Synthesis of 2-O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)-5a-carba- α -D-mannopyranose, and 5a-carba-2-O- and 3,6-di-O-(α -D-mannopyranosyl)- α -D-mannopyranoses *

Seiichiro Ogawa and Kenji Nishi

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama, 223 (Japan)

(Received August 5th 1991; accepted November 5th, 1991)

ABSTRACT

Protected derivatives of the title carba-trisaccharide 1, and carba-disaccharides 4 and 6 have been synthesised by conventional glycosylation of the precursors 8, 9, or 22 of 5a-carba- α -D-mannopyranose with sugar halides. These are carba-sugar analogues of the oligosaccharide chains frequently occurring as structural units in biologically important glycoconjugates, and could be utilised as the building blocks for construction of higher carba-oligosaccharides of biological interest.

INTRODUCTION

Recently, interest has been focused on the preparation of biologically important carba-oligosaccharides² related to cell-surface glycans³. We envisaged contributing to elucidation of the biological role of the oligosaccharide chain of common glycoconjugates, by providing several analogues of such oligosaccharides, composed partly of carba-sugars.

In previous papers⁴ of this series, we described a synthesis of carba-disaccharides corresponding to such naturally occurring disaccharides as laminarabiose, cellobiose, maltose, and trehalose. These carba-sugar analogues have been utilized as model compounds for conformational analysis of true oligosaccharides or as substrate analogues for study of enzyme action.

We describe here the synthesis of the common branching trisaccharide 1, α -D-mannopyranosyl (1 \rightarrow 3) and (1 \rightarrow 6)-linked 5a-carba- α -D-mannopyranose, and

Correspondence to: Professor S. Ogawa, Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Kohuku-ku, Yokohama, 223 Japan.

^{*} Pseudo-Sugars, XXVIII. This paper also constitutes part II of the series Synthesis of Carba-oligosaccharides Related to Cell-surface Glycans. Part I, see ref. 1.

Scheme 1.

the disaccharide moieties 4 and 6, composed of 5a-carba- α -D-mannopyranose and D-mannopyranose or 2-acetamido-2-deoxy-D-glucopyranose, linked at C-2 through glycosyl linkages, that frequently occur as structural units in glycoconjugates. These pseudo di- and tri-saccharides should also be useful for stereochemical studies, and, conceivably, these analogues might possess inhibitory activity against certain sugar transferases.

RESULTS AND DISCUSSION

The precursor of 5a-carba- α -D-mannopyranose residue, (1S)-(1,3/2)-3-(hydroxymethyl)cyclohex-5-ene-1,2-diol (8) was first blocked by the 2,7-O-benzylidene function to transform it into the OH-1 unsubstituted derivative 9. Glycosylation of 9 with 2,3,4,6-tetra-O-benzoyl- α -D-mannopyranosyl bromide⁵ (10) in benzene in the presence of mercury(II) cyanide and Drierite for 21 h at 90° gave a single condensate 11 in 91% yield. The ¹H-NMR spectrum showed a doublet ($J_{1',2'}$ 1.8 Hz, δ 5.57) for the anomeric proton, indicative of the α -glycoside. Formation of the α -glycoside may also be expected by the nature of the glycosyl donor⁶ 10 and the reaction conditions employed. O-Debenzylidenation of 11 with aqueous 80% acetic acid for 2 h at 60° afforded the diol 12 in 84% yield. Similar glycosylation of

Scheme 2.

12 with 2 molar equivalents of 10 in benzene-nitromethane (3:2, v/v) for 3 h at reflux temperature afforded, after chromatography on a column of silica gel, crystalline di-O- 13 (52%) and tri-O-(α -D-mannopyranosyl) derivatives 15 (19%). The ¹H-NMR spectra of 13 and 15 revealed signals due to the anomeric protons at δ 5.12 and 5.47 (J 1.8 Hz), and δ 5.26, 5.49, and 5.52 (J 1.5 Hz), respectively, indicating, in conjunction with the analytical data, the presence of two and three α -mannopyranosyl residues⁷. Compound 13 was converted into the acetate 14, the ¹H-NMR spectrum of which showed a doublet of doublets (δ 5.31, $J_{1,2}$ 7.7, $J_{2,3}$ 10.6 Hz) attributable to H-2, confirming the C-1,7 positions to which α -D-mannopyranose residues were attached. Compound 11 was thus shown to be an important synthetic intermediate.

Attempts at selective glycosylation of the triol 8 were made under controlled conditions. When 8 was similarly treated with 3.5 molar equivalents of 10 in benzene-nitromethane (1:1, v/v) for one day at 0°, 13 (36%) and 15 (18%) were obtained, after chromatography, together with a minor component, the 2,7-di-O-

Scheme 3.

(α -D-mannopyranosyl) derivative **16** (2.7%). The structure of **16** was confirmed by the appearance of a triplet at δ 3.80 (*J* 8.8 Hz) due to the ring proton (C-2) attached to the carbon atom bearing the α -mannopyranose residue.

The protected precursor 13 of carba-trisaccharides should be a versatile synthetic intermediate for further transformations to various carba-oligosaccharides of biological interest.

First, epoxidation of 13 was carried out⁸ by use of two molar equivalent of *m*-chloroperoxybenzoic acid in 1,2-dichloroethane in the presence of phosphate buffer at 50°. The two products were readily separable by chromatography on silica gel to afford the crystalline α - 17 (33%) and β -epoxides 18 (49%), the ¹H-NMR spectra of which (see Table I) revealed in each a pair of signals⁸ due to epoxide protons at δ 3.62 (dd, J 4.2 and 1.3 Hz) and 3.17 (t, J 4.2 Hz), and δ 3.44 (d, J 3.3 Hz) and 3.27 (bs), respectively, supporting the proposed structures.

