SYNTHESIS AND PROPERTIES **OF INORGANIC COMPOUNDS**

Solubility of YF₃, CeF₃, PrF₃, NdF₃, and DyF₃ in Solutions Containing Sulfuric and Phosphoric Acids

E. P. Lokshin and O. A. Tareeva

Institute of Rare Element and Mineral Chemistry and Technology, Kola Research Center, Russian Academy of Sciences, ul. Fersmana 14, Apatity, Murmansk oblast, 184200 Russia Received November 27, 2006

Abstract—The solubility of YF₃, CeF₃, PrF₃, NdF₃, and DyF₃ in solutions containing 0-4.496% mol/L (0-35 wt %) of H₂SO₄ and 0–27.6 g/L of H₃PO₄ (0–20 g/L of P₂O₅) at 20°C was determined. Higher solubility in sulfuric acid solutions compared to that in hydrochloric and phosphoric acid solutions was attributed to the formation of fluorosulfate complexes $M_2(SO_4)F_4$ (M = Y, Ce, Pr, Nd, Dy). The effect of minor concentrations of the phosphate ions on the solubility of YF₃, CeF₃, PrF₃, NdF₃, and DyF₃ in sulfuric acid solutions and the effect of fluoride ions on the recovery of lanthanides during sulfuric acid leaching from the phosphohemihydrate were discussed.

DOI: 10.1134/S0036023607120042

The product called phosphohemihydrate, which is formed upon processing of Khibiny apatite concentrate into mineral fertilizers, is a promising industry-produced raw material for lanthanides [1]. Although the main bulk of lanthanides is contained in phosphohemihydrate as also hydrated orthophosphates [2], phosphohemihydrate also includes substantial amounts of sodium and potassium fluorosilicates, which are hydrolyzed to give fluoride ions; this may result in the formation of poorly soluble lanthanide fluorides. In view of the development of a sulfuric acid process for the recovery of lanthanides from phosphohemihydrate [3], knowledge of the solubility of lanthanide fluorides in solutions containing sulfuric and phosphoric acids is of considerable practical interest.

Data on the solubility of lanthanide fluorides in mineral acids, in particular, in sulfuric and phosphoric acids, are scarce. It was found that the solubility of LaF₃ and YbF₃ in solutions containing 0–2.355 mol/L (0-20 wt %) of H₂SO₄ and 0-27.6 g/L of H₃PO₄ (0-20 g/L)of P_2O_5) is much higher than their solubility in monobasic acids, which was attributed to the formation of complex fluorosulfate anions $SO_4F^{3-}[4]$.

In phosphoric acid solutions, LaF₃ is almost insoluble, whereas YbF₃ has a substantial solubility, which increases with increasing H_3PO_4 concentration. This was attributed to the fact that lanthanum precipitates from dilute solutions of phosphoric acid as LaPO₄, whereas ytterbium apparently forms more soluble hydrated compounds (YbPO₄ \cdot 4H₂O or YbPO₄ \cdot 2H₂O) in dilute solutions of H_3PO_4 [4].

This work continues studies on the solubility of lanthanide fluorides with the concentration range of sulfuric acid being extended to 4.496 mol/L (35 wt %).

RESULTS AND DISCUSSION

Dysprosium fluoride (TU 6-09-4677-83), sulfuric acid (GOST 4204-77), and phosphoric acid (GOST 6552-80) were reagent grade chemicals. Yttrium, cerium, praseodymium, and neodymium fluorides were prepared by reacting lanthanide nitrates with hydrofluoric acid taken in a 20% excess with respect to the stoichiometry [5]. Gel-like precipitates were separated from the mother liquor by centrifugation, washed with distilled water to remove nitrate ions and excess HF, dried, and triturated in a mortar. Reagent grade chemicals were used for the synthesis. The procedure for investigation was similar to that reported previously [4]. The results are presented in Tables 1–5.

The solubilities of lanthanide fluorides in water were found to be much lower than those reported previously (calculated for the oxides Ln_2O_3 , g/L) which were as follows: YF₃, 0.0024 [6]; CeF₃, 0.0051–0.0075; PrF₃, 0.0034–0.005; NdF₃, 0.0027–0.0168; and DyF₃, 0.0165 [7].

