C₂₃H₁₈N₄ (350.42): calcd. C 78.83, H 5.18, N 15.99; found C 78.91, H 5.08, N 15.63.

2-Benzyl-3-(4-chlorophenyl)-1,2,4-triazino[2,3-*b***]indazole (12e): Yellow crystals (0.49 g, 89%); m.p. 145–147 °C. ¹H NMR (600 MHz, CDCl₃): \delta = 8.37–7.03 (m, 13 H, Ar-H), 4.38 (s, 2 H, CH₂) ppm. ¹³C NMR (150 MHz, CDCl₃): \delta = 149.8, 149.0, 146.9, 137.0, 136.2, 135.8, 132.7, 130.7, 130.2, 128.7, 128.6, 126.8, 122.7, 120.6, 117.3,**

112.3, 41.3 ppm. MS: m/z (%) = 370 (100) [M⁺], 204 (58), 102 (60), 91 (89), 77 (30). C₂₂H₁₅ClN₄ (370.84): calcd. C 71.25, H 4.08, N 15.11; found C 71.32, H 4.03, N 15.39.

2-(4-Chlorobenzyl)-3-(4-chlorophenyl)-1,2,4-triazino[2,3-*b***]indazole (12f): Yellow crystals (0.52 g, 86%); m.p. 142–144 °C. ¹H NMR (600 MHz, CDCl₃): \delta = 8.35–6.97 (m, 12 H, Ar-H), 4.34 (s, 2 H, CH₂) ppm. ¹³C NMR (150 MHz, CDCl₃): \delta = 149.5, 149.0, 146.2, 136.3, 135.8, 135.4, 132.7, 132.6, 130.6, 130.2, 130.0, 128.9, 128.7, 122.8, 120.6, 117.3, 112.2, 40.6 ppm. MS:** *m***/***z* **(%) = 404 (100) [M⁺], 238 (19), 204 (32), 125 (64), 102 (57), 88 (19). C₂₂H₁₄Cl₂N₄ (405.29): calcd. C 65.20, H 3.48, N 13.82; found C 65.37, H 3.53, N 13.99.**

3-(4-Chlorophenyl)-2-(4-fluorobenzyl)-1,2,4-triazino[2,3-*b***]indazole (12g): Yellow crystals (0.51 g, 88%); m.p. 177–178 °C. ¹H NMR (600 MHz, CDCl₃): \delta = 8.36–6.90 (m, 12 H, Ar-H), 4.35 (s, 2 H, CH₂) ppm. ¹³C NMR (150 MHz, CDCl₃): \delta = 162.5, 160.8, 149.6, 149.0, 146.6, 136.2, 135.8, 132.6, 132.5, 130.6, 130.2, 128.9, 122.7, 120.6, 117.2, 115.5, 115.3, 112.2, 40.4 ppm. MS:** *m***/***z* **(%) = 388 (100) [M⁺], 222 (30), 109 (43), 102 (11). C₂₂H₁₄ClFN₄ (388.83): calcd. C 67.96, H 3.63, N 14.41; found C 68.07, H 3.69, N 14.38.**

3-(4-Chlorophenyl)-2-(4-methylbenzyl)-1,2,4-triazino[2,3-*b***]indazole (12h): Yellow crystals (0.50 g, 87%); m.p. 170–171 °C. ¹H NMR (600 MHz, CDCl₃): \delta = 8.37–6.92 (m, 12 H, Ar-H), 4.33 (s, 2 H, CH₂), 2.29 (s, 3 H, CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): \delta = 149.7, 148.9, 147.1, 136.4, 136.1, 135.8, 133.9, 132.8, 130.7, 130.1, 129.3, 128.8, 128.5, 122.6, 120.6, 117.2, 112.2, 40.8, 20.9 ppm. MS:** *m***/***z* **(%) = 384 (100) [M⁺], 218 (20), 105 (34), 102 (23). C₂₃H₁₇ClN₄ (384.87): calcd. C 71.78, H 4.45, N 14.56; found C 71.59, H 4.39, N 14.53.**