Treatment of 18 with an excess of sodium acetate in aqueous 90% 2methoxyethanol for 2 days at reflux temperature resulted in the preferential diaxial cleavage of the epoxide ring accompanied by complete O-debenzoylation, and the product was successively acetylated in the usual manner to afford a single carbatrisaccharide undecaacetate 2 in 98% yield. Azidolysis of 18 with an excess of sodium azide in the presence of ammonium chloride for one day at 80°, followed by acetylation, afforded a single, crystalline azide 19 (97%). The structure of 19 was confirmed by its ¹H-NMR spectrum which indicated a narrow quartet (J 2.9 Hz) at δ 4.02, attributable to the proton (H-1) bonded to the carbon atom bearing

Scheme 4.

the azido function. Cleavage of the epoxide ring thus proceeded preferentially in a diaxial fashion, and the structure of 18 was assigned on the basis of these results. Hydrogenation of 19 in ethanol-ethyl acetate (1:1) in the presence of Raney nickel and acetic anhydride afforded the N-acetyl derivative 20 (68%), which was further converted into the undeca-N,O-acetate 3 (72%) by O-deacylation with methanolic sodium methoxide and successive acetylation.

The aglycon 22, convertible into the 2-O-glycosylated 5a-carba- α -D-mannopyranose moiety, was prepared from 9 by conventional epoxidation and benzylation $(9 \rightarrow 21, 88\%)^1$. Reaction of 21 with 2% boron trifluoride-ether in benzyl alcohol at 0° proceeded selectively to afford the diaxially opened alcohol 22 (67%), the ¹H-NMR spectrum of which was fully interpreted on a first-order basis.

Condensation of 22 and 10 as in the preparation of 11 afforded a single compound 23 (90%). The signal due to the anomeric proton appeared as a doublet with a 1.5-Hz spacing at δ 5.61, supporting the assigned structure. Compound 23 was *O*-deacylated with methanolic sodium methoxide, *O*-debenzylidenated, and *O*-debenzylation by hydrogenolysis with 20% Pd(OH)₂-C, and then acetylated to give the octaacetate 5 (92%).

Likewise, condensation of 22 with 3,4,6-tri-O-acetyl-2-phthalimido-2-deoxy- β -D-glucopyranosyl bromide⁹ (24) afforded the protected carba-disaccharide 25 (87%), the ¹H-NMR spectrum of which showed a signal due to the anomeric proton as a triplet (J 8.4 Hz) at δ 5.36, indicative of the β -glycoside. Hydrazinolysis of 25 followed by acetylation gave the N-acetyl derivative 26 (77%). Hydrogenolysis of 26 with 20% $Pd(OH)_2$ -C and successive acetylation afforded 7 (93%).

Conformational analysis¹⁰ by use of ¹³C- and ¹H-NMR spectra of 2, 5, and 7, and the corresponding free sugars 1, 4, and 6, and biochemical assay thereof are under way.

EXPERIMENTAL

General methods.—Melting points were determined with a Mel–Temp capillary melting-point apparatus and uncorrected. Optical rotations were measured with a Jasco DIP-370 polarimeter. ¹H-NMR spectra were recorded for solutions in CDCl₃ (internal Me₄Si) with a Jeol JNM GSX-270 (270 MHz) instrument. TLC was performed on Silica Gel 60 GF (E. Merck, Darmstadt) with detection by charring with H_2SO_4 . Column chromatography was conducted on Wakogel C-300 (300 Mesh). Organic solutions were dried over anhyd Na₂SO₄ and evaporated at < 50° under diminished pressure.

(1R, 3R, 6R, 10S)-3-Phenyl-10-O-(2, 3, 4, 6-tetra-O-benzoyl- α -D-mannopyranosyl)-2,4-dioxabicyclo[4.4.0]dec-8-ene (11).—A stirred mixture of (1R,3R,6R,10S)-10-hydroxy-3-phenyl-2,4-dioxabicyclo[4.4.0]dec-8-ene⁴ (9, 200 mg, 0.86 mmol), Hg(CN)₂ (400 mg, 1.58 mmol), powdered Drierite (400 mg), and dry benzene (40 mL) was refluxed to remove 12 mL of benzene. To the mixture was added 2.3.4.6-tetra-Obenzovl- α -D-mannopyranosyl bromide⁵ (10, 1.14 g, 1.72 mmol) and the mixture was refluxed for 21 h in the dark. The cooled mixture was neutralized with Et₃N and filtered through a Celite bed. The filtrate was evaporated and the residue was chromatographed on a column of silica gel (70 g) with 1:3 EtOAc-hexane, containing 0.5% Et₃N, as eluent. The main component was rechromatographed (silica gel, 25 g, 1:30 EtOAc-PhMe) to give 11 (633 mg, 91%) as a colorless syrup, $[\alpha]_{D}^{31} - 83^{\circ}$ (c 0.94, CHCl₃); ¹H-NMR (270 MHz, CDCl₃): δ 8.10–7.19 (m, 25 H, 5 Ph), 6.11 (t, 1 H, $J_{3',4'} = J_{4',5'} = 10.3$ Hz, H-4'), 5.96 (dd, 1 H, $J_{2',3'}$ 3.3 Hz, H-3'), 5.48 (m, 1 H, H-8), 5.80 (dd, 1 H, J_{1'.2'} 1.8 Hz, H-1'), 5.73 (m, 1 H, H-9), 5.69 (s, 1 H, H-3), 5.57 (d, 1 H, H-1'), 4.68 (dd, 1 H, $J_{5',6'a}$ 2.6, $J_{6',6'}$ 12.1 Hz, H-6'a), 4.64–4.56 (m, 2 H, H-10,5'), 4.42 (dd, 1 H, $J_{5',6'b}$ 4.2 Hz, H-6'b), 4.22 (dd, 1 H, $J_{5eq,6}$ 4.8, $J_{5,5}$ 11 Hz, H-5eq), 4.05 (dd, 1 H, $J_{5ax,6}$ 8.1 Hz, H-5ax), 3.71 (t, 1 H, $J_{1,6} = J_{1,10} = 11$ Hz, H-1), and 2.24–1.73 (m, 3 H, H-6,7a,7b).

Anal. Calcd for C48H42O12: C, 71.10; H, 5.22. Found: C, 70.71; H, 5.31.

