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Abstract: Starting from easily available enantiopure pyran deriva-
tives we prepared bicyclic g-lactam 6, azide 10, and alkyne 18 using
simple procedures. These compounds were crucial intermediates
for the synthesis of g-amino acid 8 and dipeptide 9 as well as
triazoles 13, 14, and 19, all containing a carbohydrate-mimicking
aminopyran moiety. The generation of triazoles was particularly
efficient by use of a recently reported modification of the click
reaction.
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oxidations, 1,3-dipolar cycloadditions

Due to their importance as building blocks, synthetic
targets and biological tools, and their potential as drug
targets, research toward facile and rapid access to carbo-
hydrate and peptide derivatives has taken a crucial role in
organic synthesis.1 We previously reported the stereo-
divergent synthesis of enantiopure 1,2-oxazines such as 1
(Scheme 1) from the [3+3] cyclization of lithiated alkoxy-
allenes and glyceraldehyde-derived nitrones.2 It was
further demonstrated that 4-(2-trimethylsilyl)ethoxy-sub-
stituted 1,2-oxazines undergo Lewis acid mediated re-
arrangements, followed by fragmentation to generate
bicyclic ketones 2 which can be available in gram quan-
tities. The N–O bond cleavage of these compounds leads
to diverse and highly functionalized enantiomerically
pure aminopyrans which are regarded as carbohydrate
mimetics 3.3 Several changes are possible at various
positions on either compound 2 or 3.

Scheme 1 Synthesis of enantiopure carbohydrate mimetics 3 from
3,6-dihydro-2H-1,2-oxazines 1

Herein we report a series of simple modifications of our
building blocks that allow rapid access to a variety of
carbohydrate and peptide mimetics. This methodology is

versatile and allows us to generate a wide range of highly
functionalized and diverse compounds with potential
biological activity.

Bicyclic pyran derivative 4a – obtained via the reduction
of the corresponding ketone 2 with sodium borohydride –
upon hydrogenation in the presence of Pd on charcoal, led
to enantiopure aminopolyol 7 in 80% yield (Scheme 2).3,4

Similarly, hydrogenation of 4b5 with one equivalent of
Boc2O present for in situ protection of the amino group,
afforded aminopyran derivative 5 with three different
protecting groups. Using these simple methods various
substituents or functionalities can be placed at differing
positions of the compounds as desired. The substrates are
therefore excellent precursors for the synthesis of novel
enantiopure amino acids with a carbohydrate-like back-
bone.1b

We were interested in the oxidation of the remaining
free primary hydroxyl group of 5 to the corresponding
carboxylic acid as a precursor for peptide coupling with
proteinogenic amino acids. All our efforts to perform this
oxidation so far led to g-lactam 6 which is apparently
formed upon in situ cyclization of the Boc-protected
amine with the carbonyl moiety formed during initial
oxidation of the primary alcohol to an aldehyde
(Scheme 2). After screening several reaction conditions,
chromium-mediated oxidation resulted in 79% yield of
g-lactam derivative 6.6

Scheme 2 Synthesis of g-lactam 6 by oxidation of pyran 
derivative 5
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Hydrolysis of lactam 6 with LiOH in THF and water
smoothly furnished g-amino acid derivative 8 in 87%
yield. Carboxylic acid 8 could then be coupled with L-
alanine methyl ester hydrochloride in the presence of
benzotriazol-1-yloxytris(dimethylamino)phosphonium
hexafluorophosphate7 (BOP) as an activating agent, using
conditions previously optimized in our group,8 yielding
the desired pyrano-substituted amino acid 9 in 57%
(Scheme 3). When N,N,N¢,N¢-tetramethylfluoroformami-
dinium hexafluorophosphate (TFFH) was used as the
activating agent, under the same reaction conditions, 8
was cyclized to obtain bicyclic lactam 6 as the only ob-
served product.

Scheme 3 Synthesis of pyrano-substituted amino ester 9 from 
N-Boc-protected amino acid derivative 8

As a second new application of enantiopure carbohydrate
mimetics we wanted to apply the Sharpless–Meldal
variation of the 1,3-dipolar cycloaddition (Huisgen reac-
tion) of an azide with an alkyne providing triazole-linked
moieties.9 Hence, secondary azide 10 was prepared upon
treatment of aminopolyol 7 in the presence of copper
sulfate and nonafluorobutanesulfonyl azide10 (Nf-N3)
followed by in situ acetylation of the hydroxyl groups
with acetic anhydride (Scheme 4).11,12

Azide 10 proved to be highly versatile in the Cu(I)-cata-
lyzed [3+2] cycloaddition reactions with alkynes. After
extensive screening, the best reaction conditions were
found to be in the presence of CuI and tris(benzyl-
triazolylmethyl)amine (TBTA)13 in acetonitrile at 40 °C.14

Azide 10 was coupled with alkyne 11 to give the desired
triazole 13 in 93% yield. Similarly, in the presence of
phenyl acetylene 12, cycloadduct 14 was obtained in
excellent yield (Scheme 4).15 The use of aqueous media
afforded considerably lower conversion, presumably due
to poor substrate solubility.

Scheme 5 outlines the preparation of alkyne derivative 18.
The known alcohol 153 was oxidized with Dess–Martin
periodinane (DMP) to afford aldehyde 16.16 After treat-

ment of the reaction mixture with sodium thiosulfate to
quench all DMP byproducts, the crude aldehyde was
directly converted into the dibromo-alkene 17 upon
reaction with carbon tetrabromide and triphenylphosphine
(66% yield over two steps).17

Direct lithiation of 17 with n-butyllithium gave the corre-
sponding alkyne in only 45% yield along with a series of
unidentifiable byproducts. In order to avoid possible nu-
cleophilic attack of the reagent on the carbonyl group, the
ketone was first reduced to the secondary alcohol with so-
dium borohydride (95% yield). Alkyne formation pro-
ceeded smoothly in the presence of n-butyllithium in THF
at –78 °C to give the desired product in 85% yield
(Scheme 5). Protection of the alcohol was therefore not
necessary, however, 3.5 equivalents of the base instead of
2.5 equivalents were used.

Scheme 5 Conversion of enantiopure bicyclic 1,2-oxazinone 
derivative 15 into alkynyl-substituted product 18
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With alkyne 18 and azide 10 in hand, the optimized
cycloaddition reaction in the presence of CuI and TBTA
as shown in Scheme 4 proceeded smoothly to give the
triazole-linked glycoconjugate 19 in excellent yield of
90% (Scheme 6).18 This result is remarkable considering
the high sterical congestion of both substrates.

Since selective deprotection and/or N–O bond cleavage
will allow connection to other substrates by various
methods, compounds such as 19 are versatile intermedi-
ates for the construction of oligosaccharide mimetics.
The 1,2-oxazine-derived aminopyran building blocks
presented in this communication will allow us to synthe-
size a wide range of conjugates with carbohydrates or
carbohydrate mimetics as well as peptides with potential
biological activity.19

Scheme 6 Synthesis of triazole-linked protected disaccharide 
mimetic 19
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