

Reaction of CF3 radicals on fused silica between 320 and 530 K

N. Selamoglu, M. J. Rossi, and D. M. Golden

Citation: The Journal of Chemical Physics **84**, 2400 (1986); doi: 10.1063/1.450836 View online: http://dx.doi.org/10.1063/1.450836 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/84/4?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in

Comprehensive theoretical studies on the CF3H dissociation mechanism and the reactions of CF3H with OH and H free radicals J. Chem. Phys. **126**, 034307 (2007); 10.1063/1.2426336

Kinetics of surface reactions of CF3 radicals J. Vac. Sci. Technol. A **5**, 3351 (1987); 10.1116/1.574195

Sound propagation in fused silica below 1K AIP Conf. Proc. **31**, 261 (1976); 10.1063/1.30764

Reaction between atomic fluorine and CF3Br: Evidence for a pseudotrihalogen radical intermediate J. Chem. Phys. **59**, 3669 (1973); 10.1063/1.1680535

Reactions of CF3 Radicals with Perfluoroacetone J. Chem. Phys. **36**, 1330 (1962); 10.1063/1.1732736

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 137.189.170.231 On: Tue, 23 Dec 2014 07:14:22

Reaction of CF₃ radicals on fused silica between 320 and 530 K^{a)}

N. Selamoglu,^{b)} M. J. Rossi, and D. M. Golden Department of Chemical Kinetics, SRI International, Menlo Park, California 94025

(Received 8 October 1985; accepted 4 November 1985)

The reaction between CF₃ radicals and silicon oxide (fused silica) surface was studied in a VLP Φ flow reactor (~0.1-3 mTorr) as functions of surface temperature (320-530 K) and CF₃ concentration. The CF₃ radicals were generated from CF₃I by CO₂ laser photolysis, and the subsequent gas-phase reaction products were followed by mass spectroscopy. The surface reaction was found to yield CO, HF, CO₂, COF₂, and SiF₄. It was found that H₂O residing on the silicon oxide surface was largely responsible for the oxygen- and hydrogen-containing products, and that little etching of the SiO₂ itself occurred under these conditions. The rates for the irreversible surface loss of CF₃, and for the formation of CO were both first order with respect to [CF₃]. These were found to be temperature dependent with $E_a \simeq 4.7$ and 7.5 kcal/mol, respectively. The CF₃ surface loss rate indicates that the sticking coefficient for this radical on quartz is between 0.0014–0.017 for the temperature range of this study.

I. INTRODUCTION

In the plasma etching of semiconductor materials, it is known that neutrals as well as charged species play roles in the etching process.¹⁻³ Neutrals, such as atoms and radicals, etch the substance of interest isotropically while ion bombardment produces anisotropic etching. In general, the etching process must involve the following: chemical adsorption of the active species on the surface, rearrangement of the reactant–surface intermediate to yield etch products, and the removal of volatile etch products from the surface by desorption. Ion bombardment may assist neutral etching in various ways, such as by preparing a clean surface prior to the adsorption step, or by desorbing products from the surface, as well as possibly affecting the chemistry.

The extreme complexity of plasma systems involving atoms, radicals, ions, and electrons makes it difficult to extract fundamental mechanistic information on the process. In order to assess the importance of various neutral and ionic reactions, model experiments must be carried out under controlled conditions. Among these are studies where atoms or radicals are generated either photochemically or by a discharge, and then reacted with the surface of interest⁴⁻⁸ as well as beam studies on ion-surface interactions.9,10 The etching of silicon and silicon oxide by F atoms has been studied extensively,⁴⁻⁷ and it has been found that F atoms selectively and efficiently etch silicon. In the etching of silicon oxide, however, fluorocarbon radicals, such as CF₂ and CF₃, are expected to play an important role, according to results from plasma etching studies. The reactivities of CF2 and CF3 radicals with Si and SiO₂ have been studied under nonionic conditions where the surfaces of interest were irradiated with the same UV excimer laser beam generating the radicals.^{4,8} In these high pressure (10-500 Torr) studies, it was found that CF₂ etches SiO₂ efficiently while CF₃ has poor efficiency.

The motivation for the present study was to fill a gap between various studies ranging from complex plasma systems to ultrahigh vacuum beam studies. The purpose was to investigate the reactivity of CF_3 on a fused silica surface at pressures and radical concentrations resembling those in plasma etchers (< 10 mTorr total pressure, $10^{11}-10^{13}$ radicals cm⁻³). Unlike in beam studies of ion-surface interactions, the substrate was not intended to be a well-characterized clean surface but rather to be under conditions of "practical" interest. In this work, a CO₂ laser beam was used to generate radicals but not to irradiate the surface. The surface temperature could be varied between 25 and 300 °C.