NdF₃ is almost insoluble in phosphoric acid solutions, while the other fluorides start to dissolve with an increase in the H₃PO₄ concentration. Apparently, this is due to the fact that neodymium precipitates from dilute solutions of phosphoric acid as poorly soluble anhydrous NdPO₄ [8], whereas yttrium, cerium, praseodymium, and dysprosium form more soluble hydrated compounds: $YPO_4 \cdot 2H_2O$ [9], $CePO_4 \cdot H_3PO_4 \cdot yH_2O$ [10], $PrPO_4 \cdot 2.5H_2O$ [11], and $PrPO_4 \cdot 3H_2O$ [12]; as the degree of hydration increases, the solubility increases.

Upon increase in the H_2SO_4 concentration in the concentration range studied, the YF₃ and CeF₃ solubil-

Table 1. Solubility of YF_3 in $H_2SO_4\text{--}H_3PO_4$ solutions at $(20\pm1)^\circ\text{C}$

c _{H2SO4} , mol/L	Content of Y_2O_3 at P_2O_5 concentration, g/L							
	0	5	12	20				
0	0.0002	0.0008	0.0033	0.0061				
0.312	0.33	0.34	0.38	0.41				
0.635	0.59	0.61	0.63	0.66				
0.971	0.79	0.81	0.81	0.82				
1.32	0.96	1.0	1.0	1.1				
1.81	1.2	1.2	1.2	1.27				
2.325	1.35	1.40	1.40	1.43				
3.004	1.46	n.d.*	n.d.	n.d.				
3.727	1.47	n.d.	n.d.	n.d.				
4.496	1.46	n.d.	n.d.	n.d.				

* Here and in Tables 2-5, n.d. stands for not determined.

ities reach a maximum at $c_{H_2SO_4} = 3.004$ mol/L and then remain almost invariable for $c_{H_2SO_4} = 3.004$ – 4.496 mol/L. The solubilities of NdF₃ and DyF₃ increase with an increase in $c_{H_2SO_4}$ over the whole range studied. In terms of the solubility (mol/L) in solutions of sulfuric and phosphoric acids of the same composition, lanthanide fluorides can be arranged in the following sequence: CeF₃ < LaF₃ < NdF₃ < YF₃ < PrF₃ < DyF₃ \ll YbF₃. As for LaF_3 and YbF_3 , the solubilities of YF_3 in HNO_3 and $HClO_4$ [13] and YF_3 and NdF_3 in HCl [14] are lower than those in the sulfuric acid solution with the same normality.

The dissolution of lanthanide fluorides in sulfuric acid can be described by the reactions [4]

$$2MF_3 + 3H_2SO_4 \longleftrightarrow M_2(SO_4)_3 + 6 \text{ HF}, \qquad (1)$$

$$2MF_3 + 2H_2SO_4 \longrightarrow 2MSO_4F + 4HF$$
(2)

or

$$2MF_3 + H_2SO_4 \longrightarrow M_2(SO_4)F_4 + 2HF, \qquad (3)$$

with the following equilibrium constants, respectively [4]:

$$K_{c_{1}} = K_{1} \frac{6^{6} [M_{2}O_{3}]^{7}}{[H_{2}SO_{4}]^{3}}, \quad K_{c_{2}} = K_{2} \frac{4^{4} [M_{2}O_{3}]^{5}}{\gamma^{2} [H_{2}SO_{4}]^{2}}$$
and $K_{c_{3}} = K_{3} \frac{2^{2} [M_{2}O_{3}]^{3}}{\gamma [H_{2}SO_{4}]}.$
(4)

In Eqs. (4), $[M_2O_3]$ and $[H_2SO_4]$ are, respectively, the lanthanide oxide and sulfuric acid concentrations in solution, mol/L; and γ is the activity coefficient of sulfuric acid.

The K_{c_1} , K_{c_2} , and K_{c_3} values calculated from experimental data are presented in Table 6. In calculations, the activity coefficients of hydrofluoric acid and lanthanide cations were assumed to be fixed (they are taken into account by K_1 , K_2 , and K_3); the γ values for sulfuric acid at different concentrations were taken from [15].

