Acid-Catalyzed Hydrolysis of Maltosyl- $\boldsymbol{\beta}$-cyclodextrin

Fumitoshi Hirayama, Masanobu Yamamoto, and Kaneto Uekamax

Received February 5, 1991, from the Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Kumamoto 862, Japan. Accepted for publication October 17, 1991.

Abstract

Maltosyl- β-cyclodextrin was hydrolyzed via two pathways in acidic solution: (1) ring opening to give noncyclic oligosaccharides and (2) cleavage of maltose in the branched residue to give glucosyl- β-CyD and glucose. Ring opening was $\sim 2-3$ times faster than maltose cleavage because of the multiple hydrolysis sites of the β-cyclodextrin (β-CyD) ring (seven glycosidic linkages) compared with only one reaction site of the maltose residue in the branch. Values of the enthalpy and entropy of activation of the hydrolyses were positive and in the range reported for maltose, a result indicating that the hydrolyses proceeded according to the A-1 mechanism (i.e., unimolecular decomposition). The $\alpha-1,6-$ glycosidic bond of branched β-CyDs connecting β-CyD and branched sugar moieties resisted hydrolysis; this property is a potential pharmaceutical advantage because the parent β-CyD, which has low aqueous solubility, would not precipitate after hydrolysis.

Branched cyclodextrins (CyDs) are highly hydrophilic derivatives that have sugar moieties substituted at primary hydroxyl groups via an $\alpha-1,6$-glycosidic bond and that form inclusion complexes with various drug molecules. ${ }^{1,2}$ Branched CyDs are promising candidates as fast-dissolving carriers for poorly water soluble drugs, because their aqueous solubility ($>50 \%$, w/v at $25^{\circ} \mathrm{C}$) and biocompatibility are superior to those of the parent β-CyD. ${ }^{3-\sigma}$ Reports on the chemical stability of branched CyDs are scarce. ${ }^{3}$ From a kinetic point of view, branched CyDs are of interest, because they have three types of glycosidic linkage that are susceptible to acid-catalyzed hydrolysis: (1) $\alpha-1,4$-bonds in the CyD ring, (2) $\alpha-1,6$-bonds at a junction between the ring and the branched sugars, and (3) α-1,4-bonds in the branched sugar moieties. In this study, the kinetics of the acid-catalyzed hydrolysis of maltosyl- $\beta-\mathrm{CyD}$ ($\mathrm{G}_{2}-\beta-\mathrm{CyD}$; Scheme I) was investigated.

Experimental Section

Materials- β-CyD was supplied by Nihon Shokuhin Kako Company (Tokyo, Japan) and was recrystallized from water. Highly purified $\mathrm{G}_{2}-\beta$-CyD and glucosyl $-\beta$-CyDs ($\mathrm{G}_{1}-\beta$-CyDs; $>99.9 \%$) were donated by Ensuiko Sugar Refinning Company (Yokoyama, Japan). All other materials and solvents were of analytical reagent grade. Deionized, double-distilled water was used.

Kinetics- $\mathrm{G}_{2}-\beta$-CyD $\left(2.5 \times 10^{-3} \mathrm{M}\right)$ was hydrolyzed in 0.1 M $\mathrm{HCl}-\mathrm{KCl}$ buffer [ionic strength $(\mu)=0.2, \mathrm{pH} 1.1$] at various temperatures. At timed intervals, the reaction solution (0.5 mL) was sampled and neutralized with $0.1 \mathrm{M} \mathrm{NaOH}(0.5 \mathrm{~mL})$ containing $\alpha-\mathrm{CyD}\left(2.5 \times 10^{-3} \mathrm{M}\right)$ as an internal standard for analysis by high-performance liquid chromatography (HPLC). The neutralized solution ($20 \mu \mathrm{~L}$) was analyzed by HPLC for simultaneous determination of $\mathrm{G}_{2}-\beta-\mathrm{CyD}, \mathrm{G}_{1}-\beta-\mathrm{CyD}$, and parent β-CyD. The HPLC system consisted of a pump (Hitachi 655A, Tokyo, Japan), a detector (Shodex SE-51 differential refractometer, Tokyo, Japan), a column (ERC-NH1181, 6 mm diameter $\times 250 \mathrm{~mm}$; Erma Optical Works, Tokyo, Japan), a mobile phase of acetonitrile:water ($65: 35, \mathrm{v} / \mathrm{v}$), and a flow rate of 1.2 $\mathrm{mL} / \mathrm{min}$. The three β-CyDs were well separated (Figure 1), ${ }^{6,7}$ and linear calibration curves were obtained over the concentration range $\left(1.0 \times 10^{-4}-2.5 \times 10^{-3} \mathrm{M}\right)$ of β-CyDs. The following data were obtained from plots of concentrations of $\beta-\mathrm{CyD}, \mathrm{G}_{1}-\beta-\mathrm{CyD}$, and $\mathrm{G}_{2}-\beta$-CyD, respectively, versus peak height ratios (β-CyDs:internal

