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Abstract: A new zinc(II) mediated sequential aldol reaction is de-
scribed for the diastereoselective one-pot synthesis of tetrahydropy-
ran-2,4-diols. The dependence of the yield on the ratio Zn2+/enolate
proposes that zinc(II) polyenolate and ate complexes may be in-
volved.
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Aldolases are attractive enzymes for synthetic chemistry
as they catalyze a variety of C–C bond formation and
cleavage reactions, most often with exquisite stereochem-
ical control. Two categories are known: class I aldolases
use Schiff base formation with an active-site lysine
whereas class II enzymes require a divalent metal ion, in
particular zinc. While both protocols have been used fre-
quently for monoaldol formation, the deoxyribose phos-
phate aldolase (DERA, class I aldolase, see Equation)1

and its combination with RAMA2 are able to even cata-
lyze a sequential aldol-aldol addition by reacting two
equivalents of an enolizable carbonyl compound with an
aldehyde as electrophile to afford tetrahydropyran-2,4-di-
ols that are a part of various important natural products.3

Equation

It is well known that in class II aldolases4 a zinc ion plays
a pivotal role to activate the deprotonation of the carbonyl
components and to bind the enol.5 This simple picture and
our recent success with titanium bisenolates6 suggested to
treat in a biomimetic fashion two equivalents of an enolate
with an appropriate electrophile in the presence of Zn2+ as
Lewis acid, despite the fact that zinc(II) has a poor history
in aldol reactions,7,8 and that the naked Zn2+ ion makes a
poor model for zinc aldolases.9

To test our idea we prepared zinc bisenolate 4 from pro-
piophenone by deprotonation with LDA in THF and sub-
sequent reaction with 0.5 equivalents of ZnBr2. The

resultant clear solution was subsequently treated with a
stoichiometric amount of benzaldehyde (r.t., 2 h) yielding
after aqueous work-up 1a as a single diastereomer besides
2a and 3a (see Table 1 and Table 2).10

According to NMR- and X-ray investigations11 all large
substituents in 1a occupy equatorial positions with only
the hydroxyl groups being placed in axial positions.12

Hence, in this reaction 5 new stereogenic centers are gen-
erated in a highly diastereoselective manner giving rise to
only 1 out of 16 possible stereoisomers.

RCHO
R

OOHOH
O

OH

OHR
DERA

2 H3CCHO

Table 1 Reaction of various Aldehydes with Propiophenone Eno-
late in the Presence of ZnBr2

Aldehyde RCHO R Yielda of 
1a–ib [%]

Yielda of 
1a–ic [%]

a benzaldehyde H5C6- 50 75

b dimethylaminobenzal-
dehyde

4-Me2NC6H4- 37 62

c methoxybenzaldehyde 4-MeOC6H4- 44 69

d fluorobenzaldehyde 4-FC6H4- 45 82

e furfural furfuryl- 42

f cinnamaldehyde C6H5CH=CH- 10

g anthracenecarbalde-
hyde

9-C10H9- 40

h nitrobenzaldehyde 4-NO2C6H4- 20 46

i iso-butyraldehyde i-Pr 10

a Yield is based on aldehyde.
b Using one equivalent of 4.
c Using two equivalents of 4.
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To improve the yields of the domino aldol product 1a the
reaction was studied at various temperatures, i.e. 0 °C,
25 °C, 48 °C and 67 °C. While refluxing the reaction mix-
ture at 67 °C led exclusively to the formation of monoal-
dol condensation product 3a, addition of benzaldehyde at
room temperature followed by heating of the reaction
mixture at 48 °C for 2 hours provided the highest yield of
1a (50%, see Table 1). Hence, a number of additional al-
dehydes was studied using the optimized conditions
(Table 1).

A straightforward mechanistic proposal for tetrahydropy-
ran-2,4-diol formation is depicted in Scheme 1. At first, a
zinc bisenolate 4 is formed that undergoes an aldol reac-
tion with the aldehyde. The resultant zinc aldolate 5 sub-
sequently is attacked intramolecularly by the second
enolate. Finally, zinc bound tetrahydropyran-2,4-diol 7 is
afforded by intramolecular hemiacetal formation. Under
thermodynamic control all large substituents (methyl,
phenyl, R) are placed in the equatorial position.

Scheme 1

However, following the mechanism proposed in
Scheme 1 it is astounding that only yields of � 50% (with
1 equiv of ZnBr2/2 equiv of enolate) are obtained, which
led us to consider the structure of the putative zinc biseno-
late in solution. From solid state investigations on related
zinc alkoxides13 and zinc enolate14 one has to assume that,
in solution, dimeric species should prevail with THF act-
ing as additional ligand.