The VLP Φ (very low-pressure photolysis) method used for this investigation is a well-established technique¹¹⁻¹³ for the kinetic study of homogeneous gas-phase reactions and is used here for the first time to study radical-surface interactions. (Variations in which radicals were generated via microwave discharge have been used in the past.¹⁴) Due to the importance of gas-wall collisions inherent in the method, it is almost always necessary to deactivate the vessel walls when studying homogeneous gas-phase processes. This disadvantage from the viewpoint of gas-phase chemistry makes it possible to study gas-surface chemistry by VLP Φ . In the latter, the vessel walls are again deactivated, but this time, the active surface of interest is placed in the vessel and exposed to the reactant. Reactants and products are monitored mass spectrometrically.

The method yields not only qualitative information on the gas-phase product spectrum but also quantitative information on reaction rates. The latter include the rate of consumption of CF_3 radicals on the silica surface and the rates of formation of products as functions of the surface temperature. These data allow the determination of CF_3 sticking coefficients on fused silica as functions of temperature.

II. EXPERIMENTAL

The VLP Φ technique utilizes a low-pressure (<10 mTorr) Knudsen flow reactor, where molecular flow condi-

^a This work was supported by the Air Force Office of Scientific Research, Contract No. F49620-83-K-0001.

^b Postdoctoral research associate.

tions are maintained. The reactor used in our measurements is shown in Fig. 1. The radical precursor CF₃I flows into the Knudsen cell where it resides for 1.7 s, before it effuses out of the exit aperture and into the mass spectrometric detection area. Decomposition to form CF_3 is effected by a CO_2 laser. The fate of the CF_3 radicals is then either to recombine, yielding C_2F_6 , or to escape from the reactor. The collision number of 1.3×10^4 with the reactor walls ensures thermalization of the CF₃ radicals before any of the above reactions take place. In the event that an active surface is present in the cell, as is the case in this study, CF₃ may also undergo gassurface reaction during the time it strikes that surface. (The collision frequency for the active surface is 600 s⁻¹.) The gas-phase products leaving the reactor are formed into an effusive molecular beam which is monitored mass spectrometrically, and the rates of the chemical reactions are obtained with respect to the known escape rate. The VLP Φ method may be carried out under steady-state or under single-pulse irradiation conditions. In this particular study, a high repetition rate (20 Hz) laser was used: since the time between pulses is shorter than the residence time or typical times for reaction (seconds), species' concentrations are maintained at close to steady-state conditions.

The processes involving CF_3 in the VLP Φ reactor are summarized in the following scheme:

$$CF_3I \xrightarrow{arr} CF_3 + I$$
, (1)

$$CF_3 + CF_3 \xrightarrow{k_*} C_2 F_6, \qquad (2)$$

$$CF_3 \rightarrow \text{escape out of reactor},$$
 (3)

$$CF_3 + S \xrightarrow{k_{\omega}}$$
 irreversible surface loss. (4)

Step (1) represents the IR-laser multiphoton decomposition forming CF_3 while (2) is the homogeneous gas-phase recombination¹⁵ forming C_2F_6 . Loss of CF_3 other than by recombination include escape (3) and surface reaction (4).

Under steady-state conditions the above mechanism leads to the following expression:

FIG. 1. Low-pressure photolysis cell for the investigation of free radicalsurface interactions. The 2 in. diameter fused-silica flat lies horizontally in the wafer compartment.

$$f(F_{C_{F_{s}}}^{i})/(F_{C_{2}F_{s}}^{o}) = 2 + (k_{e} + k_{w})k_{r}^{-1/2}V^{1/2}F_{C_{2}F_{s}}^{o}^{-1/2}, \qquad (5)$$

where $F_{CF_3I}^i$ is the flow rate of CF₃I into the reactor, $F_{C_2F_6}^o$ is the C₂F₆ flow rate out of the reactor, V is the volume, and f is the fractional depletion in the steady-state CF₃I signal when the sample is irradiated. Thus, with the appropriate measurements of $F_{CF_3I}^i$, f, and $F_{C_2F_6}^o$, in conjunction with the known k_e and k_r , the CF₃ surface loss rate constant k_w may be obtained.

In fact, two methods were used to generate the CF_3 radicals from the CF_3I percursor: (a) CO_2 laser IR-multiphoton decomposition and (b) hot wire decomposition. The laser experiments led to quantitative kinetic studies. The hot-wire experiments were designed to obtain qualitative information on the origin of products. A hot nichrome wire (800– 1000 °C) effected CF_3I decomposition in the latter experiments.