Scheme 1-Proposed hydrolysis pathways of $\mathrm{G}_{\mathbf{2}}-\beta$-CyD. Key: ($\boldsymbol{0}$) glucose unit; ($-\boldsymbol{\square}) \alpha-1,4$-glycosidic linkage; $(\longrightarrow$) $\alpha-1,6$ glycosidic linkage.
standard): slopes of $7.244 \times 10^{-9}, 8.343 \times 10^{-9}$, and 8.951×10^{-3}; intercepts of $9.980 \times 10^{-5}, 2.297 \times 10^{-4}$, and 1.300×10^{-4}; and correlation coefficients of $0.995,0.991$, and 0.993 . Rate constants were determined from an average of three measurements, which were within 5% of each other.

Results and Discussion

Glycosides may be degraded by hydrolysis, epimerization, and dehydration. Among these reactions, acid-catalyzed hydrolysis of glycosidic linkages predominates in dilute solutions of substrates at temperatures $<100^{\circ} \mathrm{C}$. . 8 Because $\mathrm{G}_{2}-\beta$ CyD has three types of glycosidic linkage in the molecule, hydrolysis under acidic conditions proceeds according to Scheme I: (1) hydrolysis of α-1,4-bond in the branch to yield $\mathrm{G}_{1}-\beta$-CyD, (2) hydrolysis of $\alpha-1,6$-bond to yield parent β-CyD, and (3) hydrolysis of $\alpha-1,4$-bond in the ring to yield noncyclic oligosaccharides. The HPLC chromatogram of partially hydrolyzed products of $\mathrm{G}_{2}-\beta-\mathrm{CyD}$ (Figure 2) indicates that, as the reaction progressed, the intensity of the $\mathrm{G}_{2}-\beta-\mathrm{CyD}$ peak decreased, and those of $\mathrm{G}_{1}-\beta-\mathrm{CyD}$, glucose (retention time, 8.12 min ; capacity factor, 0.68), and maltose (retention time, 9.82 min ; capacity factor, 1.04) appeared and increased gradually. The peak of parent β-CyD was not observed during the reaction; the same result was obtained for $\mathrm{G}_{1}-\beta-\mathrm{CyD}$ hydrolysis. Unfortunately, noncyclic saccharides, except for glucose and maltose, were not quantitatively determined perhaps because of (1) poor sensitivity of detection [the refractive index of noncyclic saccharides was much lower $(<1 / 2)$ than that of CyDs$]$ and (2) further rapid hydrolysis of noncyclic saccharides to maltose and glucose.

Figure 1-Liquid chromatogram of α-CyD (1, internal standard), β-CyD (2), $\mathrm{G}_{1}-\beta-\mathrm{CyD}(3)$, and $\mathrm{G}_{2}-\beta-\mathrm{CyD}$ (4).

Figure 2-Liquid chromatogram of partially hydrolyzed products of $\mathrm{G}_{2}-\beta$-CyD. Key: (1) glucose; (2) maltose; (3) $\mathrm{G}_{1}-\beta-\mathrm{CyD}$; (4) $\mathrm{G}_{2}-\beta-\mathrm{CyD}$. The increase in the baseline at $\sim 11 \mathrm{~min}$ was due to the elution of salts such as KCl and NaCl .

