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The application of electrophilic late-transition-metal com-
plexes in catalysis has enjoyed widespread success in recent
years.[1–6] We have been investigating electrophilic platinum
complexes for catalysis and hydrocarbon C�H bond activa-
tion[7,8] and recently reported a simple strategy for obtaining
unsaturated electrophilic metal centers by addition of bulky
bis(N-arylamino)phosphenium cations, easily derived from
bis(N-aryl)diimines.[9] Detailed theoretical investigations[10] of
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the electronic structure of these phosphenium cations, their
donor–acceptor adducts, and transition-metal complexes
showed them to be excellent p acceptors, but poor s donors[11]

and thus complementary to N-heterocyclic carbenes (NHCs,
which are good s donors, poor p acceptors).[12]

Herein we report the synthesis, characterization, and
electronic structure of an N-heterocyclic carbene adduct
(CN2) of the bis(N-mesitylamino)phosphenium cation [PN2

+,
Eq. (1); mes= 2,4,6-Me3C6H2, Tf= SO2CF3]. In the reaction
of this adduct with [Pt(PPh3)3] to form the
[Pt(PPh3)(PN2)(CN2)]

+ ion, we demonstrate that NHC-phos-
phenium adducts are particularly well suited for preparing the
first platinum phosphenium complexes, supplying both excel-
lent s-donor and p-acceptor ligands from the same reagent.

Phosphenium cations[13] have experienced a resurgence as
ligands for transition metals[9,14] and main-group elements,[15]

and as p-acceptor ligands for homogeneous catalysis.[16] We
are interested in cyclic bis(N-arylamino)phosphenium cations
as “bulky CO” ligands that create electrophilic metal centers
and also offer a Lewis acid function in the metal's coordina-
tion sphere for bifunctional catalysis.[17] Given the poor s-
donor ability of phosphenium cations,[10b] stable donor–ac-
ceptor adducts (L!PN2)

+ could serve as useful reagents by
supplying both donor and acceptor ligands to the metal. As
our previously reported PMe3 adducts were formed rever-
sibly,[9] we investigated the stronger donor NHC ligand 2.[18]

Reaction of [PK N(mes)CH2CH2NL (mes)]OTf (1) with NHC
(2 ; CN2)

[19] afforded the donor–acceptor adduct [N2CD!
PN2]OTf (3) as a colorless solid in good yield.[20] Adduct 3 was
characterized by NMR spectroscopy and its electronic
structure determined using density functional theory (DFT).
The 31P chemical shift of 3 (d= 113.7 ppm) is significantly
upfield from that of 1 (d= 188.6 ppm) whereas the carbene
carbon resonance shifts from d= 214.4 ppm in CN2 to d=

165.7 ppm in 3 and exhibits a large one-bond C�P coupling
constant (199 Hz). Similar NHC–phosphinidene complexes,
albeit with two-coordinate phosphorus centers, feature JC-P
coupling constants of approximately 100 Hz.[21] In contrast to
the PMe3 adduct,[9] variable temperature 31P and 13C NMR
spectra of 3 showed no shifting of the resonance signals (as
would be expected for reversible adduct formation) but only a
gradual sharpening as the temperature was lowered. Hin-
dered rotation about the N�Cmes bond leads to very broad
resonances in the proton NMR spectrum at 25 8C, as observed
previously for PN2Cl

[9] and confirmed for 3 by observation of
six different mesityl methyl signals at �56 8C in the
13C NMR.[22] We have studied the model adduct [(MK eNN=
CMeNMe)CL !PK (NMeCH2CH2NL Me)]+ (Figure 1) with

hybrid DFT (B3LYP and the 6-31G* basis
set).[23] The calculation finds a P�C bond length
of 1.91 E and an angle between the vector
which bisects the PN2 angle and the P–C vector
of only 1038, indicative of partial rehybridiza-
tion at the phosphorus center. These parame-
ters can be contrasted with the other reported
NHC-phosphenium cation adduct,[18] [carb:!
PPh2]AlCl4 (4, carb= 2,3-dihydro-1,3-diiso-
propyl-4,5-dimethylimidazol-2-ylidene) in
which our calculated P�C bond length is

1.87 E (experimentally determined: 1.813(7) E) and the
analogous angle involving the PPh2 unit is 1138(experimen-
tally determined: 112.78). The NHC adduct of the more
electrophilic [PPh2]

