Article

Subscriber access provided by UNIVERSITY OF ADELAIDE LIBRARIES

Carbene-Mediated Quaternarization of the Anomeric Position of Carbohydrates: Synthesis of Allylic Ketopyranosides, Access to the Missing #-Gluco and #-Manno Stereoisomers, and Preparation of Quaternary 2-Deoxy-2-Acetamido Sugars

Kévin Mébarki, Marine Gavel, Floriane Heis, Antoine Yvan Philippe Joosten, and Thomas Lecourt J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.7b01493 • Publication Date (Web): 09 Aug 2017 Downloaded from http://pubs.acs.org on August 9, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Carbene-Mediated Quaternarization of the Anomeric Position of Carbohydrates: Synthesis of Allylic Ketopyranosides, Access to the Missing α -Gluco and β -Manno Stereoisomers, and Preparation of Quaternary 2-Deoxy-2-Acetamido Sugars

Kévin Mébarki, Marine Gavel, Floriane Heis, Antoine Yvan Philippe Joosten, and Thomas

Lecourt*

Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000 Rouen, France.

Graphical Abstract:

Abstract:

Following our work on the C-H functionalization of carbohydrates by 1,5 insertion of metal-carbenes, we report herein the robust and scalable conversion of sugar γ -lactones into highly valuable glycosides having a quaternary anomeric position substituted by an

allyl chain ready for further functionalization. A divergent synthetic approach furthermore provided a straightforward access to ketopyranosides with a large chemoand stereodiversity at position 2.

Introduction:

The field of glycobiology has made significant progress in recent years, in particular as a result of the emergence of new synthetic tools in carbohydrate chemistry. Efficient and innovative synthetic methods have contributed to a better understanding of the role played by complex oligosaccharides in numerous biological events, and paved the way to the new era of chemical glycobiology.¹ In this context, we recently reported a new approach toward ketopyranosides, in which quaternarization of the anomeric position was performed in a late stage of the synthetic process.² After glycosylation with anchimeric assistance of a 2-O-bromoacetyl, functionalization of the anomeric C-H bond with retention of configuration was promoted by 1,5 insertion of a Rh(II)-carbene.³ Apart from allowing a more efficient access to ketopyranosides having an axial aglycone, this strategy also opened the way to the unprecedented β -anomers (Scheme 1). Although critical to ensure a clean C-H functionalization process, anchoring the metalcarbene at position 2 also had some limitations. First, only ketopyranosides in the α manno, β -gluco and β -galacto series could be obtained because insertion into the anomeric C-H bond took place after formation of a 1,2-trans glycosidic linkage. Moreover, 2-deoxy-2-amino sugars with a quaternary anomeric position, which are highly desirable since GlcNAc, GalNAc and ManNAc are major components of glycoconjugates,^{4,5} could not be prepared by direct functionalization of the anomeric C-H bond of 2-deoxy 2-amino sugars. In fact, only complex mixtures were obtained, if an

53 54

55 56 57

58 59 60 amide tether between the metal-carbene and the sugar moiety replaced the ester linkage.⁶

Scheme 1. Carbene-Mediated Quaternarization of the Anomeric Position: Scope and Limitations

The design of new chemical tools for glycobiology with a ketopyranosidic central core would require a straightforward and robust access toward compounds covering a larger chemical space than the α -manno, β -gluco and β -galacto series. In this context, we would like to report herein transformation of α -manno and β -gluco γ -lactones into ketopyranosides bearing an allyl pending chain, and the efficient chemical and stereochemical diversification at position 2 following a diversity-oriented approach.

Results and Discussion:

Sugar lactones **1** (Scheme 2) and **2** (Scheme 3) with a *tert*-butyldimethylsilyl ether protecting group at position 3 were routinely prepared on gram scale by decomposition of diazo sugars under $Rh_2(OAc)_4$ catalysis in refluxing 1,2 dichloroethane.⁷ Since partial

reduction of **1** with DIBAL-H in DCM at -78 °C and Wittig olefination gave a mixture of *C*,*O*-glycosides **3** and **4** by migration of the *tert*-butyldimethylsilyl group (Scheme 2), switching toward a robust benzyl ether was thus considered. Although deprotection of lactone **1** with TBAF resulted in massive degradation, HF/Pyridine gave alcohol **5** in 89% yield after purification by silica gel flash chromatography.