In this study, therefore, we followed changes in the concentrations of $\mathrm{G}_{2}-\beta$ - CyD and $\mathrm{G}_{1}-\beta-\mathrm{CyD}$. Figure 3 shows curves of concentration of $\mathrm{G}_{2}-$ and $\mathrm{G}_{1}-\beta-\mathrm{CyDs}$ in 0.1 M

Flgure 3-Reaction profiles for hydrolysis in $0.1 \mathbf{M ~ H C l - K C l ~ b u f f e r ~ (~} \mathrm{pH}$ $1.1, \mu=0.2$) at $60^{\circ} \mathrm{C}$. Key: (O) $\mathrm{G}_{2}-\beta-\mathrm{CyD} ;(\oplus) \mathrm{G}_{1}-\beta-\mathrm{CyD}$.
$\mathrm{HCl}-\mathrm{KCl}$ buffer at $60^{\circ} \mathrm{C}$ versus time (concentration-time curves). With an exponential decrease in the concentration of $\mathrm{G}_{2}-\beta-\mathrm{CyD}$, the concentration of $\mathrm{G}_{1}-\beta-\mathrm{CyD}$ increased initially and then subsequently decreased. Therefore, the reaction profiles were analyzed according to eqs 1 and 2 with a least-squares method to obtain the rate constants (k_{1}, k_{2}, and k_{3}). The rate constants in eqs 1 and 2 were treated as pseudo-first-order rate constants, because the concentration of HCl was much higher than those of the substrates:

$$
\begin{align*}
\mathrm{d}\left[\mathrm{G}_{2}\right] / \mathrm{d} t & =-\left(k_{1}+k_{2}\right)\left[\mathrm{G}_{2}\right] \tag{1}\\
\mathrm{d}\left[\mathrm{G}_{1}\right] / \mathrm{d} t & =k_{1}\left[\mathrm{G}_{2}\right]-k_{3}\left[\mathrm{G}_{1}\right] \tag{2}
\end{align*}
$$

In eqs 1 and $2,\left[G_{2}\right]$ and $\left[G_{1}\right]$ are the concentrations of G_{2} - and $\mathrm{G}_{1}-\beta-\mathrm{CyD}$, respectively.

Acid-catalyzed hydrolysis of glycosidic bonds proceeds according to the A-1 mechanism (unimolecular decomposition) ${ }^{8-10}$ via the Arrhenius complex ($\mathrm{SH}^{+}, k_{-\mathrm{al}} \gg k$), not via the van't Hoff complex ($k_{-\mathrm{al}} \ll k$), as shown by Scheme II (S and SH^{+}are the substrate and protonated substrate, respectively; k_{al} and $k_{-\mathrm{al}}$ are rate constants for the protonation of S and the deprotonation of SH^{+}, respectively; and k is the rate constant for the degradation of SH^{+}to products). Because the rate-determining step in Scheme II is the decomposition of SH^{+}, the rate of hydrolysis (v) of S can be written as in eq 3 , where K is the dissociation constant of SH^{+}, as defined by eq 4:

$$
\begin{align*}
& v=k\left[\mathrm{SH}^{+}\right]=(k / K)[\mathrm{S}]\left[\mathrm{H}^{+}\right] \tag{3}\\
& K=k_{-\mathrm{a} /} / k_{\mathrm{al}} \tag{4}\\
&=[\mathrm{S}]\left[\mathrm{H}^{+}\right] /\left[\mathrm{SH}^{+}\right]
\end{align*}
$$

Because $\mathrm{G}_{2}-\beta$-CyD has nine glycosidic oxygens (from i to q in

$$
\mathrm{S}+\mathrm{H}^{+} \stackrel{\mathrm{k}_{-01}}{\underset{\mathrm{k}}{-01}} \mathrm{SH}^{+} \xrightarrow{\mathrm{k}} \text { product } \mathrm{p}
$$