Experiments consisted of flowing CF_3I through the reactor and measuring steady-state mass spectrometric signals of CF_3I and of stable gas-phase reaction products. These were followed with laser on/off, as functions of CF_3I flow rate and of substrate temperature.

The parameters for the VLP Φ reactor are: $V = 250 \text{ cm}^3$; reactor wall area = 420 cm²; IR-beam pathlength = 10 cm. The escape rate constant for species with molecular weight, M, is given by $k_e(M) = 0.475 (T/M)^{1/2}$. The Pyrex reactor was gold coated (Engelhard Industries) to minimize wall losses. The fused silica substrate (2 in. diameter) rested on a heated stainless-steel block in the wafer compartment, and its temperature was monitored using a thermocouple.

A Tachisto 555 CO₂ laser was used with the following irradiation conditions: $\bar{\nu} = 1076 \text{ cm}^{-1}$ [9.6 R(16) line], pulse repetition rate = 20 Hz, beam diameter = 1.1 cm, fluence = 0.8 J/cm²; fractional dissociation per pulse in irradiated volume = 3%-12%.

The molecular beam effusing from the cell was chopped by means of a tuning fork chopper and analyzed using a Balzers 311 quadrupole mass spectrometer. The technique discriminates against all background gases not originating from the cell. Mass spectral calibrations of signal versus flow rate were carried out for all the compounds of interest.

III. RESULTS AND DISCUSSION

A. Origin of Products

Typical experimental traces of the mass spectrometric signal of reactant and products, with laser on/off are shown in Fig. 2. The observable gas-phase products from the reaction of CF₃ with fused silica are CO, HF, CO₂, COF₂, and SiF₄, in decreasing order of importance. In fact, the CO and HF are approximately 25–100 times larger in quantity than the other products. SiF₄ is the least important, about 100 times less than CO. These products all come from a surface reaction on the fused silica. The actual yields are not exactly reproducible over several weeks' measurements, however, general trends are reproducible. This is attributed to changing conditions on the surface. In addition to the surface reaction products there is the competing gas-phase recombination product C_2F_6 . All of the products are observed only in

FIG. 2. Mass spectrometric data from laser experiments. Pulse repetition rate = 20 Hz. $F_{CF,I}^{i} = 8 \times 10^{15} \, \mathrm{s}^{-1}$. $T_{SiO_{2}} = 230$ °C. The figure shows signals as functions of time as laser is turned on and off.

the presence of CF₃I and with laser irradiation, thus ruling out the possibility of CF₃I undergoing dissociative adsorption on the surface. (This is equivalent to a CF₃I sticking coefficient, γ , of less than 10⁻⁵ given our detection sensitivity.)

The origin of HF has to be elucidated first, since neither the reactant nor the substrate compositions contain any hydrogen. Another question concerns the balance of Si versus O in the reaction products. The only Si-containing product SiF₄ occurs in quantities $\sim 100-200$ times smaller than the O-containing products CO, CO₂, COF₂, most of which is comprised by CO. If the oxygen in CO were coming directly from SiO₂, then we would expect much more SiF₄ than observed to make up the balance, because SiF₄ was the only Sicontaining product under our experimental conditions.

In all of our mass spectra, we noticed the presence of H_2O in the cell background. The H_2O is independent of the laser and of the CF₃I flow, but may show some variation from day-to-day. We believe the water originates from the bulk glass, i.e., the silica substrate and the Pyrex reactor. The mass spectral signals indicate apparent H₂O flow rates between 10^{14} and 10^{15} s⁻¹, depending on the substrate temperatures. In hot-wire experiments with CF_3I , we noticed that the heating of the wire and the formation of HF was accompanied by a noticeable decrease in the H₂O, suggesting that the source of HF was H₂O. This was clarified by experiments where D₂O was deliberately flowed into the cell, $(F_{D,O}^i = 3 \times 10^{15} \text{ s}^{-1}, F_{CF,I}^i = 1.1 \times 10^{15} \text{ s}^{-1})$. As expected, DF was seen in appreciable quantities (F_{DF}^{o}) ~8 \times 10¹⁴ s⁻¹), confirming that the origin of HF was indeed H₂O. The fact that the flux of HF or DF out of the Knudsen cell is small can be attributed to the well-known tendency of HF to physisorb to glass and metal surfaces. Once the source of HF is turned off, the flux lingers on for hours so that HF cannot be used as a probe for the surface reaction in a convenient way.