1L-(1,3 / 2)-3-Hydroxymethyl-1-O-(2,3,4,6-tetra-O-benzoyl-α-D-mannopyranosyl)-5-cyclohexene-1,2-diol (12).—A mixture of 11 (590 mg, 0.73 mmol) and 80% aq AcOH (15 mL) was stirred for 2 h at 60°; and then evaporated. The residue was chromatographed on a column of silica gel (30 g) with 1:7 Me₂CO-PhMe as eluent to give the diol 13 (440 mg, 84%) as a syrup, $[\alpha]_D^{25} - 73^\circ$ (c 0.79, CHCl₃); ¹H-NMR (270 MHz, CDCl₃): δ 8.11-7.25 (m, 20 H, 4 Ph), 6.08 (t, 1 H, $J_{3',4'} = J_{4',5'}$ = 9.9 Hz, H-4'), 5.92 (dd, 1 H, $J_{2',3'}$ 2.9 Hz, H-3'), 5.80 (bd, 1 H, $J_{5,6}$ 1.8 Hz, H-6), 5.76 (dd, 1 H, $J_{1',2'}$ 1.8 Hz, H-2'), 5.69 (ddd, 1 H, $J_{4ax,5}$ 9.9, $J_{4eq,5}$ 4.4 Hz, H-5), 5.43 (d, 1 H, H-1'), 4.70 (dd, 1 H, $J_{5',6'a}$ 2.2, $J_{6',6'}$ 11.7 Hz, H-6'a), 4.63 (ddd, $J_{5',6'b}$ 5.1 Hz, H-5'), 4.51 (dd, 1 H, H-6'b), 4.37 (bd, 1 H, $J_{1,2}$ 8.1 Hz, H-1), 3.93 (ddd, 1 H, $J_{2,3}$ 9.9, $J_{2,OH}$ 2.9 Hz, H-2), 3.84 (d, 1 H, 2-OH), 3.76 (2 t, 2 H, $J_{3,7} = J_{7,OH} = 5.5$ Hz, H-7), 3.11 (t, 1 H, 7-OH), and 2.18–1.85 (m, 3 H, H-3,4*ax*,4*eq*).

Anal. Calcd for C₄₁H₃₈O₁₂: C, 68.14; H, 5.30. Found: C, 68.02; H, 5.20.

1_L-(1,3 / 2)-1,7-Di- (13) and 1,2,7-tri-O-(2,3,4,6-tetra-O-benzoyl-α-D-mannopyranosyl)-3-(hydroxymethyl)cyclohex-5-ene-1,2-diol (15).—A mixture of 12 (36 mg, 0.050 mmol), 10 (66 mg, 0.10 mmol), Hg(CN)₂ (50 mg, 0.20 mmol), powdered Drierite (50 mg), in 3:2 benzene-MeNO₂ (5 mL) was heated at reflux for 3 h in the dark. The mixture was filtered through a Celite bed and the filtrate was evaporated. The residue was chromatographed on a column of silica gel (20 g) with 1:15 butanone-PhMe containg 0.5% Et₃N as eluent to give, first, 15 (17.6 mg, 19%) as crystals, mp 130-132° (from EtOH), $[\alpha]_D^{23}$ -64° (c 1.4, CHCl₃); ¹H-NMR (270 MHz, CDCl₃): δ 8.11-7.08 (m, 60 H, 12 Ph), 6.22, 6.12, and 6.07 (3 t, each 1 H, J 9.9 Hz, H = 4',4",4""), 6.05-5.92 (m, 5 H, H-5,3',3",3"'), 5.83-5.92 (m, 3 H, H-2',2",2""), 5.52, 5.49, and 5.26 (3 d, each 1 H, J 1.5 Hz, H-1',1",1""), 4.78-3.94 (m, 13 H, H = 1,2,7a,7a,5',6'a,6'b,5",6"a,6"b,6""a,6""b), and 2.72-2.10 (m, 3 H, H-3,4ax,4eq).

Anal. Calcd for C₁₀₉H₉₀O₃₀: C, 69.64; H, 4.83. Found: C, 69.38; H, 4.83.

The second fraction gave 13 (33.6 mg, 52%) as crystals, mp 111–113° (from EtOH), $[\alpha]_D^{23} - 60°$ (c 0.83, CHCl₃); ¹H-NMR (270 MHz, CDCl₃): δ 8.15–7.24 (m, 40 H, 8 Ph), 6.13 and 6.12 (2 t, each 1 H, J 10.3 Hz, H-4',4"), 5.98 and 5.92 (2 dd, each 1 H, $J_{2',3'(2'',3'')}$ 3.3, $J_{3',4'(3'',4'')}$ 10.3 Hz, H-3',3"), 5.86 and 5.78 (m, 2 H, H-5,6), 5.81 and 5.75 (2 dd, each 1 H, $J_{1',2'(1'',2'')}$ 1.8 Hz, H-2',2"), 4.77–4.52 (m, 6 H, H-5',6'a,6'b,5",6"a,6"b), 4.37 (bd, 1 H, $J_{1,2}$ 8.1 Hz, H-1), 4.15 (dd, 1 H, $J_{3,7a}$ 5.7, $J_{7,7}$ 9.5 Hz, H-7a), 3.97 (ddd, 1 H, $J_{2,3}$ 11.4, $J_{2,OH}$ 3.7 Hz, H-2), 3.70 (dd, 1 H, $J_{3,7b}$ 3.1 Hz, H-7b), 3.11 (d, 1 H, OH), and 2.43–2.07 (m, 3 H, H-3,4ax,4eq).

Anal. Calcd for C₇₅H₆₄O₂₁: C, 69.22; H, 4.96. Found: C, 69.36; H, 5.13.

Compound 13 (109 mg, 0.084 mmol) was treated with Ac₂O (3 mL) and pyridine (3 mL) overnight at room temperature. The mixture was evaporated and the residue was chromatographed on a column of silica gel (10 g) with 1:10 EtOAc-PhMe as eluent to give the acetate 14 (106 mg, 94%) as an amorphous powder, $[\alpha]_D^{23} - 60.5^{\circ}$ (c 1.17, CHCl₃); ¹H-NMR (270 MHz, CDCl₃): δ 8.13–7.22 (m, 40 H, 8 Ph), 6.12 and 6.11 (2 t, each 1 H, J 8.8 Hz, H-4',4"), 5.93 and 5.89 (2 dd, each 1 H, $J_{2',3'(2'',3'')}$ 3.1, $J_{3',4'(3'',4'')}$ 8.8 Hz, H-3',3"), 5.82 (m, 2 H, H-5,6), 5.72 and 5.57 (2 dd, 1 H, $J_{1',2'(1'',2'')}$ 1.8 Hz, H-2',2"), 5.35 and 5.10 (2 d, 1 H, H-1',1"), 5.31 (dd, 1 H, $J_{1,2}$ 7.7, $J_{2,3}$ 10.6 Hz, H-2), 4.73 and 4.69 (2 dd, each 1 H, $J_{5',6'a(5'',6''a)}$ 1.8, $J_{6',6'(6'',6'')}$ 11.7 Hz, H-6'a,6''a), 4.63–4.40 (m, 5 H, H-1,5',6'b,5'',6''b), 3.85 (dd, 1 H, $J_{3,7a}$ 6.6, $J_{7,7}$ 6.6 Hz, H-7a), 3.65 (dd, $J_{3,7b}$ 4.2 Hz, H-7b), 2.53–2.21 (m, 3 H, H-3,4ax,4eq), and 2.25 (s, 3 H, Ac).