The K_{c_1}/K_1 , K_{c_2}/K_2 , and K_{c_3}/K_3 values for YF₃, CeF₃, PrF₃, NdF₃, and DyF₃ calculated from experi-

$c_{\mathrm{H_2SO_4}},$ mol/L	Content of Ce_2O_3 at P_2O_5 concentration, g/L								
	0	2	5	8	12	16	20		
0	0.001	0.002	0.001	0.0016	0.001	0.001	0.003		
0.312	0.0582	0.048	0.046	0.032	0.041	0.040	0.040		
0.635	0.305	0.29	0.31	0.30	0.29	0.26	0.27		
0.971	0.381	0.36	0.35	0.32	0.33	0.35	0.33		
1.32	0.553	0.52	0.51	0.49	0.49	0.49	0.48		
1.81	0.734	0.66	0.70	0.68	0.61	0.61	0.60		
2.325	0.820	0.77	0.73	0.71	0.73	0.71	0.68		
3.004	0.830	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.		
3.727	0.830	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.		
4.496	0.820	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.		

Table 2. Solubility of CeF₃ in H_2SO_4 - H_3PO_4 solutions at $(20 \pm 1)^{\circ}C$

c _{H2SO4} , mol/L	Content of Pr ₂ O ₃ at P ₂ O ₅ concentration, g/L							
	0	5	12	20				
0	0.00023	0.00035	0.0008	0.0071				
0.312	0.35	0.20	0.15	0.14				
0.635	0.84	0.60	0.54	0.44				
0.971	1.14	0.94	0.77	0.73				
1.32	1.56	1.30	1.21	1.13				
1.81	2.29	2.19	2.00	1.80				
2.325	3.02	2.71	2.57	2.46				
3.004	3.00	n.d.	n.d.	n.d.				
3.727	3.08	n.d.	n.d.	n.d.				
4.496	3.14	n.d.	n.d.	n.d.				

Table 3. Solubility of PrF_3 in H_2SO_4 - H_3PO_4 solutions at $(20 \pm 1)^{\circ}C$

mental data are summarized in Table 6. It can be seen that, upon variation of $c_{\rm H,SO_4}$ from 1.32 to 3.727 mol/L,

 K_{c_3}/K_3 changes little, which can imply the existence of complexes M₂(SO₄)F₄ (M = Y, Ce, Pr, Nd, Dy) in sulfuric acid solutions.

The formation of fluorosulfate ions in concentrated solutions of sulfuric and hydrofluoric acids was established experimentally. In a study of the Ln_2O_3 -TiO₂- H_2SO_4 -HF-H₂O systems (Ln = Y, Ce, Nd), the fluorosulfates YSO₄F · 2H₂O [16], CeSO₄F · 2H₂O [17], and NdSO₄F · *n*H₂O [18] crystallized at 50–75°C (CeSO₄F · 2H₂O was not formed at 50°C) from solutions containing 6–8 wt % HF, 0.15–3.52 wt % Ln₂O₃, and 44–60 wt % H₂SO₄. High concentrations of titanium did not hamper the formation of lanthanide fluorosulfates if the HF : TiO₂ molar ratio in the initial solution was not lower than 4 (mol/mol). For molar ratios HF : TiO₂ > 4, the solid phase consisted of a CeSO₄F · 2H₂O and CeF₃ mixture [17]. This attests indirectly to a high stability of fluorosulfate complexes of lanthanides.

A decrease in temperature may result in the formation of fluorosulfate complexes of more intricate composition.

Although a study of LaF₃ and YbF₃ solubility in solutions containing 0–2.325 mol/L H₂SO₄ demonstrated the formation of MSO₄F [4], the composition of complexes formed at room temperature might be determined more precisely by studying the solubilities of LaF₃ and YbF₃ over a broader range of $c_{\rm H,SO_4}$.