In addition to producing DF, the presence of D₂O affected the other products. CO showed a factor of 1.7 increase, while SiF₄ decreased by a factor of ~ 3 , as did C₂F₆ (see Fig. 3). That CO increases in the presence of D_2O suggests that some of the CO may originate from water. We shall address this question below with oxygen-isotope measurements. The decrease in SiF_4 with D_2O may come about because (1) the SiF₄ product reacts with D_2O , or (2) in the presence of D_2O , there is less CF_3 available for the etching reaction to produce SiF_4 , due to reaction of CF_3 with D_2O . Under our conditions, possibility (1) is not important. Control experiments were carried out with small flow rates of SiF₄ and H₂O at various substrate temperatures. The SiF₄ signal did not show any dependence on the presence of water. Explanation (2) accounts for the depletion in SiF_4 : The SiO_2 and the surface H_2O compete against each other for reaction with CF₃. When H₂O or D₂O is present, there is less available CF₃ for the SiO₂ etching reaction thereby decreasing SiF₄. Since there is less CF₃ available for the recombination reaction as well, we see a decrease also in the C_2F_6 yield when water is present [Fig. 3(c)]. Thus, the etching reaction is inhibited by the presence of water.

Next, H_2O^{18} experiments were performed in order to find the source of oxygen in the O-containing products CO, CO₂, and COF₂, the two possible sources being SiO₂ and H₂O. Labeled H₂O¹⁸ was flowed through the reactor for several hours and allowed to equilibrate before measurement. The mass spectrum of the products revealed the presence of

FIG. 3. Effect of water on products in hot-wire experiments. (a) SiF₄ signal at 85 m/e. $F_{CF,I}^{i} = 1.1 \times 10^{15} \text{ s}^{-1}$; $F_{D_{2O}}^{i} \cong 3 \times 10^{15} \text{ s}^{-1}$; $T_{SiO_{2}} = 145$ °C. (b) CO signal at 28 m/e. Other conditions given in (a). (c) C₂F₆ signal at 119 m/e. $F_{CF,I}^{i} = 1.4 \times 10^{15} \text{ s}^{-1}$; $F_{H_{2O}^{11}}^{i} \cong 1 \times 10^{15} \text{ s}^{-1}$; $T_{SiO_{2}} = 100$ °C.

all isotopic combinations: CO^{18} , CO^{18}_2 , $CO^{18}O^{16}$, and $CO^{18}F_2$ appeared in addition to CO^{16} , CO_2^{16} , and $CO^{16}F_2$. The quantitative results are shown in Table I. Notice that the abundance of each isotopic composition agrees with the H_2O^{18}/H_2O^{16} ratio. In the case of CO₂, where two CO216: CO18O16:CO218 oxygens present, the are probability $(H_2O^{16})^2$: ratios follow the rule $2(H_2O^{16} + H_2O^{18}):(H_2O^{18})^2$ very well.

The good agreement between the product ratios and the H_2O^{18}/H_2O^{16} ratio indicates that almost all of the CO, CO₂, and COF₂ come from the reaction of CF₃ with water, and

that the contribution from $CF_3 + SiO_2$ is very small indeed. Furthermore, if the latter had been important, a considerable amount of SiF_4 would have to be expected in order to account for the silicon. Since we have very little SiF_4 in our measurements, this supports the conclusion that the SiO_2 etching reaction is not as important as the $CF_3 + H_2O$ reaction under our conditions. It should be emphasized that while the majority of the reaction is traced to water, this is a surface reaction consuming CF_3 and occurring on the fused silica surface, because the reaction products are only observable when CF_3 radicals strike the heated surface.

B. Kinetics

Figures 4, 5, and 6 show product concentrations as functions of $[CF_3]_0$ for the laser experiments. $[CF_3]_0$ is the steady-state CF_3 concentration that would be available if there were no chemical losses [given by $(f * F_{CF_3I}^i)/(V * k_e)$]. Notice that all products show positive dependence on the CF_3 concentration. Notice in Figs. 4 and 5 that for a given $[CF_3]_0$, increasing temperature affects $[C_2F_6]$ and [CO] in different ways. CO, representative of the surface reaction, increases with temperature while C_2F_6 decreases. This suggests that at the higher surface temperatures the rates for the surface reactions increase, thereby throttling off the gas-phase recombination reaction. The other surface-related products, CO_2 , COF_2 , and SiF_4 show temperature dependence similar to CO (not shown in figure).