Anal. Calcd for C₇₇H₆₆O₂₂: C, 68.85; H, 4.95. Found: C, 68.57; H, 5.10.

(1R, 2R, 3R)-3-(Hydroxymethyl)cyclohex-5-ene-1,2-diol (8).—(1R, 2R, 3R)-2,3-Diacetoxy-5-cyclohexene-1-carboxylic acid¹¹ was reduced with 3 molar equivalent

of LiAlH₄ in tetrahydrofuran to furnish, after conventional workup¹, the triol **8** quantitatively. Without further purification, this compound was thoroughly dried over P_2O_5 and used in the coupling reaction with the sugar halide.

Glycosylation of 8. Preparation of 13, 15, and 11-(1,3/2)-2,7-di-O-(2,3,4,6-tetra-O-benzoyl)- α -D-mannopyranosyl)-3-(hydroxymethyl)-cyclohex-5-ene-1,2-diol (16). A mixture of 8 (25 mg, 0.17 mmol). Hg(CN)₂ (100 mg, 0.40 mmol), Drierite (100 mg), and 1:1 benzene-MeNO₂ (10 mL) was refluxed to remove benzene (~2 mL), and, after being cooled to 0°, it was stirred with addition of 10 (396 mg, 0.60 mmol) for 25 h at 0° in the dark. The mixture was processed conventionally and the products were chromatographed on a column of silica gel (25 g) with 1:15 butanone-PhMe containing Et₃N (3%) as eluent to give 13 (81.5 mg, 36%), 15 (58.3 mg, 18%), and 16 (6.1 mg, 2.7%) as crystals, mp 119–121° (from EtOH); $[\alpha]_{D}^{23}$ -55° (c 1.2, CHCl₂); ¹H-NMR (270 MHz, CDCl₃): δ 8.12-7.19 (m, 40 H, 8 Ph), 6.11 and 6.10 (2 t, each 1 H, J 9.9 Hz, H-4',4"), 6.01 and 5.90 (2 dd, each 1 H, $J_{2'3'(2''3'')}$ 3.3, $J_{3'4'(3''4'')}$ 9.9 Hz, H-3',3"), 5.95–5.69 (m, 2 H, H-5,6), 5.75 and 5.73 (2 dd, each 1 H, J_{1',2'(1",2")} 1.8 Hz, H-2',2"), 5.36 and 5.10 (2 d, each 1 H, H-1',1"), 4.86-4.42 (m, 6 H, H-5',6'a,6'b,5",6"a,6"b), 4.32 (bd, 1 H, J_{1,2} 8.8 Hz, H-1), 4.11 (dd, 1 H, J_{3,7a} 2.6, J_{7,7} 9.5 Hz, H-7a), 3.88 (d, 1 H, J_{1,OH} 2.9 Hz, OH), 3.80 (bt, 1 H, $J_{2,3}$ 8.8 Hz, H-2), 3.57 (dd, 1 H, $J_{3,7b}$ 6.6 Hz, H-7b), and 2.52–2.08 (m, 3 H, H-3.4ax.4eq).

Anal. Calcd for C₇₅H₆₄O₂₁: C, 69.22; H, 4.96. Found: C, 68.96; H, 4.95.

1,2-Anhydro-3,6-di-O-(2,3,4,6-tetra-O-benzoyl- α -D-mannopyranosyl)-5a-carba- α -D-glucopyranose (17) and - β -D-mannopyranose (18).—To a solution of 13 (200 mg, 0.154 mmol) in 1,2-dichloroethane (3 mL) were added aq M sodium phosphate(I) (1.5 mL), M sodium phosphate(II) (1.5 mL), and *m*-chloroperoxybenzoic acid (53 mg, 0.31 mmol), and the mixture was vigorously stirred for 20 h at 50°. After cooling, CHCl₃ (50 mL) was added and the mixture was successively washed with satd aq Na₂S₂O₃ and H₂O, dried, and evaporated. The residue was chromatographed on a column of silica gel (25 g) with 1:10 butanone–PhMe containing Et₃N (0.3%) as eluent to give 17 (66 mg, 33%) and 18 (99 mg, 49%).

Compound 17 had mp 128–129° (from EtOH), $[\alpha]_D^{22} - 50^\circ$ (c 0.76, CHCl₃); ¹H-NMR data are listed in Table I.

Anal. Calcd for C₇₅H₆₄O₂₂: C, 68.38; H, 4.90. Found; C, 68.37; H, 4.94.

Compound 18 had mp 128–130° (from EtOH), $[\alpha]_D^{22} - 58^\circ$ (c 1.2, CHCl₃); ¹H-NMR data are listed in Table I.

Anal. Found: C, 68.33; H, 4.97.

5a-Carba-3,6-di-O-(α -D-mannopyranosyl)- α -D-mannopyranose undecaacetate (2). —A mixture of 18 (24 mg, 0.018 mmol), anhyd NaOAc (8 mg, 0.09 mmol), and 90% aq 2-methoxyethanol (2 mL) was stirred for 2 days at 120°, and then evaporated. The residue was treated with Ac₂O (3 mL) and pyridine (3 mL) overnight at room temperature. After conventional processing, the product was chromatographed on a column of silica gel (1 g) with 1:4 acetone–PhMe as eluent to give 2 (17 mg, 98%) as an amorphous powder, $[\alpha]_{D}^{25} + 49^{\circ}$ (c 1, CHCl₃);