Scheme II

Scheme I) in the molecule, eq 5 can be derived for the overall hydrolysis rate:

$$
\begin{align*}
& v=\left(\sum_{\mathbf{i}}\left(k_{\mathrm{i}} / K_{\mathrm{i}}\right)\right)[\mathrm{S}]\left[\mathrm{H}^{+}\right]+\left(\sum \sum\left(k_{\mathrm{ij}} / K_{\mathrm{ij}}\right)\right)[\mathrm{S}]\left[\mathrm{H}^{+}\right]^{2}+ \\
& \left(\sum \sum \sum\left(k_{\mathrm{ijk}} / K_{\mathrm{ijk}}\right)\right)[\mathrm{S}]\left[\mathrm{H}^{+}\right]^{3}+ \\
& \text { i jk } \\
& \left(\sum \sum \sum \sum\left(k_{\mathrm{ijk} /} / K_{\mathrm{ijk} \mathrm{l}}\right)\right)[\mathrm{S}]\left[\mathrm{H}^{+}\right]^{4}+ \\
& \text { i jkl } \\
& \cdots \cdots \cdot\left(\sum \sum \sum \sum \sum \sum \sum \sum \sum\left(k_{\mathrm{ijk} \mathrm{lmnopq}}\right)\right. \\
& \text { ijklmnopq } \\
& \left.K_{\mathrm{ijklmnopq}}\right)[\mathrm{S}]\left[\mathrm{H}^{+}\right]^{9} \tag{5}
\end{align*}
$$

In eq 5 , each variable from i to q has a value of 1 to 9 , $\mathrm{i}<\mathrm{j}<\mathrm{k}<\mathrm{l}<\mathrm{m}<\mathrm{n}<\mathbf{0}<\mathrm{p}<\mathbf{q}$, and subscripts $\mathrm{i}-\mathrm{q}$ stand for the nine glycosidic oxygens. The first term of eq 5 is the rate equation for the monoprotonated species, each protonated glycosidic linkage being hydrolyzed at the rate of k_{i} / K_{i}. The second term of eq 5 is the rate equation for the biprotonated species, one of two protonated sites being hydrolyzed with the rate constant of $k_{\mathrm{ij}} / K_{\mathrm{ij}}$. The third to ninth terms are, similarly, those for the tri- to nonaprotonated species, respectively. Equation 5 can be simplified to eq 6 on the basis of the following results and assumptions. (1) The second to ninth terms of eq 5 are negligible, because the rate of hydrolysis of $\mathrm{G}_{2}-\beta$-CyD was first-order dependent on hydronium ion concentration (Figure 4). The pH values in Figure 4 can be regarded as those of the Hammett acidity function (H_{0}), ${ }^{11}$ because of the low acid concentration ($<0.1 \mathrm{M} \mathrm{HCl}$). (2) No appearance of parent β-CyD was observed, a result indicating that the $\alpha-1,6$-glycosidic linkage is resistant to hydrolysis, and thus, k_{j} is negligible. (3) $k_{\mathrm{k}}=k_{\mathrm{q}}, k_{1}=k_{\mathrm{p}}$, and $k_{\mathrm{m}}=k_{\mathrm{o}}$ from

Figure 4-Profiles of pH versus hydrolysis rates of $\mathrm{G}_{\mathbf{2}}-\beta-\mathrm{CyD}, \mathrm{G}_{1}-\beta-\mathrm{CyD}$, and parent β-CyD at $60^{\circ} \mathrm{C}$. Key: (O) $k_{1} ;(\Theta) k_{2} ;(\Delta) k_{3} ;(\Delta) k_{8}$.
the symmetry relationship of the ring. (4) The ring-opening rate was assumed to be same ($k_{\mathrm{k}}=k_{\mathrm{m}}=k_{\mathrm{n}}$ to simplify the kinetic treatment and to correlate eq 1 with eq 5.