The temperature dependence may be seen more clearly in Fig. 7 showing the dependence of the product yields on substrate temperature with constant CF₃I flow rate. Notice the strong increase in surface-related products CO, CO₂, HF, SiF₄, and COF₂ with temperature. We associate the increased yields of the surface-related products with strongly temperature-dependent surface-reaction rates. The decrease in the surface product COF₂ at the high temperatures is attributable to decomposition of that product following its formation on the surface. By contrast, the decrease in the C_2F_6 yield at the higher temperatures is ascribed to a competition effect: the strongly temperature-dependent surface reaction competes against the nearly temperature independent gasphase recombination for the available CF₃ radicals, thereby decreasing the C_2F_6 yield. These experiments are, in fact, not as straightforward as intended because the extent of decomposition f, and therefore $[CF_3]_0$, are temperature dependent as well, as is the reaction. The variation of f with temperature is shown in the inset in Fig. 7(a). Thus, these experiments were performed under conditions where $[CF_3]_0$ and T_{SiO_2} were both changing and affecting reaction rates.

TABLE I. Oxygen-isotope abundances of products CO, CO₂, and COF₂ in hot-wire experiments with H₂O¹⁸.ª

Species	H ₂ O ¹⁶	H ₂ O ¹⁸	CO ¹⁶	CO ¹⁸	CO216	CO ¹⁶ O ¹⁸	CO ₂ ¹⁸	CO ¹⁶ F ₂	CO ¹⁸ F ₂
<i>m/e</i> S(mV)	18 3.92	20 4.55	28 2.8	30 3.0	44 0.20	46 0.48	48 0.26	47 0.04	49 0.04
Ratio	1.0 :	1.16	1.0 :	1.07	1.0 :	2.4 :	1.3	1 :	1

 ${}^{\mathbf{a}}F_{\mathbf{H}_{0}\mathbf{O}^{10}}^{i} \simeq 1.0 \times 10^{15} \text{ s}^{-1}$. $T_{\mathrm{SiO}_{2}} = 100 \,^{\circ}\mathrm{C}$. $F_{\mathrm{CF},\mathrm{I}}^{i} = 1.4 \times 10^{15} \text{ s}^{-1}$. (Increasing $F_{\mathrm{CF},\mathrm{I}}^{i}$ from 1.4×10^{15} to $8.2 \times 10^{15} \text{ s}^{-1}$ increased the product yields but did not change the isotopic ratios.)

137,189,170,231 On: Tue, 23 Dec 2014 07:14:22

FIG. 4. $[C_2F_6]$ as a function of $[CF_3]_0$ for laser experiments at various substrate temperatures. $[CF_3]_0$ was varied by changing F'_{CF_3I} from 1×10^{15} to $1 \times 10^{16} \, \mathrm{s}^{-1}$.

1. CF₃ recombination and k.

As we pointed out in Sec. II, k_w , the net surface loss of CF₃ may be obtained from C₂F₆ yields via Eq. (5). In effect, this method of obtaining k_w corresponds to measuring the extent to which C₂F₆ formation departs from purely secondorder behavior with respect to CF₃. The discrepancy is caused by CF₃ escape and surface loss, both of which are first order. Knowledge of k_r ¹⁵ (recombination) and k_e (escape) allow the determination of k_w .

Figure 8(a) shows the C_2F_6 results of Fig. 4 plotted in the form of Eq. (5). These data conform nicely to expression 5, giving linear plots with intercept 2.0 for all the temperatures studied. Table II summarizes the information obtained from these results. k_w is obtained from the slopes, using $k_r = 3 \times 10^{-12}$ cm³ s⁻¹ and k_e in expression (5). (k_r used in evaluating k_w was taken independent of the surface temperature because it is a gas phase reaction, whose temperature it governed by that of the vessel walls. Since the hot active surface constitutes only 5% of the reactor wall area, the correction would be small. Furthermore, the dependence

FIG. 5. [CO] as a function of $[CF_3]_0$ for various substrate temperatures. Conditions are the same as in Fig. 4.

FIG. 6. [SiF₄], [CO₂], and [COF₂] as functions of [CF₃]₀ for $T_{SiO_2} = 260$ °C. Conditions are the same as in Fig. 4.

of k, on temperature is not very strong in this range.) Notice that k_w increases with increasing surface temperature indicating that increasing amounts of CF₃ are irreversibly lost in the surface reaction. An Arrhenius plot of ln k_w vs the reciprocal surface temperature is shown in Fig. 8(b), together with a least-squares fit. The resulting k_w is given by the following expression: $k_w = 10^{2.9} \exp(-4700/RT) \, \mathrm{s}^{-1}$, where R = 1.987 cal mol⁻¹ K⁻¹.

Having determined k_w , we now know all of the rate constants in scheme (1)-(4), and therefore can obtain the steady-state CF₃ concentration:

$$[CF_{3}]_{ss} = \frac{-(k_{e} + k_{w}) + [(k_{e} + k_{w})^{2} + 8k_{r}fF_{CF_{3}I}^{i}V^{-1}]^{1/2}}{4k_{r}}.$$
(6)

We find that $[CF_3]_{ss}$ is between 5% and 20% of $[CF_3]_0$ for the temperature range studied.