Scheme 2. Preparation of ketopyranoside **7** in the α -manno series.

Not surprisingly, benzylation under Williamson's conditions induced degradation of lactone **5**.⁸ Benzyl 2,2,2-trichloroacetimidate (BnTCA)⁹ gave **6** in moderate yield and low purity because Lewis or Brønsted acid activation induced competitive cleavage of the 4,6-*O*-benzylidene function (Table 1, entries 1-3). Benzylation of **5** was next attempted with 2-benzyloxy-1-methylpyridinium triflate (BnPYR) and MgO.¹⁰ Even if conversion remained partial, pure lactone **6** was obtained in 66% yield after prolonged heating in trifluorotoluene (entries 4 and 5). Under microwave irradiation,¹¹ the reaction time was reduced to 9 h, and the yield improved to 74%, without affecting the purity of **6** (entry 6). Finally, clean and full conversion of **5** was achieved with benzyl bromide (BnBr) and silver(I) oxide (Ag₂O) in refluxing dichloromethane to give pure 3-*O*-benzyl lactone **6** in

 88% isolated yield after silica gel flash chromatography (entries 7 and 8).¹² Partial reduction of **6** with DIBAL-H at -78 °C in DCM and Wittig olefination gave α -ketopyranoside **7** having a complete set of orthogonal protecting groups in 85% yield over two steps (Scheme 2).

Table 1. Benzylation at position 3 in the α -manno series.

Entry	Reagent	Additive	Temp.	Time	Conv.	Yield
	(equiv.)	(equiv.)	(°C)	(h.)	(%) ^a	(%) ^b
1¢	BnTCA (3)	TfOH (0.2)	0	1	70	57
2 ^c	BnTCA (3)	TMSOTf (0.2)	0	1.5	100	31
3c	BnTCA (3)	BF ₃ .OEt ₂ (0.2)	0	1.5	50	12
4 ^d	BnPYR (2)	MgO (2)	85	48	74	66
5 ^d	BnPYR (2)	MgO (2)	100	48	80	64
6 ^{d,e}	BnPYR (2)	MgO (2)	80	10	80	74
7¢	BnBr (1.2)	Ag ₂ 0 (1.2)	R.T.	4	0	-
8c	BnBr (3)	Ag ₂ 0 (2.4)	40	4	100	88

a: evaluated by ¹H NMR analysis of the crude; *b*: isolated after flash chromatography

^{*c*}: CH₂Cl₂ as solvent; ^{*d*}: trifluorotoluene as solvent; ^{*e*}: microwave irradiation.

ACS Paragon Plus Environment

The same sequence was next performed in the β -gluco series. Desilylation of **2** with HF/pyridine followed by benzylation either with BnPYR/MgO or BnBr/Ag₂O gave lactone **9** with a 3-*O*-benzyl ether in 57 and 90% yield respectively over two steps. After partial reduction with DIBAL-H and olefination, β -ketopyranoside **10** was finally obtained in 84% yield (Scheme 3).

Scheme 3. Preparation of ketopyranoside **10** in the β -gluco series.

Having developed a robust and scalable access to α -manno and β -gluco C,O-glycosides 7 and 10, ketopyranosides 15 and 16 in the α -gluco and β -manno series, as well as 2deoxy 2-acetamido sugars with a quaternary anomeric position 17-20, were next prepared following a diversity-oriented approach (scheme 4). To our surprise, oxidation of 7 under Swern conditions gave a complex mixture from which 1,6-anhydro derivative 13, resulting from cleavage of the glycosidic bond, was identified. Methyl 2-ulosides 11 and 12 were finally prepared in 64 and 65% yield respectively by oxidation of 7 and 10 with Dess-Martin Periodinane (DMP). It is worth of note that pyridine should be used as a cosolvant,¹³ and the amount of DMP carefully controlled, in order to prevent formation of 14, presumably obtained by radical hydrogen abstraction at position 3 followed by β fragmentation of the benzyl ether.