$$
\begin{gather*}
v=\left(k_{\mathrm{i}} / K_{\mathrm{i}}+2 \cdot k_{\mathrm{k}} / K_{\mathrm{k}}+2 \cdot k_{\mathrm{l}} / K_{\mathrm{l}}+\right. \\
\left.2 \cdot k_{\mathrm{m}} / K_{\mathrm{m}}+k_{\mathrm{n}} / K_{\mathrm{n}}\right)[\mathrm{S}]\left[\mathrm{H}^{+}\right] \\
\approx\left(k_{\mathrm{i}} / K_{\mathrm{i}}+7 \cdot k_{\mathrm{k}} / K_{\mathrm{k}}\right)[\mathrm{S}]\left[\mathrm{H}^{+}\right] \tag{6}\\
k_{1}=\left(k_{\mathrm{i}} / K_{\mathrm{i}}\right)\left[\mathrm{H}^{+}\right] \tag{7}\\
k_{2}=7\left(k_{\mathrm{k}} / K_{\mathrm{k}}\right)\left[\mathrm{H}^{+}\right] \tag{8}\\
k_{3}=7\left(k_{\mathrm{k}} / K_{\mathrm{k}}\right)\left[\mathrm{H}^{+}\right] \tag{9}
\end{gather*}
$$

Table I summarizes the rate constants k_{1}, k_{2}, and k_{3} at 50 , 60 , and $70^{\circ} \mathrm{C}$; these constants are correlated with those of the elemental steps by eqs $7-9$. In the hydrolysis of $\mathrm{G}_{1}-\beta-\mathrm{CyD}$ under the same conditions, no appearance of parent β-CyD was observed, and the degradation rate constant of $\mathrm{G}_{1}-\beta-\mathrm{CyD}$ was in good agreement with the k_{3} value determined from $\mathrm{G}_{2}-\beta$ - CyD . The apparent ring-opening rate ($5.21 \times 10^{-2} \mathrm{~h}^{-1}$ at $70^{\circ} \mathrm{C}$) of parent $\beta-\mathrm{CyD}$ was of the same order of magnitude as that ($2.4 \times 10^{-2} \mathrm{~h}^{-1}$ at $70^{\circ} \mathrm{C}$) reported by Schönberger et al. ${ }^{12}$; the higher rate constant obtained in this study may be due to the presence of potassium chloride, because the intermediate of the A-1 mechanism is a positively charged oxonium ion. ${ }^{10}$ On the other hand, the rate constant (1.14×10^{-2} h^{-1} at 0.115 N HCl and $80^{\circ} \mathrm{C}$) reported by Szejtli et al. ${ }^{13,14}$ seems to be slightly underestimated because of the indirect monitoring of CyD concentrations. The hydrolysis rate (4.87 $\times 10^{-3} \mathrm{~h}^{-1}$ at $60^{\circ} \mathrm{C}$) of maltose in the branch of $\mathrm{G}_{2}-\beta$-CyD was in agreement with that ($3.76 \times 10^{-3} \mathrm{~h}^{-1}$ in 0.1 N HCl at $60^{\circ} \mathrm{C}$) of maltose calculated with the data of Wolfrom et al. .15
The apparent ring-opening rates (k_{2} and k_{3}) of β-CyDs were $\sim 2-3$ times faster than the hydrolysis rate (k_{1}) of the glycosidic bond in the branch of $\mathrm{G}_{2}-\beta-\mathrm{CyD}$ (Table I) because of the multiple reaction sites (seven glycosidic linkages) of the ring compared with one reaction site of the maltose residue in the branch. Therefore, the rate of the one-bond cleavage was ~2-3 times slower for the ring compared with the linear branch. The ring-opening rate constants of G_{1} - and $\mathrm{G}_{2}-\beta-\mathrm{CyD}$ were almost the same as that of parent β-CyD.
Figure 5 shows Arrhenius plots for the hydrolysis rates (k_{1}, k_{2}, k_{3}, and k_{6}) of $\mathrm{G}_{2}-\beta$-CyD and parent β-CyD, and Table II summarizes the thermodynamic activation parameters. Both enthalpy (ΔH^{*}) and entropy ($\triangle S^{*}$) values for the one-bond cleavage of β-CyDs were positive ($133-148 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ and $34-88 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$, respectively). The positive ΔS^{*} values

Table 1-Rate Constants for Hydrolysis of $\mathbf{G}_{\mathbf{2}}$ - β-CyD in 0.1 M HCL-KCI Buffer (pH 1.1, $\mu=0.2$)