2. Formation of CO and k_{co}

We have chosen the formation of CO as a marker for the surface reaction of CF₃ with H₂O. Figure 9 shows the data in Fig. 5 plotted as [CO] vs the steady-state CF₃ concentration, [CF₃]_{ss}. For all the temperatures, [CO] is linear with respect to [CF₃]_{ss} and has no intercept, indicating a first-order reaction as would be expected from Eq. (4). The observed CO formation rate constant k_{CO} is obtained from the slope is each case (slope = k_{CO}/k_e^{CO}); these are given in Table II. The resulting k_{CO} can be represented by the following Arrhenius expression: $k_{CO} = 10^{3.7} \exp(-7500/RT)$ s⁻¹ [Fig. 9(b)].

Notice in Table II that the k_{CO} rate constants are smaller than the corresponding k_w based on the loss of CF₃ on the heated fused silica surface. The latter indicates that not all the CF₃ that is lost to the surface from the gas phase [reaction (4)] proceed to form CO. This results in an appar-

FIG. 7. Product concentrations as functions of T_{SiO_2} in laser experiments. (a) CO, HF, and C_2F_6 . (b) COF₂, CO₂, and SiF₄. The inset shows f, the fractional depletion in CF₃I as a function of T_{SiO_2} ; see the text for details. $F_{\rm CF,I}^i = 4.0 \times 10^{15} \, {\rm s}^{-1}.$

ent excess of CF_3 on the surface, which must be removed by some other reaction.

The simplest mechanism that accommodates these results replaces Eq. (4) with Eqs. (4a), (4b), and (4c):

$$CF_3 + S \underset{k_d}{\overset{\beta\omega}{\rightleftharpoons}} CF_3 - S,$$
 (4a)

$$CF_3 - S \rightarrow CO$$
, (4b)

$$CF_3 - S \xrightarrow{\sim_2}$$
 other products. (4c)

Equation (4a) represents adsorption and desorption of CF₃ where ω is the collision frequency of CF₃ with the active surface, β is the efficiency factor ($\beta < 1$), and k_d is the rate constant for desorption. Reaction (4b) represents the for-

FIG. 8. (a) $fF_{CF_{1}}^{i}/F_{C_{2}F_{6}}^{o}$ as a function of $F_{C_{2}F_{6}}^{o}$ [see Eq. (5) in the text]. The straight lines correspond to least-squares fits to the data with intercept = 2.0. (b) ln k_w as a function of $T_{siO_2}^{-1}$. The line is the linear leastsquares fit, corresponding to $k_{w} = 10^{2.9} \exp(-4700/RT)$.

mation of CO, and reaction (4c) corresponds to the sum of all those reactions that make up for the CO deficiency. The experimentally observed quantities k_w and k_{CO} may be expressed in terms of mechanism [4(a)-4(c)] as follows:

$$k_{w} = \frac{\beta \omega (k_{1} + k_{2})}{(k_{d} + k_{1} + k_{2})},$$
(7)

$$k_{\rm CO} \text{ (observed)} = \frac{\beta \omega k_1}{(k_d + k_1 + k_2)} = \frac{k_1}{(k_1 + k_2)} k_w . (8)$$

Using our measured k_{CO} and k_{w} , we obtain for the branching ratio,

$$\frac{k_1}{(k_1+k_2)} = 10^{0.8} \exp(-2800/RT) \, .$$

In relation to our experiments, Eq. (4c) may include the observed products CO₂ and COF₂. However, the latter can account for only 10% of the CO deficiency. Of course, Eq. (4c) may include reactions generating involatile products on the surface; these would not be determined by gas-phase analysis.

2405

J. Chem. Phys., Vol. 84, No. 4, 15 February 1986

FIG. 9. (a) [CO] as a function of $[CF_3]_{ss}$. $[CF_3]_{ss}$ was obtained using Eq. (6) (see the text for details). The straight lines correspond to least-squares fits to the data with intercept 0. (b) $\ln k_{CO}$ as a function of $T_{siO_2}^{-1}$. The line is the linear least-squares fit corresponding to $k_{CO} = 10^{3.7} \exp(-7500/RT)$.

3. CF3 sticking coefficient on fused silica

 γ , the sticking coefficient is given by k_{ω}/ω where ω is the collision frequency of CF₃ with the silica surface. γ is the probability that a CF₃ impinging on this surface will be irreversibly lost. The values obtained for γ are listed in Table II. Notice that these are low, between 0.0014 and 0.017 depending on the temperature, in contrast to values in the literature, measured as 0.08–0.75 for CF₃ on *silicon* at room temperature.¹⁶ In our case, a close-to-unity γ would have implied that the surface loss of CF₃ were competitive with ω . Since

TABLE II. k_{ω} , k_{co} , and γ as functions of T_{SiO_2} .