To investigate the role of zinc enolate aggregation we var-
ied the amount of propiophenone enolate with regard to
zinc(II) to 3:1 which increased the yield of 1a (64%;
Table 2, entry 3). Further increase of the propiophenone
enolate/zinc(II) ratio to 4:1 (entry 2), however, ensued in
a sharp decline in the yield. Moreover, the yield of 1a de-
cayed rapidly (entries 5–7) when the molar amount of al-
dehyde exceeded the amount of zinc(II). While, at first,
this finding indicates that a catalytic route cannot be real-
ized, it also makes clear that with excess aldehyde the

equilibrium is shifting from the domino product to the
monoaldol products 2a and 3a.

The combined preparative results in Table 2 are indeed in
line with a dimeric species having only one zinc biseno-
late reacting to 1. One could argue that yields � 50% at an
enolate to Zn2+ ratio of 2:1 (Table 2, entry 4) are due to in-
complete enolate formation under our conditions, in par-
ticular since doubling the amount of zinc bisenolate leads
to a sizeable increase in the yield of 1a (75%, see Table 2,
entry 1). However, three arguments can be raised against
such a hypothesis: (i) Enolate formation from propiophe-
none proved to be quantitative in trapping reactions with
trimethylsilylchloride. (ii) Doubling the amount of eno-
late while keeping the amount of Zn2+ constant led to a de-
crease in yield (36% of 1a, see Table 2, entry 2). (iii)
Keeping the enolate to Zn2+ ratio at 4:1 but now decreas-
ing its overall amount by 50% (see Table 2, entry 6) en-
tailed a sharp drop of the yield to 2%. Hence, there is no
linear correlation of yield of 1a and the amount of enolate.

Strong evidence for dimeric species emerges from the re-
sults of entries 2–4 in Table 2 as the yield changes from
50% (aldehyde:enolate:Zn2+ = 1:2:1) to 64% (1:3:1) and
to 36% (1:4:1). Such a trend is most readily understood
with structural changes of the reactive zinc(II) enolate
species; i.e. a switch from a dimeric zinc bisenolate 8 and/
or 9 (enolate:Zn2+ = 2:1) to a monomeric ate complex 10
(3:1) and finally to a zinc(II) tetrakisenolate dianion 11
(4:1) (Scheme 2). The latter species is expected to show a
reduced reactivity for the sequential aldol reaction as co-
ordination of the monoaldolate to the zinc(II) to activate
the carbonyl for the second aldol reaction is certainly im-
peded.

Overall, the mechanistic investigation shows that the yield
of 1 is coupled in a complex manner to the amount of eno-
late applied. Yields can be increased beyond those in the
standard protocol (Zn2+:enolate:aldehyde = 1:2:1) in two
ways, both of which are in accordance with dimeric zinc
species in solution: (i) Use of an enolate:Zn2+ ratio of 3:1
to operate via ate complexes, or (ii) doubling the amount
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Table 2 Varying the Ratio of Propiophenone Enolate to ZnBr2 in 
Presence of Benzaldehyde at 48 °C

Entry PhCHO 
[equiv]

Propio-
phenone 
enolate 
[equiv]

ZnBr2

[equiv]
1a
[%]

2a
[%]

3a
[%]

1 1 4 2 75 14 1

2 1 4 1 36 35 10

3 1 3 1 64 15 5

4 1 2 1 50 31 7

5 1 2 0.75 32 43 9

6 1 2 0.5 2 36 19

7 1 2 0.25 – 23 7
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of zinc bisenolate (see Table 1, right column) to make up
for one unreactive bisenolate caught up in the dimeric Zn2

species.

With regard to synthetic applications, the present ap-
proach is a good alternative to the DERA/RAMA1,2 cata-
lyzed reaction that has only a limited substrate tolerance.
Although not catalytic in nature, various aromatic and al-
iphatic aldehydes, even containing strongly coordinating
substituents and bulky groups, can be treated with zinc(II)
bisenolate to afford the highly substituted tetrahydropyr-
an-2,4-diols as one single diastereomer.

In conclusion, we have developed a new strategy using
classical, nonbiological zinc(II) chemistry to perform a
sequential double aldol reaction leading to heavily substi-
tuted tetrahydropyran-2,4-diols in a highly stereoselective
manner. Control experiments suggest that dimeric zinc(II)
species may play a pivotal role in the process.
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