3-(4-Chlorophenyl)-2-(4-methoxybenzyl)-1,2,4-triazino[2,3-*b***]indazole (12i): Yellow crystals (0.53 g, 89%); m.p. 150–152 °C. ¹H NMR (600 MHz, CDCl₃): \delta = 8.37–6.75 (m, 12 H, Ar-H), 4.31 (s, 2 H, CH₂), 3.76 (s, 3 H, OCH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): \delta = 158.4, 149.8, 149.0, 147.3, 136.1, 135.8, 132.8, 130.7, 130.1, 129.7, 128.9, 128.8, 122.6, 120.6, 117.2, 114.0, 112.3, 55.2, 40.4 ppm. MS:** *mlz* **(%) = 400 (100) [M⁺], 121 (41), 102 (17), 96 (4). C₂₃H₁₇CIN₄O (400.87): calcd. C 68.91, H 4.27, N 13.98; found C 68.74, H 4.12, N 14.24.**

3-(4-Chlorophenyl)-2-[4-(trifluoromethyl)benzyl]-1,2,4-triazino-[2,3-*b***]indazole (12j):** Yellow crystals (0.59 g, 90%); m.p. 176– 177 °C. ¹H NMR (600 MHz, CDCl₃): δ = 8.33–7.18 (m, 12 H, Ar-H), 4.43 (s, 2 H, CH₂) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 149.4. 148.9, 145.6, 141.0, 136.3, 135.7, 132.4, 130.6, 130.2, 129.1, 128.9, 128.7, 125.4, 124.8, 123.0, 122.7, 120.5, 117.1, 112.1, 40.9 ppm. MS: *m*/*z* (%) = 438 (100) [M⁺], 272 (27), 159 (56), 102 (67), 88 (53), 75 (22). C₂₃H₁₄ClF₃N₄ (438.84): calcd. C 62.95, H 3.22, N 12.77; found C 63.02, H 3.34, N 12.59.

General Procedure for Preparation of 3*H*-1,4-Benzodiazepines 14: To a well-stirred solution of triphenylphosphane (0.39 g, 1.5 mmol) in dry toluene (10 mL) at 80 °C, was added dropwise a solution of azides 8 (1.5 mmol) in toluene (5 mL). After the stirring was continued for 8 h at 80 °C, the solvent was evaporated under reduced pressure. The obtained residue was chromatographed on a silica gel column using petroleum ether and ether (7:1) as eluent to give 3*H*-1,4-benzodiazepines 14 as yellow solids.

3-Benzylidene-2-phenyl-3*H***-1,4-benzodiazepine (14a):** Yellow crystals (0.42 g, 91%), m.p. 170–172 °C. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.55$ (s, 1 H, N = CH), 8.24–7.20 (m, 14 H, Ar-H), 5.80 (s, 1 H, =CH) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 162.0$, 160.7, 160.6, 148.8, 140.2, 137.3, 135.3, 131.3, 131.2, 130.0, 129.9, 129.5, 128.8, 128.5, 128.2, 127.4, 127.2, 125.0, 118.0 ppm. MS: *m*/*z* (%) =

308 (100) [M⁺], 231 (45), 192 (25), 165 (84), 89 (11). $C_{22}H_{16}N_2$ (308.38): calcd. C 85.69, H 5.23, N 9.08; found C 85.75, H 5.28, N 9.26.

3-(4-Chlorobenzylidene)-2-phenyl-3*H***-1,4-benzodiazepine (14b):** Yellow crystals (0.46 g, 90%), m.p. 199–201 °C. ¹H NMR (600 MHz, CDCl₃): δ = 8.54 (s, 1 H, N=CH), 8.21–7.26 (m, 13 H, Ar-H), 5.75 (s, 1 H, =CH) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 162.3, 160.5, 148.8, 139.6, 137.4, 137.1, 132.5, 131.2, 131.1, 129.9, 129.5, 129.0, 128.9, 128.7, 128.4, 127.5, 125.0, 124.9, 118.2, 118.1 ppm. MS: *m*/*z* (%) = 342 (75) [M⁺], 231 (45), 192 (17), 165 (100), 89 (11). C₂₂H₁₅ClN₂ (342.83): calcd. C 77.08, H 4.41, N 8.17; found C 77.31, H 4.29, N 8.23.