Content of Nd₂O₃ at P₂O₅ concentration, g/L $c_{\mathrm{H}_{2}SO_{4}}$, mol/L 0 2 5 8 12 16 20 0 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.312 0.19 0.13 0.11 0.093 0.085 0.079 0.078 0.39 0.635 0.37 0.35 0.36 0.37 0.37 0.32 0.971 0.52 0.53 0.52 0.50 0.58 0.57 0.54 0.65 0.70 0.75 0.76 0.78 0.70 1.320 0.71 1.810 0.82 0.84 0.88 0.95 0.90 0.98 0.96 2.325 0.95 1.00 1.05 1.05 1.03 1.09 1.1 1.03 3.004 n.d. n.d. n.d. n.d. n.d. n.d. 1.07 3.727 n.d. n.d. n.d. n.d. n.d. n.d. 4.496 1.11 n.d. n.d. n.d. n.d. n.d. n.d.

Table 4. Solubility of NdF₃ in H_2SO_4 - H_3PO_4 solutions at $(20 \pm 1)^{\circ}C$

Table 5. Solubility of DyF_3 in $H_2SO_4\text{--}H_3PO_4$ solutions at $(20\pm1)^\circ\text{C}$

$c_{\mathrm{H}_{2}\mathrm{SO}_{4}},$	Content of Dy_2O_3 at P_2O_5 concentration, g/L							
mol/L	0	5	12	20				
0	0.0003	0.025	0.043	0.067				
0.312	0.87	0.76	0.80	0.77				
0.635	2.01	1.91	1.81	1.80				
0.971	2.71	2.73	2.81	2.82				
1.32	3.89	3.62	3.60	3.50				
1.81	4.45	4.40	4.38	4.35				
2.325	4.49	4.41	4.51	4.40				
3.004	4.53	n.d.	n.d.	n.d.				
3.727	4.59	n.d.	n.d.	n.d.				
4.496	4.78	n.d.	n.d.	n.d.				

The effects of the phosphoric acid concentrations on the solubility in sulfuric acid solutions are different. The solubility of YF₃ increases and those of CeF₃ and PrF₃ decrease with an increase in the H₃PO₄ concentration over the whole range of the H₂SO₄ concentrations studied. An especially pronounced decrease in the solubility was found for PrF₃. The solubilities of NdF₃ and DyF₃ decrease at low H₂SO₄ concentrations but remain almost invariable or slightly increase at higher $c_{H_2SO_4}$ concentrations. Generally, the change in the solubility of lanthanide fluorides in sulfuric and phosphoric acid solutions attests to an intricate nature of the lanthanide complexation in these solutions.

In view of the solubilities of lanthanide fluorides found experimentally in a previous study [4] and in the present study, sulfuric acid leaching of praseodymium, dysprosium, and ytterbium fluorides should proceed efficiently, while leaching of yttrium, lanthanum, cerium, and neodymium fluorides from phosphohemi-

Table 6. Dependence of K_{c_1}/K_1 , K_{c_2}/K_2 and K_{c_3}/K_3 on H₂SO₄ concentration

Fluoride-		$c_{\mathrm{H_2SO_4}},\mathrm{mol/L}$									
	0.312	0.635	0.971	1.32	1.81	2.325	3.004	3.727	4.496		
	K_{c_1}/K_1 , mol ⁴ L ⁻⁴										

YF_3	3.57×10^{-12}	4.67×10^{-11}	1.43×10^{-10}	2.45×10^{-10}	4.63×10^{-10}	4.45×10^{-10}	2.81×10^{-10}	1.06×10^{-10}	0.37×10^{-10}
CeF ₃	3.37×10^{-18}	3.38×10^{-14}	6.36×10^{-14}	3.78×10^{-13}	10.9×10^{-13}	9.95×10^{-13}	3.96×10^{-13}	1.43×10^{-13}	0.47×10^{-13}
PrF ₃	3.81×10^{-13}	3.92×10^{-11}	1.31×10^{-10}	5.18×10^{-10}	3.02×10^{-9}	8.82×10^{-9}	3.07×10^{-9}	1.33×10^{-9}	5.5×10^{-10}
NdF ₃	4.64×10^{-15}	1.59×10^{-13}	4.70×10^{-13}	9.86×10^{-13}	19.8×10^{-13}	23.4×10^{-13}	15.1×10^{-13}	7.10×10^{-13}	3.31×10^{-13}
DyF ₃	9.48×10^{-11}	7.46×10^{-9}	2.39×10^{-8}	13.2×10^{-8}	13.4×10^{-8}	6.01×10^{-8}	2.33×10^{-8}	0.92×10^{-8}	0.44×10^{-8}
$K_{c_2}/K_2, \text{mol}^3 \text{L}^{-3}$									