T_{SiO_2} (C)	$k_w (s^{-1})^*$	$k_{\rm CO} \ (\rm s^{-1})^{\rm b}$	ŕ	
70	0.85	0.103	0.0014	
160	2.79	0.401	0.0047	
205	5.87	2.16	0.0098	
260	10.1	3.84	0.017	

*Obtained from slopes in Fig. 8(a) using Eq. (5).

^bObtained from Fig. 9(a); slope = $k_{\infty}/k_{e}^{\infty}$.

 $^{\circ}\gamma = k_{\omega}/\omega$ where $\omega = 600 \text{ s}^{-1}$ for CF₃ collisions with the silica surface.

 $\omega \sim 600 \text{ s}^{-1}$ and the time scale for gas-phase chemistry is in the order of seconds, negligible gas-phase reaction (i.e., recombination) would have been expected under conditions where $\gamma \sim 1$ and $k_{\omega} \sim \omega$. Our results indicate that this is not the case.

As a further test to confirm that γ is not close to unity, we carried out experiments where the gas-phase CF₃ radicals were trapped by Cl₂, yielding CF₃Cl. The resulting product yields vs Cl₂ flow rate are shown in Fig. 10. Notice that the surface reaction yielding CO is competitive with the gasphase trapping reaction yielding CF₃Cl. Furthermore, behavior of the surface product CO resembles that of the gasphase recombination product C₂F₆. That surface chemistry competes with gas-phase chemistry indicates once again that the surface reaction is slow compared to ω and that $\gamma < 1$.

The competition between the trapping reaction and the surface reaction may be seen more clearly by adding the trapping reaction (9) to the scheme depicted by Eqs. (1)-(4c):

$$CF_3 + Cl_2 \xrightarrow{k_r} CF_3Cl + Cl.$$
(9)

Equation (9) represents one more loss process for the CF₃ radicals formed in the reactor, in addition to recombination, escape and surface loss. The rate of loss of CF₃ radicals from the gas phase, $k_{\text{loss}}^{\text{CF}_3}$, is given by

$$k_{\text{loss}}^{\text{CF}_3} = k_T [\text{Cl}_2] + k_r [\text{CF}_3] + k_e + \gamma \omega.$$
(10)

Notice in Eq. (10) that the homogeneous Cl_2 trapping reaction is in direct competition with the CF_3 surface loss $\gamma\omega$, as well as with escape (k_e) and recombination $(k_r [CF_3])$. Varying $[Cl_2]$ allows for varying degrees of competition, as seen in Fig. 10. Notice that even a small concentration of Cl_2 affects both the recombination product C_2F_6 and the surface reaction product CO. The fact that the surface product yield is reduced by such a small amount of Cl_2 indicates that trapping by Cl_2 and the surface reaction are competitive, leading to $\gamma \ll 1$. Although the data shown in Fig. 10 may be modeled

FIG. 10. Mass spectral signals of products CF₃Cl, CO, and C₂F₆ as functions of Cl₂ flow rate for trapping experiments. $F'_{\rm CF_3I} = 3.1 \times 10^{15} {\rm s}^{-1}$, $T_{\rm SiO_2} = 110$ °C. [Cl₂] (cm⁻³) is given by $4.1 \times 10^{-3} F'_{\rm Cl_3}$ (s⁻¹).

J. Chem. Phys., Vol. 84, No. 4, 15 February 1986

I his article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP

by including reaction (9) in our earlier reaction scheme, this will have to wait for reliable values of k_T . However, the trapping experiments demonstrate the usefulness of our approach for obtaining γ .

IV. CONCLUSIONS

The present study reveals that the major reactivity of CF_3 radicals on the silica surface is with H_2O and not with SiO_2 . Under these conditions, where H_2O is always present on the surface, the $CF_3 + SiO_2$ reaction accounts for only $\sim 1\%$ of the reactivity of CF_3 with H_2O . Added water inhibits the $CF_3 + SiO_2$ etching reaction even further. This is an important result that may be significant in applications. For example, presence of water in plasma etching systems may inhibit etching by radicals and may affect the final results. In the future, we plan to eliminate water in our experiments by using a stainless steel reactor and will then direct our attention to the $CF_3 + SiO_2$ reaction as well as other etching reactions.