Proton		Chemical shifts	Chemical shifts (δ)			
		17	18	19	20	
Ā	1	3.44d	3.17t	4.02d	4.37bdt	
	2	~ 3.27	3.62dd	5.49t	5.61bt	
	3	3.98d	3.94dd	4.02q	4.20dd	
	4	3.78ddd	3.87bt	5.46t	5.35t	
	5)		2.02-1.85			
	5a.eq }	2.32-1.75	2.29dt }	2.40-2.01	2.34-1.91	
	5a.ax		2.05dd /)		
	6a	4.26dd	3.93dd	3.89dd	3.90dd	
	6b	3.49dd	3.69dd	3.56dd	3.79dd	
	NH				6.04d	
	OH	~ 3.27	3.02bs			
B,C	1	5.58d	5.46d	5.35d	5.30d	
		5.10d	5.09d	5.10d	5.15d	
	2	5.87dd	5.87dd	5.75dd	5.70dd	
		5.76dd	5.73dd	5.52dd	5.55dd	
	3	5.99dd	6.01dd	5.91dd	5.88dd	
		5.91dd	5.89dd	5.81dd	5.80dd	
	4	6.15t	6.14t	6.14t	6.22t	
		6.14t	6.13t	6.14t	6.13t	
	5	4.77-4.53	4.89-4.47	4.75-4.47	4.79-4.46	
	6					
	OAc			2.36	2.27	
				2.25	2.21	
					2.05	
		Coupling consta	ants (Hz)			
A	J _{1,2}	3.3	4.2	2.9	3.3	
	J _{2,3}		1.3	2.9	3.3	
	J _{3,4}	8.1	9.3	9.5	8.4	
	$J_{4,5}$	10.6	9.3	9.5	8.4	
	$J_{5,5a.ax}$		11.4			
	$J_{5,5a.eq}$		5.5			
	$J_{5a,5a}$		15			
	$J_{5,6}$	4	7.7	5.5	7	
	$J_{5,6'}$	2.9	1.8	4	4.4	
	$J_{6,6}$	9.7	8.4	9.7	10.3	
	$J_{1,5a.ax}$			2.9	3.3	
	$J_{1,5a.eq}$		4.2	2.9	3.3	
	$J_{1,\rm NH}$				6.6	
B,C	J _{1,2}	1.8	1.5	1.8	1.5	
	J _{2,3}	3.1	3.3	3.3	3.3	
	J _{3,4}	9.9	9.9	10.3	10.3	
	$J_{4,5}$	9.9	9.9	10.3	10.3	

TABLE I

¹H-NMR data (270 MHz, CDCl₃) of compounds 17-20

¹H-NMR (270 MHz, CDCl₃): δ 5.33–5.03 (m, 9 H, H-1,2,4,2',3',4',2",3",4"), 4.99 and 4.74 (2 d, each 1 H, $J_{1',2'}$ 1.5, $J_{1'',2''}$ 1.5 Hz, H-1',1"), 4.31 and 4.26 (2 dd, each 1 H, $J_{5',6'a}$ 4.7, $J_{5'',6''a}$ 4.7 Hz, H-6'a,6"a), 4.13–3.98 (m, 5 H, H-3,5',6'b,5",6"b), 3.62

(dd, 1 H, $J_{5,6a}$ 5.7, $J_{6,6}$ 9.5 Hz, H-6a), 3.35 (dd, 1 H, $J_{5,6b}$ 4.4 Hz, H-6b), 2.21, 2.15, 2.14, 2.13, 2.11, 2.10, 2.07, 2.05, 1.984, and 1.981 (10 s, 3, 3, 6, 3, 3, 3, 3, 3, 3, and 3 H, 11 Ac), and 2.31–1.68 (m, 3 H, H-5,5a.*ax*,5a.*eq*).

Anal. Calcd for C₄₁H₅₆O₂₆: C, 51.04; H, 5.85. Found: C, 50.91; H, 5.72.

1D-(1,2,4 / 3,6)-1,3-Di-O-acetyl-6-azido-2,7-di-O-(2,3,4,6-tetra-O-benzoyl-α-Dmannopyranosyl)-4-(hydroxymethyl)cyclohexane-1,2,3-triol (19).—A mixture of 18 (155 mg, 0.12 mmol), NaN₃ (53 mg, 0.83 mmol), NH₄Cl (38 mg, 0.71 mmol), and 90% aq N,N-dimethylformamide (DMF, 4 mL) was stirred at 24 h at 80°, and then evaporated. After the usual processing, the product was chromatographed on a column of silica gel (17 g) with 1:15 EtOAc–PhMe as eluent to give 19 (164 mg, 97%) as crystals, mp 124–126° (from EtOH), $[\alpha]_D^{20} -25.5°$ (c 0.51, CHCl₃); ¹H-NMR data are listed in Table I.

Anal. Calcd for $C_{79}H_{69}N_{30}O_{24}$: C, 65.69; H, 4.82; N, 2.91. Found: C, 65.64; H, 4.84; N, 2.82.

N-Acetyl-2, 4-di-O-acetyl-5a-carba-3,6-di-O-(2,3,4,6-tetra-O-benzoyl- α -D-mannopyranosyl)- α -D-mannopyranosylamine (20).—A solution of 19 (155 mg, 0.11 mmol) and AcOH (3 drops) in 1:1 EtOH-EtOAc (4 mL) was hydrogenated in the presence of Raney nickel (one spoonful) for 2 days at room temperature under atmospheric pressure. The catalyst was filtered and the filtrate was evaporated and the residue was chromatographed on a column of silica gel (4 g) with 1:4 butanone-PhMe as eluent to give 20 (106 mg, 68%) as crystals, mp 142-144° (from EtOH); $[\alpha]_{27}^{27} - 30^{\circ}$ (c 1, CHCl₃); ¹H-NMR data are listed in Table I.

Anal. Calcd for C₈₁H₇₃O₂₅: C, 66.61; H, 5.04; N, 0.96. Found: C, 66.32; H, 5.05; N, 0.95.