Rate Constant	Value a at Indicated Temperature $\times 10^{3}, \mathrm{~h}^{-1}$		
	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
k_{1}	0.89	4.87	23.8
k_{2}	$2.25(0.32)^{b}$	$14.7(2.10)$	$45.6(6.51)$
k_{3}	$2.49(0.36)$	$14.7(2.10)$	$48.7(6.96)$
$k_{3}{ }^{c}$	$2.65(0.38)$	$14.3(2.04)$	$49.7(7.10)$
$k_{8}{ }^{\sigma}$	$2.72(0.39)$	$14.1(2.00)$	$52.1(7.44)$

[^0]

Figure 5-Arrhenius plots for hydrolysis rates of $\mathrm{G}_{2}-\beta-\mathrm{CyD}, \mathrm{G}_{1}-\beta-\mathrm{CyD}$, and parent β-CyD in $0.1 \mathrm{M} \mathrm{HCl}-\mathrm{KCl}$ buffer ($\mathrm{pH} 1.1, \mu=0.2$). Key: (O) $k_{1} ;(\Theta) k_{2} ;(\Delta) k_{3} ;(\Delta) k_{6}$.

Table It-Thermodynamic Activation Parameters* for Hydrolysis of $\mathrm{G}_{2}-\boldsymbol{\beta}$-CyD in $0.1 \mathrm{M} \mathbf{H C - K C l}$ Buffer ($\mathrm{PH} 1.1, \mu=0.2$) at $60{ }^{\circ} \mathrm{C}$

Rate Constant	ΔG^{*}, $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$	$\Delta \boldsymbol{H}^{* \prime}$ $\mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$	$\mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$

${ }^{\text {a }}$ Standard errors $(\mathrm{n}=3): \Delta G^{*}, \pm 2 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} ; \Delta H^{4}, \pm 2 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$; and $\Delta S^{+}, \pm 7 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$. ${ }^{\mathrm{b}}$ The values in parentheses are activation parameters for the one-bond cleavage. ${ }^{\circ}$ Determined from the hydrolysis of parent β-CyD.
indicate the hydrolysis of $\beta-\mathrm{CyDs}$ according to the A-1 mechanism (i.e., the protonated species, SH^{+}in Scheme II, is unimolecularly decomposed). ${ }^{8}$ Of course, the positive change of ΔS^{*} may be at least partly responsible for the positive entropy change of the proton-transfer reaction, because k_{1}, k_{2}, and k_{3} were functions of the equilibrium constant of the protonation, as shown by eqs 7-9. Activation enthalpies and entropies for the hydrolysis of disaccharides are usually $120-170 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ and $20-75 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$, respectively. ${ }^{10}$ The activation parameters of the ring opening of β-CyDs were comparable to those ($\triangle H^{*}=129$ and $133 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ and $\triangle S^{*}$ $=27$ and $31 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$ in $\sim 0.1 \mathrm{~N} \mathrm{HCl}$ at $60^{\circ} \mathrm{C}$) of maltose reported by Wolfrom et al. ${ }^{15}$ and Szejtli et al. ${ }^{13,14}$ On the other hand, the activation parameters of maltose in the branch of $\mathrm{G}_{2}-\beta$-CyD were relatively higher. The larger entropy gain observed for the latter may be a result of increased motional freedom when going to the transition state, because of splitting of the bulky macrocyclic ring from the maltose moiety. For ring opening of β-CyDs, less motional freedom may be necessary because of the intramolecular hydrolysis. Figure 6 shows the isokinetic relationship for the hydrolysis of the three kinds of β-CyDs. The plot of ΔH^{*} versus ΔS^{*} for one-bond cleavage was linear (correlation coefficient, 0.999); therefore, hydrolysis of the β-CyDs followed the same mechanism. The isokinetic temperature calculated from the slope of the line was 272 K , and the points of ΔH^{*} and ΔS^{*} of maltose reported by Wolfrom ${ }^{15}$ and Szejtli ${ }^{13,14}$ fell well on the