3-(4-Fluorobenzylidene)-2-phenyl-3*H***-1,4-benzodiazepine (14c):** Yellow crystals (0.41 g, 84%), m.p. 166–167 °C. ¹H NMR (600 MHz, CDCl₃): δ = 8.54 (s, 1 H, N=CH), 8.22–6.98 (m, 13 H, Ar-H), 5.77 (s, 1 H, =CH) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 162.7, 161.9, 161.1, 160.9, 148.7, 139.8, 137.3, 131.4, 131.3, 131.2, 130.0, 129.8, 128.8, 128.5, 127.4, 125.1, 125.0, 117.0, 116.9, 115.2, 115.1 ppm. MS: *m*/*z* (%) = 326 (100) [M⁺], 231 (42), 192 (29), 165 (95), 89 (13). C₂₂H₁₅FN₂ (326.37): calcd. C 80.96, H 4.63, N 8.58; found C 80.77, H 4.88, N 8.74.

3-(4-Methylbenzylidene)-2-phenyl-*3H***-1,4-benzodiazepine (14d):** Yellow crystals (0.42 g, 86%), m.p. 136–138 °C. ¹H NMR (600 MHz, CDCl₃): δ = 8.54 (s, 1 H, N=CH), 8.23–7.11 (m, 13 H, Ar-H), 5.78 (s, 1 H, =CH), 2.32 (s, 3 H, CH₃) ppm. ¹³C NMR (CDCl₃, 150 MHz): δ = 162.2, 160.6, 160.5, 148.8, 139.6, 137.4, 137.0, 132.4, 131.2, 131.1, 129.9, 129.5, 128.9, 128.7, 128.4, 127.5, 124.9, 118.1, 21.2 ppm. MS: *m*/*z* (%) = 322 (100) [M⁺], 231 (44), 192 (22), 165 (76), 130 (28), 89 (12). C₂₃H₁₈N₂ (322.41): calcd. C 85.68, H 5.63, N 8.69; found C 85.83, H 5.74, N 8.79.

3-Benzylidene-2-(4-chlorophenyl)-*3H***-1,4-benzodiazepine (14e):** Yellow crystals (0.46 g, 89%), m.p. 146–148 °C. ¹H NMR (600 MHz, CDCl₃): δ = 8.55 (s, 1 H, N=CH), 8.18–7.21 (m, 13 H, Ar-H), 5.78 (s, 1 H, =CH) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 160.8, 160.7, 148.6, 139.8, 137.4, 135.8, 135.1, 131.4, 131.2, 130.1, 129.6, 128.8, 128.7, 128.3, 127.5, 127.4, 125.3, 118.3, 118.2 ppm. MS: *m/z* (%) = 342 (100) [M⁺], 265 (43), 199 (94), 152 (44), 89 (54). C₂₂H₁₅ClN₂ (342.83): calcd. C 77.08, H 4.41, N 8.17; found C 76.81, H 4.68, N 8.25.

3-(4-Chlorobenzylidene)-2-(4-chlorophenyl)-3*H***-1,4-benzodiazepine** (14f): Yellow crystals (0.49 g, 86%), m.p. 180–181 °C. ¹H NMR (600 MHz, CDCl₃): δ = 8.54 (s, 1 H, N=CH), 8.15–7.26 (m, 12 H, Ar-H), 5.73 (s, 1 H, =CH) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 160.9, 160.4, 148.5, 140.2, 137.5, 135.6, 133.6, 133.5, 133.1, 131.6, 131.1, 130.7, 130.1, 128.9, 128.8, 128.4, 127.3, 125.4, 117.0 ppm. MS: *m*/*z* (%) = 376 (100) [M⁺], 265 (65), 199 (100), 152 (21), 89 (26). C₂₂H₁₄Cl₂N₂ (377.27): calcd. C 70.04, H 3.74, N 7.43; found C 69.89, H 3.88, N 7.64.