It should be mentioned that we also investigated the reaction between CF₂ radicals and the SiO₂ surface. These were hot-wire experiments where CF₂HCl was decomposed, yielding CF₂ radicals. By contrast to our work with CF₃, we did not see any SiF_4 , nor any other surface-related products in the CF₂ experiments. This result is in contrast to those of Brannon,⁸ and of Loper and Tabat⁴ who found that CF₂ radicals etched SiO₂ considerably while etching by CF₃ was not observed. In their experiments, the surface as well as the gas was irradiated. Recent results of Brannon¹⁷ indicate that when the surface is not irradiated, CF₂ radicals do not etch SiO₂, but rather deposit onto the surface as a fluorocarbon layer. The latter results are compatible with our findings for CF_2 . The fact that etching by CF_3 was not observed by either of the abovementioned workers may seem to contradict our results for CF₃. However, we suspect that under the experimental conditions of those studies, there may have been a negligible concentration of CF3 radicals. In the case of Brannon's study,⁸ CF₃ radicals were produced in a focused beam and the high intensities may have led to secondary decomposition of CF₃. In the work of Loper and Tabat,⁴ where high pressures (50-100 Torr) were employed, it is possible that second-order recombination yielding C₂F₆ consumed most of the CF₃ radicals, so that etching by CF₃ was not observed.

Our results demonstrate that the VLP Φ method may be successfully used to study radical-surface reactions. Not only qualitative information on gas-phase products, but also quantitative information on the reaction kinetics may be obtained. The technique allows for determination of the order of the surface reaction, the rate constant and its temperature dependence, and also, k_w , the surface loss constant for the reactive radical. Knowledge of k_w leads directly to γ , the sticking coefficient for the radical of interest.

In future experiments, we plan to extend the technique to include *in situ* detection of radicals by multiphoton ionization. This will allow for the determination of local real-time concentrations of radicals within the reactor. In addition to gas-phase product analysis, we also plan to probe the surface using surface analysis techniques, such as SALI (surface analysis by laser ionization) recently developed at SRI.¹⁸

- ¹J. W. Coburn, Plasma Chem. Plasma Proc. 2, 1 (1982).
- ²D. L. Flamm, V. M. Donnelly, and D. E. Ibbotson, J. Vac. Sci. Technol. B 1, 23 (1983).
- ³J. W. Coburn and H. F. Winters, J. Vac. Sci. Technol. 16, 391 (1979).
- ⁴G. L. Loper and M. D. Tabat, Proceedings of the International Conference
- on Lasers '83, edited by R. C. Powell (STS, McLean, VA, 1983).
- ⁵D. L. Flamm, C. J. Mogab, and E. R. Sklaver, J. Appl. Phys. **50**, 6211 (1979).
- ⁶H. F. Winters and F. A. Houle, J. Appl. Phys. 54, 1218 (1983).
- ⁷G. L. Loper and M. D. Tabat, Appl. Phys. Lett. 46, 654 (1985).
- ⁸J. H. Brannon, J. Phys. Chem. (to be published).
- ⁹J. W. Coburn, H. F. Winters, and T. J. Chuang, J. Appl. Phys. 48, 3532 (1977).
- ¹⁰S. C. McNevin and G. E. Becker, J. Vac. Sci. Technol. B 2, 27 (1984).
- ¹¹M. J. Rossi, J. R. Barker, and D. M. Golden, J. Chem. Phys. 71, 3722 (1979).
- ¹²D. M. Golden, M. J. Rossi, A. C. Baldwin, and J. R. Barker, Acc. Chem. Res. 14, 56 (1981).
- ¹³M. J. Rossi and D. M. Golden, Int. J. Chem. Kinet. 15, 1283 (1983).
- ¹⁴A. C. Baldwin and D. M. Golden, J. Geophys. Res. 85, 2888 (1980).
- $^{15}k_r$, the gas-phase CF₃ recombination rate constant, was investigated in separate experiments. These were performed using the same VLP Φ reactor, but in the absence of the active fused silica surface. Measurements with two sizes of escape apertures allowed the determination of k_r , as well as possible loss, k_w , on the gold-coated walls. These yielded $k_r = 3 \times 10^{-12}$ cm³ s⁻¹ and very small wall loss $k_w \sim 0.04$ s⁻¹. [N. Selamoglu, M. J. Rossi, and D. M. Golden, Chem. Phys. Lett. (to be published)].
- ¹⁶H. F. Winters, J. Appl. Phys. 49, 5165 (1978).
- ¹⁷J. H. Brannon (private communication).
- ¹⁸C. H. Becker and K. T. Gillen, Anal. Chem. 56, 1671 (1984).

ce is copyrighted as indicated in the article. Reuse of AF content is subject to the terms at. http://scitation.aip.org/termscondulo

189.170.231 On: Tue, 23 Dec 2014 07:14:22