Figure 6-Isokinetic relationship for hydrolysis of $\mathrm{G}_{2}-\beta-\mathrm{CyD}, \mathrm{G}_{1}-\beta-\mathrm{CyD}$, and parent β-CyD. Key: (O) $k_{1} ;(\Theta) k_{2} ;(\Delta) k_{3} ;(\Delta) K_{8} ;(\square)$ hydrolysis of maltose reported by Wolfrom ${ }^{15}$; ((\square) hydrolysis of maltose reported by Szejtll. 13.14
straight line.
In conclusion, $\mathrm{G}_{2}-\beta$-CyD was hydrolyzed via two pathways in acidic solution: ring opening and cleavage of maltose in the branch. Ring opening was apparently faster ($\sim 2-3$ times) than maltose cleavage because of the multiple hydrolysis sites of the $\beta-\mathrm{CyD}$ ring (seven glycosidic linkages) compared with one reaction site of maltose residue in the branch. It is a pharmaceutical advantage that the $\alpha-1,6$-glycosidic bond of branched β-CyDs resists hydrolysis, because no precipitation of parent β-CyD, which has low aqueous solubility $(1.8 \% \mathrm{w} / \mathrm{v}$ at $25^{\circ} \mathrm{C}$), after hydrolysis will occur.

In this study, we focused on the hydrolysis of the maltose residue in the branch and the apparent ring opening. To clarify the detailed features of the hydrolysis of branched β-CyDs, particularly after the ring opening, fractional analysis of the hydrolysates of noncyclic oligosaccharides will be necessary.

References and Notes

1. Okada, Y.; Tachibana, M.; Koizumi, K.Chem. Pharm. Bull. 1990, 38, 2047-2049.
2. Kanda, Y.; Yamamoto, Y.; Inoue, Y.; Chujo, R.; Kobayashi, S. Bull. Chem. Soc. Jpn. 1989, 62, 2002-2008.
3. Yamamoto, M.; Yoshida, A.; Hirayama, F.; Uekama, K. Int. J. Pharm. 1989, 49, 163-171.
4. Uekama, K.; Hirayama, F. In Handbook of Amylases and Related Enzymes; Amylase Research Society of Japan, Ed.; Pergamon: Oxford, U.K., 1988; pp 238-243.
5. Uekama, K.; Irie, T. Drug Invest. 1990, 2, Suppl. 4, 22-28.
6. Abe, J.; Mizowaki, N.; Hizukuri, S.; Koizumi, K.; Utamura, T. Carbohydr. Res. 1986, 154, 81-92.
7. Shiraishi, T.; Fujimoto, D.; Sakano, Y. Agric. Biol. Chem. 1989, 53, 3093-3095.
8. BeMiller, J. N. Adv. Carbohydr. Chem. 1967, 22, 25-108.
9. Heyraud, A.; Rinaudo, M. Eur. Polym. J. 1981, 17, 181-189.
10. Laidler, K. J. Reaction Kinetics, Vol. II. Reactions in Solution; Pergamon: Oxford, U.K., 1963.
11. Hamett, L. P. Physical Organic Chemistry; McGraw-Hill Kogakusha: Tokyo, 1970; pp 267-286.
12. Schönberger, B. P.; Jansen, A. C. A.; Janssen, L. H. M. In Proceedings of the Fourth International Symposium on Cyclodextrins; Huber, O.; Szejtli, J., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 1988; pp 61-63.
13. Szejtli, J.; Budai, Z. Acta Chim. Acad.Sci. Hung. 1976, 91, 73-80.
14. Szejtli, J. Cyclodextrins and Their Inclusion Complexes; Akadémiai Kiad6: Budapest, 1982; pp 38-40.
15. Wolfrom, M. L.; Thompson, A.; Timberlake, C. E. Cereal Chem. 1963, 40, 82-86.

[^0]: - Average values of triplicate runs, which were within 5% of each other. ${ }^{\text {b }}$ The values in parentheses are rate constants for the one-bond cleavage. ${ }^{c}$ Determined from the hydrolysis of $\mathrm{G}_{1}-\beta-\mathrm{CyD}$ as a starting substrate. ${ }^{d}$ Determined from the hydrolysis of parent β-CyD.