2-(4-Chlorophenyl)-3-(4-fluorobenzylidene)-3*H***-1,4-benzodiazepine (14g): Yellow crystals (0.48 g, 88%), m.p. 150–152 °C. ¹H NMR (600 MHz, CDCl₃): \delta = 8.54 (s, 1 H, N=CH), 8.16–6.99 (m, 12 H, Ar-H), 5.75 (s, 1 H, =CH) ppm. ¹³C NMR (150 MHz, CDCl₃): \delta = 162.8, 161.2, 161.1, 161.0, 160.6, 148.5, 139.4, 137.5, 135.8, 131.5, 131.3, 131.2, 131.1, 130.1, 128.9, 128.7, 127.4, 125.3, 117.3, 115.3, 115.2 ppm. MS:** *m***/***z* **(%) = 360 (100) [M⁺], 265 (44), 199 (78), 134 (13), 102 (6). C₂₂H₁₄CIFN₂ (360.82): calcd. C 73.23, H 3.91, N 7.76; found C 73.36, H 4.07, N 7.92.**

2-(4-Chlorophenyl)-3-(4-methylbenzylidene)-3*H***-1,4-benzodiazepine** (14h): Yellow crystals (0.46 g, 87%), m.p. 189–191 °C. ¹H NMR (600 MHz, CDCl₃): δ = 8.53 (s, 1 H, N=CH), 8.16–7.11 (m, 12 H, Ar-H), 5.76 (s, 1 H, =CH), 2.32 (s, 3 H, CH3) ppm. ¹³C NMR

FULL PAPER

(150 MHz, CDCl₃): δ = 161.0, 160.7, 160.6, 148.6, 139.1, 137.3, 135.9, 132.3, 131.3, 131.1, 130.0, 129.5, 129.0, 128.8, 128.6, 127.5, 125.2, 118.4, 21.2 ppm. MS: *m/z* (%) = 356 (100) [M⁺], 264 (43), 199 (54), 164 (17), 130 (62), 89 (18). C₂₃H₁₇ClN₂ (356.85): calcd. C 77.41, H 4.80, N 7.85; found C 77.69, H 4.98, N 7.93.

2-(4-Chlorophenyl)-3-(4-methoxybenzylidene)-3*H***-1,4-benzodiazepine (14i):** Yellow crystals (0.46 g, 82%), m.p. 169–171 °C. ¹H NMR (600 MHz, CDCl₃): δ = 8.52 (s, 1 H, N=CH), 6.85–8.16 (m, 12 H, Ar-H), 5.76 (s, 1 H, =CH), 3.79 (s, 3 H, CH₃) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 161.3, 160.8, 159.0, 148.7, 138.3, 137.3, 136.1, 131.3, 131.1, 131.0, 130.0, 128.8, 128.6, 127.9, 127.6, 125.2, 118.4, 113.7, 55.2 ppm. MS: *m*/*z* (%) = 372 (69) [M⁺], 265 (16), 146 (100), 91 (4). C₂₃H₁₇ClN₂O (372.85): calcd. C 74.09, H 4.60, N 7.51; found C 74.31, H 4.77, N 7.46.

2-(4-Chlorophenyl)-3-[4-(trifluoromethyl)benzylidene]-*3H***-1,4-benzo-diazepine (14j):** Yellow crystals (0.55 g, 90%), m.p. 176–178 °C. ¹H NMR (600 MHz, CDCl₃): δ = 8.56 (s, 1 H, N=CH), 8.17–7.26 (m, 12 H, Ar-H), 5.78 (s, 1 H, =CH) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 161.0, 159.8, 148.4, 141.5, 138.6, 137.7, 135.4, 131.7, 131.1, 130.1, 129.6, 129.0, 128.8, 127.2, 125.5, 125.1, 116.4 ppm. MS: *mlz* (%) = 410 (58) [M⁺], 265 (50), 199 (100), 164 (22), 89 (30). C₂₃H₁₄ClF₃N₂ (410.82): calcd. C 67.24, H 3.43, N 6.82; found C 67.53, H 3.56, N 6.98.