Reduction of **11** and **12** into the missing α -gluco and β -manno ketopyranosides **15** and **16** was next investigated with NaBH₄, DIBAL-H and L-Selectride.¹⁴

Scheme 4. Preparation and reduction of methyl 2-ulosides 11 and 12.

From methyl α -uloside **11**, ketopyranoside **15** in the α -gluco series was obtained as the major diastereoisomer with NaBH₄ or DIBAL-H, (table 2, entries 1 and 2), whereas L-Selectride mainly gave back the quaternary mannoside **7**. Similarly to previous reports from the literature,¹⁵ reduction of **11** by NaBH₄ mainly occurred by axial attack of the hydride, thus showing that the quaternary anomeric centre had little influence on the stereochemical outcome of the reaction. However, reduction of uloside **12** with NaBH₄ did not yield β -mannoside **16** as expected,¹⁶ but rather a 1:1 mixture of epimers. The quaternary anomeric centre, in addition to the cyclic 4,6-*O*-benzylidene,¹⁷ thus had a dramatic impact on the stereochemical outcome of the reduction in the β series. The desired methyl β -ketopyranoside **16** in the *manno* series was finally obtained with complete stereocontrol by reduction with L-selectride.¹⁸

Table 2. Reduction of ulosides **11** and **12**.

Entry	2-uloside	Reagent	Alcohols (d.r.) ^a	Yield (%) ^b
1	11	NaBH4	7/15 (3:7)	91
2	11	DIBAL-H	7/15 (1:3)	51
3	11	L-Selectride	7/15 (4:1)	56
4	12	NaBH4	10/16 (1:1)	60
5	12	DIBAL-H	10/16 (7:1)	51
6	12	L-Selectride	10/16 (0:1)	61

a: evaluated by ¹H NMR analysis of the crude; *b*: isolated after flash chromatography.

With suitable conditions for accessing the missing α -gluco and β -manno series in hands, we next turned our attention toward the preparation of quaternary 2-deoxy 2acetamido sugars from methyl 2-ulosides **11** and **12** (scheme 5). Since classical approaches relying on substitution of 2-*O*-sulfonates with azides,¹⁹ or on formation of oximes followed by reductive cleavage of the N-O bond,²⁰ all failed despite extensive efforts, direct reductive amination of **11** and **12** with NH₄OAc and NaBH₃CN was thus considered.²¹ Under microwave irradiation,²² amination was performed at 80 °C without degradation of the starting materials, but competitive reduction of **11** and **12** into alcohols **7/15** and **10/16** gave a complex mixture. By delaying introduction of the reducing agent after 10 min heating with NH₄OAc alone, the desired 2-deoxy 2-acetamido sugars **17-20** were finally obtained in good yield after acetylation. Configuration of **17-20** was determined on the basis of vicinal coupling constants between H₂ and H₃ (*J* = 4.5 Hz for **18** in the *manno* series, and *J* = 9.2 Hz for **19** with a *gluco* configuration).

Scheme 5. Preparation of 2-deoxy 2-acetamido ketopyranosides 17-20.

Overall, we reported herein the preparation of eight non-natural sugars derivatives with a quaternary anomeric position substituted by an allyl pending chain. From lactones **1** and **2**, a robust and scalable synthetic sequence first gave α -manno and β -gluco ketopyranosides **7** and **10** in 67 and 76% yield respectively over 4 steps. After oxidation into key ulosides **11** and **12**, a diversity-oriented approach provided a straightforward access to ketopyranosides **15** and **16** in the missing α -gluco and β -manno series, as well as to the four stereoisomers **17-20** of unprecedented quaternary 2-deoxy 2-acetamido sugars. Having in hands a large diversity of non-natural carbohydrate derivatives having a quaternary anomeric position substituted by an allyl chain ready for further functionalization, new chemical tools for glycobiology are currently under preparation in our laboratory.