YF ₃	5.23×10^{-10}	3.53×10^{-9}	8.18×10^{-9}	12.5×10^{-9}	20.6×10^{-9}	20.9×10^{-9}	15.8×10^{-9}	8.28×10^{-9}	4.05×10^{-9}
CeF ₃	1.38×10^{-14}	2.02×10^{-11}	3.31×10^{-11}	12.3×10^{-11}	27.3×10^{-11}	26.7×10^{-11}	14.5×10^{-11}	7.36×10^{-11}	3.50×10^{-11}
PrF ₃	1.06×10^{-10}	3.11×10^{-9}	7.71×10^{-9}	2.14×10^{-8}	0.79×10^{-7}	1.76×10^{-7}	0.87×10^{-7}	0.50×10^{-7}	0.28×10^{-7}
NdF ₃	4.54×10^{-12}	6.09×10^{-11}	1.38×10^{-10}	2.44×10^{-10}	4.19×10^{-10}	4.93×10^{-10}	3.77×10^{-10}	2.31×10^{-10}	1.40×10^{-10}
DyF ₃	5.44×10^{-9}	1.32×10^{-7}	3.17×10^{-7}	11.2×10^{-7}	11.8×10^{-7}	6.94×10^{-7}	3.71×10^{-7}	2.01×10^{-7}	1.24×10^{-7}
	$K_{\rm c_2}/K_3,{\rm mol}^2{\rm L}^{-2}$								

YF ₃	2.19×10^{-7}	7.59×10^{-7}	1.34×10^{-6}	1.82×10^{-6}	2.62×10^{-6}	2.79×10^{-6}	2.52×10^{-6}	1.83×10^{-6}	1.27×10^{-6}
CeF ₃	3.89×10^{-10}	3.41×10^{-8}	4.9×10^{-8}	1.13×10^{-7}	1.95×10^{-7}	2.04×10^{-7}	1.51×10^{-7}	1.07×10^{-7}	0.74×10^{-7}
PrF ₃	8.38×10^{-8}	7.03×10^{-7}	1.29×10^{-6}	2.51×10^{-6}	5.84×10^{-6}	10.0×10^{-6}	7.04×10^{-6}	5.42×10^{-6}	4.09×10^{-6}
NdF ₃	1.27×10^{-8}	6.64×10^{-8}	1.15×10^{-7}	1.72×10^{-7}	2.52×10^{-7}	2.95×10^{-7}	2.69×10^{-7}	2.14×10^{-7}	1.7×10^{-7}
DyF ₃	8.91×10^{-7}	6.68×10^{-6}	1.2×10^{-5}	2.69×10^{-5}	2.97×10^{-5}	2.28×10^{-5}	1.68×10^{-5}	1.24×10^{-5}	1.00×10^{-5}

RUSSIAN JOURNAL OF INORGANIC CHEMISTRY Vol. 52 No. 12 2007

hydrate may be difficult if the total lanthanide concentration in leaching solutions exceeds 1-1.5 g/L.

CONCLUSIONS

The solubility of YF₃, CeF₃, PrF₃, NdF₃, and DyF₃ in solutions containing 0–4.496% mol/L (0–35 wt %) of H₂SO₄ and 0–27.6 g/L of H₃PO₄ at 20°C was determined. NdF₃ is almost insoluble in phosphoric acid solutions, whereas the other fluorides studied start to dissolve with an increase in the H₃PO₄ concentration. In terms of the solubility in solutions of sulfuric and phosphoric acids of the same composition, lanthanide fluorides can be arranged in the following sequence CeF₃ < LaF₃ < NdF₃ < YF₃ < PrF₃ < DyF₃ \ll YbF₃.