Crystallographic data for the structures of **12i** and **14j** reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-823549 (for **12i**) and CCDC-823179 (for **14j**). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Supporting Information (see footnote on the first page of this article): Copies of ¹H and ¹³C NMR spectra of 8a–j, 12a–j, and 14a–j.

Acknowledgments

We gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (NSFC) (grant number 21032001), the Program for Changjiang Scholars and Innovative Research Team in University (grant number IRT0953), and research funds from CCNU for basic research and operations of MOE (grant number 10020176).

- a) L. F. Tietze, *Chem. Rev.* **1996**, *96*, 115; b) L. F. Tietze, G. Brasche, K. M. Gericke, *Domino Reactions in Organic Synthesis*, Wiley-VCH, Weinheim, Germany, **2006**.
- [2] a) H. Cerecetto, A. Gerpe, M. Gonzalez, V. J. Aran, C. Ochoa de Ocariz, *Mini-Rev. Med. Chem.* 2005, *5*, 869–878; b)
 A. Schmidt, A. Beutler, B. Snovvdovych, *Eur. J. Org. Chem.* 2008, 4073–4095.
- [3] J. D. Rodgers, B. L. Johnson, H. Wang, R. A. Greenberg, S. EricksonViitanen, R. M. Klabe, B. C. Cordova, M. M. Rayner, G. N. Lam, C.-H. Chang, *Bioorg. Med. Chem. Lett.* 1996, 6, 2919–2924.
- [4] F.-Y. Lee, J.-C. Lien, L.-J. Huang, T.-M. Huang, S.-C. Tsai, C.-M. Teng, C.-C. Wu, F. C. Cheng, S.-C. Kuo, J. Med. Chem. 2001, 44, 3746–3749.