5a-Carba-3,6-di-O-(α-D-mannopyranosyl)-α-D-mannopyranosylamine undeca-N,O-acetate (3).—Compound 20 (105 mg, 0.072 mmol) was treated with methanolic M NaOMe (0.3 mL) in MeOH (3 mL) for 2 h at room temperature. After neutralization with Amberlite IR-120B (H⁺) resin the mixture was evaporated and the residue was acetylated conventionally. The product was chromatographed on a column of silica gel with 1:8 EtOH–PhMc as cluent to give 3 (50 mg, 72%) as an amorphous solid, $[\alpha]_D^{25} + 39^\circ$ (c 1.57, CHCl₃); ¹H-NMR: δ 5.86 (d, 1 H, $J_{1,NH}$ 7 Hz, NH), 5.42–5.05 (m, 8 H, H-2,4,2',3',4',2'',3'',4''), 5.01 and 4.80 (2 d, each 1 H, $J_{1',2''}$ 1.5, $J_{1'',2''}$ 1.5 Hz, H-1',1''), 4.36–3.94 (m, 8 H, H-1,3,5',6'a,6'b,5'',6''a,6''b), 3.64 (dd, 1 H, $J_{5.6a}$ 7, $J_{6.6}$, 9.9 Hz, H-6a), 3.55 (dd, 1 H, $J_{5.6b}$ 5.5 Hz, H-6b), 2.17, 2.16, 2.13, 2.12, 2.115, 2.11, 2.07, 2.02, 1.99, and 1.98 (10 s, 3, 3, 3, 3, 3, 3, 6, 3, 3, and 3 H, 11 Ac), and 2.21–1.73 (m, 3 H, H-5,5a.ax,5a.eq).

Anal. Calcd for C₄₁H₅₇NO₂₅: C, 51.09; H, 5.96; N, 1.45. Found: C, 50.90; H, 5.83; N, 1.43.

1,3-Di-O-benzyl-4,6-O-benzylidene-5a-carba- α -D-mannopyranose (22).—To a solution of 1,2-anhydro-3-O-benzyl-4,6-O-benzylidene-5a-carba- β -D-mannopyranose{(1R,2R,3R,5R,8R,10R)-2-benzyloxy-5-phenyl-4,6,11-trioxatricyclo[8.1.0.0^{3,8}]-undecane]¹ (21, 526 mg, 1.55 mmol) in benzyl alcohol (0.81 mL, 7.8 mmol) was added 2% BF₃ · OEt₂ (10 mL), and the mixture was stirred for 50 min at 0° under

argon. The mixture was diluted with CHCl₃ (150 mL) and washed with satd aq NaHCO₃ and H₂O, dried, and evaporated. The product was chromatographed on a column of silica gel (20 g) with 1:15 butanone–PhMe as eluent to give 22 (478 mg, 67%) as a syrup, $[\alpha]_D^{25} + 11^{\circ}$ (c 1.2, CHCl₃); ¹H-NMR (270 MHz, CDCl₃): δ 7.50–7.25 (m, 15 H, 3 Ph), 5.63 (s, 1 H, CHPh), 4.88, 4.68, 4.58 and 4.46 (4 d, each 1 H, J 11.7 Hz, 2 CH₂Ph), 4.17 (t, 1 H, $J_{1,2} = J_{2,3} = 2.9$ Hz, H-2), 4.12 (dd, 1 H, $J_{5,6e}$ 4.8, $J_{6,6}$ 11 Hz, H-6e), 3.99 (t, 1 H, $J_{3,4} = J_{4,5} = 9.6$ Hz, H-4), 3.87 (dd, 1 H, H-3), 3.81 (q, 1 H, $J_{1,5a.ax} = J_{1,5a.eq} = 2.9$ Hz, H-1), 3.66 (t, 1 H, $J_{5,5a.eq}$ 2.9, $J_{5a,5a}$ 13.9 Hz, H-5a.eq), and 1.48 (td, 1 H, $J_{5,5a.ax}$ 13.9 Hz, H-5a.ax).

Anal. Calcd for C₂₈H₃₀O₅; C, 75.31; H, 6.77. Found: C, 74.97; H, 6.84.

1,3-Di-O-benzyl-4,6-O-benzylidene-5a-carba-2-O-(2,3,4,6-tetra-O-benzoyl- α -Dmannopyranosyl)- α -D-mannopyranose (23).—A mixture of 22 (250 mg, 0.56 mmol), Hg(CN)₂ (500 mg, 2.0 mmol), Drierite (500 mg), and benzene (30 mL) was refluxed to remove 10 mL of benzene, and the mixture was heated at reflux after addition of 10 (740 mg, 1.1 mmol) for 48 h, and then processed conventionally. The product was chromatographed on a column of silica gel (40 g) with 1:30 EtOAc-PhMe as eluent to give 23 (515 mg, 90%) as crystals, mp 80–82° (from EtOH); $[\alpha]_{D}^{27} - 39^{\circ}$ (c 1.44, CHCl₃); ¹H-NMR (270 MHz, CDCl₃): δ 8.10–7.60 (m, 35 H, 7 Ph), 6.03 (t, 1 H, $J_{3',4'} = J_{4',5'} = 10.3$ Hz, H-4'), 5.92 (dd, 1 H, $J_{1',2'}$ 1.5, $J_{2',3'}$ 3.3 Hz, H-2'), 5.86 (dd, 1 H, H-3'), 5.75 (s, 1 H, CHPh), 5.61 (d, 1 H, H-1'), 4.90 and 4.62 (2 d, each 1 H, J 12.5 Hz, CH₂Ph), 4.63 (dd, 1 H, $J_{5'5'a}$ 2.6, $J_{6'6'}$ 12.1 Hz, H-6'a), 4.45 and 4.33 (2 d, each 1 H, J 11.7 Hz, CH₂Ph), 4.44 (dd, 1 H, J_{5',6'b} 5.3 Hz, H-6'b), 4.32 (bdd, 1 H, J_{1.2} 3.3, J_{2.3} 2.9 Hz, H-2), 4.33-4.26 (m, 1 H, H-5'), 4.17 (t, 1 H, $J_{3,4} = J_{4,5} = 9.8$ Hz, H-4), 4.16 (dd, 1 H, $J_{5,6eq}$ 4, $J_{6,6}$ 11 Hz, H-6eq), 3.94 (dd, 1 H, H-3), 3.81 (t, 1 H, $J_{5,6ax}$ 11 Hz, H-6ax), 3.79 (q, 1 H, $J_{1,5a,ax} = J_{1,5a,eq} = 3.3$ Hz, H-1), 2.35–2.25 (m, 1 H, H-5), 1.68 (dt, 1 H, J_{5,5a.eq} 3.3, J_{5a,5a} 12.8 Hz, H-5a.eq), and 1.58 (td, 1 H, J_{5,5a.ax} 12.8 Hz, H-5a.ax).