+ ion may thus be better represented as an
imidazolatophosphane with a lone pair at phosphorus,
whereas the N donors in 3 stabilize the localized positive
charge on the phosphorus center. Adduct 3 is also distin-
guished from adducts of diaminophosphenium cations with
electrophilic carbenes, such as [(Me3Si)2C=P(NiPr2)2]

+ which
has d(13C)= 76.51 ppm (JC-P= 87.6 Hz) and dP-C=
1.620(3) E.[24]

Reaction of adduct 3 with [Pt(PPh3)3] displaces two
phosphane ligands to give three-coordinate [Pt(phosphane)-
(phosphenium)(carbene)]OTf [5, Eq. (2)].[25] While plati-

num(0) phosphane complexes participate readily in oxidative
addition reactions, cleavage of the P�C bond in 3 affords a
zerovalent product and may therefore be considered a “non-
oxidative addition” reaction similar to those of tetraamino-
ethylene derivatives that afford bis(diaminocarbene) metal
complexes.[26] Complex 5 may also be obtained from stepwise
reactions of the phosphenium cation with [Pt(PPh3)3] to yield
PPh3 and [Pt(PPh3)2(phosphenium)][OTf], (6)[27] followed by

Figure 1. Optimized structure (DFT) of model NHC–phosphenium
cation adduct. Orange=P, lilac=N, gray=C, white=H.
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treatment with NHC 2 to liberate another PPh3 and afford 5
[Eq. (2)]; in contrast, [Pt(PPh3)3] did not react readily with the
NHC ligand.

Complexes 5 and 6 were characterized by elemental
analysis and NMR spectroscopy and the molecular and
electronic structure of 5were determined by X-ray diffraction
(Figure 2)[28] and DFT calculations. The Pt-P coupling con-

stants for the phosphenium ligands in 5 (7354 Hz) and 6
(6498 Hz) were significantly larger than those for the
phosphane ligands (3795 and 4237 Hz, respectively). These
large coupling constants correlate with short Pt�P bond
lengths; that in 5 is the shortest reported to date[29]

(2.116(3) E) and is approximately 7% shorter than the
average bond length found in tricoordinate [Pt(PPh3)3] (ca.
2.266 E).[30] While the structure of the NHC ligand in 5
(C2 axis bisecting C(22) and N(4) and passing through the
N(3)–C(Ar) vector) allows hypothetically for binding through
the carbene carbon atom or the nitrogen atom of the central
ring, platinum coordination by the carbene carbon atom was
confirmed by 13C NMR spectroscopy (d= 194.5 ppm with
JPt-C= 1614 and 2JP-C= 84.5 Hz). The PN2 and CN2 planes of
the phosphenium and carbene ligands are nearly perpendic-
ular (87.8 and 79.28) to the distorted PtP2C trigonal plane, as
predicted by DFT calculations. The perpendicular orientation
of the PN2 and CN2 planes in 5 is also apparent in DFT studies
of the model complex in which all eight aryl substituents in 5
are replaced with methyl groups. This preference can be
understood in terms of Pt (dp)–P(pp) back bonding. The
ligand field arising from the three ligand lone-pair orbitals
constitutes a pseudo D3h environment about the platinum
center. In such a situation, the two energetically highest
d orbitals are dx2�y2 and dxy in character, where the z axis is
chosen perpendicular to the plane and the x direction is
chosen to lie along the Pt–Pphosphane axis. Both orbitals are
filled in the nominally d10 complex, but note that while the
dxy–PN2 s interaction is repulsive, the dx2�y2 orbital has the

correct symmetry to interact with the PN2 empty P(pp)
orbital as observed in the HOMO of the model complex (see
Supporting Information Figure S4). A similar argument holds
for the CN2 ligand, but it is a significantly poorer p acid than
the PN2

+ ligand.[31]

In conclusion, we have prepared a cationic NHC-phos-
phenium adduct from its constituents and shown that it can
replace two phosphane ligands of [Pt(PPh3)3] with strong s-
donor NHC and effective p-acceptor phosphenium ligands.
These first examples of platinum phosphenium complexes are
characterized by short Pt�P bonds and large Pt–P coupling
constants. We are currently conducting further additions of
NHC-phosphenium adducts to transition metals and inves-
tigating the reactivity and catalytic activity of the resulting
complexes.
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