- [5] T. Yakaiah, B. P. V. Lingaiah, B. Narsaiah, B. Shireesha, B. A. Kumar, S. Gururaj, T. Parthasarathy, B. Sridhar, *Bioorg. Med. Chem. Lett.* 2007, 17, 3445–3453.
- [6] T. Yakaiah, B. P. V. Lingaiah, B. Narsaiah, K. P. Kumar, U. S. N. Murthy, *Eur. J. Med. Chem.* 2008, 43, 341–347.
- [7] M. Minu, A. Thangadurai, S. R. Wakode, S. S. Agrawal, B. Narasimhan, *Bioorg. Med. Chem. Lett.* 2009, 19, 2960–2964.
- [8] J. S. Park, K. A. Yu, Y. S. Yoon, M. R. Han, T. H. Kang, S. Kim, N. J. Kim, H. Yun, Y. G. Suh, *Drugs Future* 2007, 32, 121–123.
- [9] J. S. Park, K. A. Yu, T. H. Kang, S. Kim, Y. G. Suh, *Bioorg. Med. Chem. Lett.* 2007, 17, 3486–3490.
- [10] a) N. Halland, M. Nazaré, O. R'kyek, J. Alonso, M. Urmann, A. Lindenschmidt, *Angew. Chem.* 2009, *121*, 7011; *Angew. Chem. Int. Ed.* 2009, *48*, 6879–6882; b) P. Molina, A. Arques, M. V. Vinader, *J. Org. Chem.* 1990, *55*, 4724–4731; c) P. Molina, C. Conesa, A. Alías, A. Arques, M. D. Velasco, A. L. Llamas-Saiz, C. Foces-Foces, *Tetrahedron* 1993, *49*, 7599–7612; d) P. Molina, A. Arques, A. Alías, M. V. Vinader, M. C. Foces-Foces, F. Hernández-Cano, *Tetrahedron* 1992, *48*, 3091–3110.
- [11] For some recent reviews on the Staudinger/aza-Wittig methodology, see: a) F. Palacios, C. Alonso, D. Aparicio, G. Rubiales, J. M. de los Santos, *Tetrahedron* 2007, 63, 523–575; b) S. Braese, C. Gil, K. Knepper, V. Zimmermann, *Angew. Chem. Int. Ed.* 2005, 44, 5138–5240; c) P. M. Fresneda, P. Molina, *Synlett* 2004, 1–17; d) S. Eguchi, *Top. Heterocycl. Chem.* 2006, 6, 113–156.
- [12] For some recent applications of the aza-Wittig reaction in heterocyclic synthesis, see: a) S. P. Marsden, A. E. McGonagle, B. McKeever-Abbas, Org. Lett. 2008, 10, 2589–2591; b) M. Alajarin, B. Bonillo, M.-M. Ortin, P. Sanchez-Andrada, A. Vidal, R.-A. Orenes, Org. Biomol. Chem. 2010, 8, 4690–4700; c) P. Molina, A. Tárraga, M. Alfonso, Eur. J. Org. Chem. 2011, 4505–4518; d) U. A. Kshirsagar, V. G. Puranik, N. P. Argade, J. Org. Chem. 2010, 75, 2702–2705; e) J.-Y. Lu, M. Riedrich, M. Mikyna, H.-D. Arndt, Angew. Chem. 2009, 121, 8281; Angew. Chem. Int. Ed. 2009, 48, 8137–8140; f) P. Lecinska, N. Corres, D. Moreno, M. Garcia-Valverde, S. Marcaccini, T. Torroba, Tetrahedron 2010, 66, 6783–6788.
- [13] a) P. He, Y. B. Nie, J. Wu, M. W. Ding, Org. Biomol. Chem.
 2011, 9, 1429–1436; b) P. He, J. Wu, Y. B. Nie, M. W. Ding, Eur. J. Org. Chem. 2010, 1088–1095; c) W. J. Li, S. Liu, P. He, M. W. Ding, Tetrahedron 2010, 66, 8151–8159; d) N. Y. Huang, M. G. Liu, M. W. Ding, J. Org. Chem. 2009, 74, 6874–6877; e) P. He, J. Wu, Y. B. Nie, M. W. Ding, Tetrahedron 2009, 65, 8563–8570; f) N. Y. Huang, Y. J. Liang, M. W. Ding, L. W. Fu, H. W. He, Bioorg. Med. Chem. Lett. 2009, 19, 831–833.
- [14] a) D. Knittel, H. Hemetsberger, H. Weidmann, *Monatsh. Chem.* **1970**, *101*, 157–160; b) H. Hemetsberger, D. Knittel, H. Weidmann, *Monatsh. Chem.* **1969**, *100*, 1599–1603.
- [15] a) D. A. Horton, G. T. Bourne, M. L. Smythe, *Chem. Rev.* **2003**, 103, 893–930; b) D. Hadjipavlou-Litina, R. Garg, C. Hansch, *Chem. Rev.* **2004**, 104, 3751–3794.
- [16] J. Cossrow, B. Guan, A. Ishchenko, J. H. Jones, G. Kumaravel, A. Lugovskoy, H. Peng, N. Powell, B. C. Raimundo, H. Tanaka, J. Vessels, T. Wynn, Z. Xin, US Patent 20090005359.
- [17] K. Ohmoto, K. Hisaichi, M. Okuma, M. Tanaka, N. Kawada, US Patent 20070197510.
- [18] a) S. Eguchi, K. Yamashita, Y. Matsushita, A. Kakehi, *J. Org. Chem.* **1995**, *60*, 4006–4012; b) P. Molina, I. Diaz, A. Tarraga, *Tetrahedron* **1995**, *51*, 5617–5630; c) T. Sugimori, T. Okawa, S. Eguchi, E. Yashima, Y. Okamoto, *Tetrahedron* **1998**, *54*, 7997–8008; d) T. Okawa, T. Sugimori, S. Eguchi, A. Kakehi, *Heterocycles* **1998**, *47*, 375–382.

Received: May 20, 2011 Published Online: October 10, 2011