Anal. Calcd for C₆₂H₅₆O₁₄: C, 72.64; H, 5.51. Found: C, 72.43; H, 5.57.

5a-Carba-2-O-(α-D-mannopyranosyl)-α-D-mannopyranose octaacetate (5).— Compound 23 (51 mg, 0.05 mmol) was O-deacylated by treatment with methanolic M NaOMe as in the preparation of 3. The product was then dissolved in EtOH (2 mL) and hydrogenolyzed in the presence of 20% Pd(OH)₂-C (30 mg) under atmospheric pressure for 68 h at room temperature. The catalyst was filtered and the filtrate was evaporated to give an amorphous solid, TLC (1:2 EtOH-EtOAc) of which showed a single spot (R_F 0.14). The free carba-disaccaharide was acetylated in the usual way and chromatographed on a column of silica gel (2 g) with 1:4 butanone-PhMe as eluent to give 5 (31 mg, 92%) as a syrup, $[\alpha]_D^{27} + 34^\circ$ (c 1.5, CHCl₃); ¹H-NMR (270 MHz, CDCl₃): δ 5.33 and 5.32 (2 t, each 1 H, $J_{3,4} = J_{4,5} = 9.9$, $J_{3',4'} = J_{4',5'} = 9.9$ Hz, H-4,4'), 5.27 (dd, 1 H, $J_{1',2'}$ 1.5, $J_{2',3'}$ 2.9 Hz, H-2'), 5.26 (dd, 1 H, $J_{2,3}$ 5.9 Hz, H-3), 5.18 (dd, 1 H, H-3'), 5.07 (q, 1 H, $J_{1,2} = J_{1,5a.ax} = J_{1,5a.eq} = 2.9$ Hz, H-1), 5.05 (d, 1 H, H-1'), 4.27 (dd, 1 H, $J_{5',6'a}$ 5.9, $J_{6',6'}$ 12.4 Hz, H-6'a), 4.15 (dd, 1 H, $J_{2,3}$ 5.9 Hz, H-2), 4.14 (dd, 1 H, $J_{5',6'b}$ 2.2 Hz, H-6'b), 4.13 (dd, 1 H, $J_{5,6a}$ 5.1, $J_{6,6}$ 11.7 Hz, H-6a), 4.02 (ddd, 1 H, H-5'), 3.97 (dd, 1 H, $J_{5,6b}$ 3.7 Hz, H-6b), 2.15, 2.11, 2.10, 2.07, 2.04, and 2.02 (7 s, 3 , 3, 6, 3, 3, 3, and 3 H, 8 Ac).

Anal. Calcd for C₂₉H₄₀O₁₈: C, 51.48; H, 5.96. Found: C, 51.70; H, 5.83.

1,3-Di-O-benzyl-4,6-O-benzylidene-5a-carba-2-O-(3,4,6-tri-O-acetyl-2-deoxy-2phthalimido- β -D-glucopyranosyl)- α -D-mannopyranose (25).—A mixture of 22 (96 mg, 0.21 mmol), Hg(CN)₂ (300 mg, 1.2 mmol), Drierite (300 mg), and benzene (15 mL) was refluxed to remove 5 mL of benzene, and then, after cooling, 3,4,6-tri-Oacetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl bromide⁸ (24, 210 mg, 0.42 mmol) was added and the mixture was was refluxed for 3 days in the dark. After treatment with Et_3N , the mixture was filtered through a Celite bed and the filtrate was evaporated and the residue was chromatographed on a column of silica gel (40 g) with 1:10 butanone-PhMe containing 0.5% Et₃N as eluent to give recovered 22 (12.5 mg) and 25 (112 mg, 62%) as a syrup, $[\alpha]_{D}^{28} + 20^{\circ}$ (c 0.9, CHCl₃); ¹H-NMR (270 MHz, CDCl₃): δ 7.89–7.15 (m, 19 H, 4 Ph), 5.78 (dd, 1 H, $J_{2'3'}$ 10.6, $J_{3'4'}$ 9.5 Hz, H-3'), 5.53 (s, 1 H, CHPh), 5.36 (d, 1 H, $J_{1',2'}$ 8.4 Hz, H-1'), 5.17 (t, 1 H, $J_{4',5'}$ 9.5 Hz, H-4'), 4.73 and 4.67 (2 d, each 1 H, J 12.5 Hz, CH_2Ph), 4.45 (dd, 1 H, H-2'), 4.37 and 4.23 (2 d, each 1 H, J 11.4 Hz, CH_2 Ph), 4.33 (dd, 1 H, $J_{5',6'a}$ 4.8, $J_{6',6'}$ 12.1 Hz, H-6'a), 4.15 (dd, 1 H, $J_{5',6'b}$ 2.4 Hz, H-6'b), 4.04 (t, 1 H, $J_{1,2} = J_{2,3} =$ 2.5 Hz, H-2), 3.88–3.75 (m, 4 H, H-3,6a,6b,5'), 3.38 (q, 1H, $J_{1,5a,ax} = J_{1,5a,eq} = 2.5$ Hz, H-1), 3.32 (t, 1 H, $J_{3,4} = J_{4,5}$ 11 Hz, H-4), 2.05 (m, 1 H, H-5), 2.04 and 1.87 (2 s, 6 and 3 H, 3 Ac), 1.10 (dt, 1 H, J_{5,5a.eq} 2.5, J_{5a,5a} 13.6 Hz, H-5a.eq), and 0.72 (td, 1 H, J_{5.5a.ax} 13.6 Hz, H-5a.ax).

Anal. Calcd for C₄₈H₄₉NO₁₄: C, 66.73; H, 5.72; N, 1.62. Found: C, 66.85; H, 5.96; N, 1.60.