The higher solubility of lanthanide fluorides in solutions of sulfuric acid with respect to their solubility in monobasic acids is due to the formation of fluorosulfate complexes. At room temperature, the formation of $M_2(SO_4)F_4$ is most probable.

Sulfuric acid leaching of praseodymium, dysprosium, and ytterbium fluorides from phosphohemihydrate should be efficient, while that of yttrium, lanthanum, cerium, and neodymium fluorides may be difficult if the total lanthanide concentration in leaching solutions exceeds 1-1.5 g/L.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project no. 06-08-00223-a) and by the Federal Target Scientific and Technical Program (2006-RI-112.0/001/268).

REFERENCES

- E. P. Lokshin, V. N. Lebedev, V. A. Masloboev, et al., Mineral. Syr'e, No. 7, 122 (2000).
- E. P. Lokshin, A. V. Vershkov, Yu. A. Vershkova, et al., Proceedings of the Conference "Chemistry and Chemical Technology in Development of the Natural Resourses of the Kola Peninsula", Apatity (Russia), 1998 (KNTs RAN, Apatity, 1998), p. 31 [in Russian].

- E. P. Lokshin, K. G. Ivlev, and O. A. Tareeva, Zh. Prikl. Khim. 78 (11), 1796 (2005).
- E. P. Lokshin, Yu. A. Vershkova, K. G. Ivlev, and O. A. Tareeva, Zh. Neorg. Khim. 49 (4), 707 (2004) [Russ. J. Inorg. Chem. 49 (4), 645 (2004)].
- 5. V. V. Serebrennikov, *The Chemistry of the Rare-Earth Elements* (Tomsk. Univ., Tomsk, 1956), Vol. 1 [in Russian].
- 6. V. V. Serebrennikov and O. Vasil'eva, *Tr. Tomsk. Univ.*, *Ser. Khim.*, No. 185, 54. (1965).
- P. M. Menon and J. James, J. Chem. Soc., Faraday Trans. 59 (9), 2683 (1989).
- I. V. Tananaev, E. G. Davitashvili, N. A. Dzhabishvili, and M. V. Landiya, Izv. Akad. Nauk SSSR, Neorg. Mater. 9 (12), 2174 (1973).
- 9. A. I. Ul'yanov and T. I. Kazakova, Izv. Akad. Nauk SSSR, Ser. Khim., No. 7, 1157 (1963).
- N. A. Dzhabishvili and L. N. Kargareteli, in *Studies in* the Chemistry of Complex and Simple Compounds of Some Transition and Rare Metals (Metsniereba, Tbilisi, 1978), issue 3, p. 110 [in Russian].
- 11. I. V. Tananaev and N. A. Dzhabishvili, Izv. Akad. Nauk SSSR, Neorg. Mater. **5** (8), 1402 (1969).
- N. A. Dzhabishvili and E. G. Davitashvili, in *Studies in* the Chemistry of Complex and Simple Compounds of Some Transition and Rare Metals (Metsniereba, Tbilisi, 1970), p. 109 [in Russian].
- A. Makhmadmurodov, Kh. Sh. Dzhuraev, G. Komilova, and V. Karimov, Dokl. Akad. Nauk TadzhikSSR 15 (9), 40 (1972).
- 14. D. D. Ikrami and G. Komilova, in *Chemistry in Tajikistan* (Donish, Dushanbe, 1973), p. 232 [in Russian].
- Topics of Physical Chemistry of Electrolyte Solutions, Ed. by G. I. Mikulin (Khimiya, Leningrad, 1968), p. 420 [in Russian].
- V. I. Belokoskov, N. I. Zaginaichenko, T. V. Akhmetova, et al., in *Chemistry and Technology of the Natural Mineral Resources of the Kola Peninsula* (Nauka, St. Petersburg, 1992), pp. 94–104 [in Russian].
- V. I. Belokoskov, N. I. Zaginaichenko, T. V. Akhmetova, et al., in *Chemistry and Technology of the Natural Mineral Resources of the Kola Peninsula* (Nauka, St. Petersburg, 1992), p. 85 [in Russian].
- E. B. Panasenko, N. I. Zaginaichenko, V. I. Belokoskov, et al., Zh. Neorg. Khim. 33 (12), 3171 (1988).