2-O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-1,3-di-O-benzyl-4.6-O-benzylidene-5a-carba- α -D-mannopyranose (26).—A mixture of 25 (90 mg, 0.10 mmol) and hydrazine hydrate (2 mL, 80%) was heated for 1.5 h at 100° and then evaporated to dryness. The residue was acetylated conventionally and the product was chromatographed on a column of silica gel (4 g) with 1:3 acetone-PhMe as eluent to give 26 (62 mg, 77%) as crystals, mp 191–192° (from EtOH); $[\alpha]_D^{27} = 0.9^\circ$ (c 1.2, CHCl₃); ¹H-NMR (270 MHz, CDCl₃): δ 7.52-7.25 (m, 15 H, 3 Ph), 5.63 (s, 1 H, CHPh), 5.61 (dd, 1 H, $J_{2',3'}$ 10.4, $J_{3',4'}$ 9.2 Hz, H-3'), 5.59 (d, 1 H, $J_{2',NH}$ 8.1 Hz, NH), 5.02 (d, 1 H, $J_{1',2'}$ 8.1 Hz, H-1'), 5.01 (t, 1 H, $J_{4',5'}$ 9.2 Hz, H-4'), 4.84 and 4.63 (2 d, each 1 H, J 11.4 Hz, CH₂Ph), 4.57 and 4.42 (2 d, each 1 H, J 11.7 Hz, CH_2 Ph), 4.27 (dd, 1 H, $J_{5',6'a}$ 4.6, $J_{6',6'}$ 12.4 Hz, H-6'a), 4.15 (bt, $J_{1,2} = J_{2,3} = 2.6$ Hz, H-2), 4.13 (dd, 1 H, J_{5',6'b} 2.2 Hz, H-6'b), 4.15-4.07 (m, 1 H, H-5'), 3.98 (t, 1 H, $J_{5,6ax} = J_{6,6} = 9.9$ Hz, H-6ax), 3.89 (dd, 1 H, $J_{5,6eq}$ 2.7 Hz, H-6eq), 3.71 (dd, 1 H, $J_{3,4}$ 11.2 Hz, H-3), 3.69 (q, 1 H, $J_{1,5a,ax} = J_{1,5a,eq} = 2.6$ Hz, H-1), 3.64 (t, 1 H, $J_{4,5}$ 11.2 Hz, H-4), 3.46 (dt, 1 H, H-2'), 2.32-2.14 (m, 1 H, H-5), 2.03, 2.02, and 1.74 (3 s, 3, 6, and 3 H, 4 Ac), 1.57 (dt, 1 H, J_{5,5a.eq} 2.6 Hz, J_{5a,5a} 13.9 Hz, H-5a.eq), and 1.34 (td, $J_{5.5a.ax}$ 13.9 Hz, H-5a.ax).

Anal. Calcd for $C_{42}H_{49}NO_{13}$: C, 65.02; H, 6.37; N, 1.81. Found: C, 65.19; H, 6.41; N, 1.83.

2-O-(2-Acetamido-2-deoxy-β-D-glucopyranosyl)-5a-carba-α-D-mannopyranose octa-N,O-acetate (7).—Compound **26** (83 mg, 0.11 mmol) was hydrogenolyzed in EtOH as described in the preparation of **5**, and the product was acetylated in the usual manner and chromatographed on a column of silica gel (7 g) with 1:2 acetone–PhMe as eluent to give **7** (67 mg, 93%) as crystals, mp 206–207° (from EtOH); $[\alpha]_D^{28} - 23^\circ$ (c 1, CHCl₃); ¹H-NMR (270 MHz, CDCl₃): δ 5.72 (d, 1 H, $J_{2',NH}$ 8.8 Hz, NH), 5.26 (t, 1 H, $J_{3,4} = J_{4,5} = 10.3$ Hz, H-4), 5.20 (t, 1 H, $J_{2',3'} = J_{3',4'}$ = 9.9 Hz, H-3'), 5.05 (t, 1 H, $J_{4',5'}$ 9.9 Hz, H-4'), 4.94 (q, 1 H, $J_{1,2} = J_{1,5a,ax} = J_{1,5a,eq}$ = 3.3 Hz, H-1), 4.89 (dd, 1 H, $J_{2,3}$ 3.3 Hz, H-3), 4.61 (d, 1 H, $J_{1',2'}$ 8.4 Hz, H-1'), 4.23 (dd, 1 H, $J_{5',6'a}$ 4.8, $J_{6',6'}$ 12.9 Hz, H-6'a), 4.19 (t, 1 H, H-2), 4.06 (dd, 1 H, $J_{5,6a}$ 5.5, $J_{6,6}$ 11 Hz, H-6a), 4.03 (dd, 1 H, $J_{5',6'b}$ 1.8 Hz, H-6'b), 3.97 (ddd, 1 H, H-2'), 3.93 (dd, 1 H, $J_{5,6b}$ 2.3 Hz, H-6b), 3.65 (ddd, 1 H, $J_{4',5'}$ 9.9 Hz, H-5'), 2.12, 2.10, 2.08, 2.04, 2.03, 2.02, 2.01, and 1.94 (8 s, each 3 H, 8 Ac).

Anal. Calcd for C₂₉H₄₁NO₁₇: C, 51.55; H, 6.12; N, 2.07. Found: C, 51.24; H, 5.85; N, 2.06.

ACKNOWLEDGMENT

The authors thank Mr. Hisao Arita and Mr. Eisaku Hata for elemental analyses.

REFERENCES

- 1 S. Ogawa, T. Tonegawa, K. Nishi, and J. Yokoyama, Carbohydr. Res., 229 (1992) 173-182.
- 2 T. Suami and S. Ogawa, Adv. Carbohydr. Chem. Biochem., 48 (1990) 21-90.
- 3 J. Montreuil, Adv. Carbohydr. Chem. Biochem., 37 (1980) 157-223.
- 4 S. Ogawa, I. Sugawa, A. Isaka, and Y. Shibata, Carbohydr. Res., 211 (1991) 147-155.
- 5 R.K. Ness, H.G. Fletcher, Jr., and C.S. Hudson, J. Am. Chem. Soc., 72 (1950) 2200-2203.
- 6 P.J. Garegg, S. Oscarson, and A-K. Tidén, Carbohydr. Res., 203 (1990) c3-c8.
- 7 T. Peters, Liebigs Ann. Chem., (1991) 135-141 and references therein.
- 8 S. Ogawa and T. Tonegawa, Carbohydr. Res., 204 (1990) 51-64.
- 9 R.U. Lemieux, T. Takeda, and B.Y. Chung, ACS Symp. Ser., 39 (1976) 90-115.
- 10 K. Bock and S. Ogawa, unpublished results.
- 11 S. Ogawa, K. Nakamura, and T. Takagaki, Bull. Chem. Soc. Jpn., 59 (1986) 2956-2958.