Experimental Section

General Information and Method. For reactions, solvents were purchased anhydrous (dichloromethane, and pyridine) or distilled (tetrahvdrofuran over sodium/benzophenone). All reactions were conducted under an argon atmosphere. All reagents were used as received unless otherwise indicated. Reactions were monitored by thin-layer chromatography with silica gel 60 F254 pre-coated aluminium plate (0.25 mm). Visualization was performed under UV light and phosphomolybdic acid oxidation. ¹H NMR spectra were recorded at 300 MHz, and ¹³C NMR spectra at 75 MHz. Abbreviations used for peak multiplicities are s: singlet, d: doublet, t: triplet, q: quadruplet and m: multiplet. Coupling constants *J* are in Hz and chemical shifts are given in ppm and calibrated with CDCl₃ (residual solvent signals). Carbon multiplicities were assigned by distortionless enhancement by polarization transfer (DEPT) experiments. The ¹H and ¹³C signals were assigned by COSY and HSQC experiments. Accurate mass measurements (HRMS) were performed with a Q-TOF analyser. Infrared spectra (IR) were recorded by application on a Single Reflection Attenuated Total Reflectance (ATR) Accessories, and data are reported in cm⁻¹. Optical rotations were determined with a water-jacketed 10 cm cell. Specific rotations are reported in 10⁻¹ deg cm² g⁻¹ and concentrations in g per 100 mL. Melting points are uncorrected. Microwave experiments were conducted in a Biotage Initiator equipped with a monomode cavity with a microwave power delivery system ranging from 0 to 850 W allowing pressurized reactions (0 to 30 bars) to be carried out in sealed glass vials (0.5 to 20 mL) equipped

The Journal of Organic Chemistry

with a snap cap and a silicon septum. The temperature (0 to 300 °C) was monitored via a contact-less infrared sensor and was calibrated with a Ruby Thermometer.

(2R,4aR,5aS,8aS,9S,9aS)-9-hydroxy-5a-methoxy-2-

phenylhexahydrofuro[2',3':5,6]pyrano[3,2-*d*][1,3]dioxin-7(8aH)-one 5. To a solution of lactone 1 (1.456 g, 3.334 mmol) in THF (50 mL), was added a solution of HF.pyridine (dry THF/dry pyridine/HF.pyridine, 2:2:1, 65.5 mL, 333 mmol) at room temperature. After 18 h, ethyl acetate (150 mL) and a saturated solution of NaHCO₃ (600 mL) were carefully added. After 30 min, the organic layer was separated and the aqueous layer was extracted with ethyl acetate (3 x 150 mL). The combined organic layers were dried (MgSO₄), filtrated, and concentrated under reduce pressure. Purification by silica gel chromatography (cyclohexane/ethyl acetate 1.5:1) gave **5** as a white foam (946 mg, 89%):

R_f = 0.22 (Silica, cyclohexane/ethyl acetate 3:1); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.57-7.26 (m, 5H, H_{Ar}), 5.56 (s, 1H, H7), 4.61 (d, *J* = 4.2 Hz, 1H, H2), 4.28-4.24 (m, 1H, H6), 4.09 (dd, *J* = 9.3, 4.2 Hz, 1H, H3), 3.86-3.70 (m, 3H, H4, H5, H6), 3.37 (s, 3H, OMe), 2.82 (d, *J* = 16.3 Hz, 1H, <u>CH</u>₂-C=O), 2.61 (d, *J* = 16.3 Hz, 1H, <u>CH</u>₂-C=O), 2.50 (br s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 171.4 (C=0), 136.9 (Cq_{Ar}), 129.4 (C_{Ar}), 128.4 (C_{Ar}), 126.3 (C_{Ar}), 103.5 (C1), 102.1 (C7), 81.0 (C2), 77.6 (C4), 68.1 (C6), 67.7 (C3), 64.3 (C5), 51.9 (OMe), 40.4 (<u>CH</u>₂-C=O); FT-IR (film): 3467, 2922, 2859, 1778, 1455, 1393, 1300, 1254, 1226, 1165, 1191, 1088, 1025, 999, 954, 917, 774, 702, 670, 568, 535 cm⁻¹; HRMS (ESI): m/z Calcd for C₁₆H₂₂NO₇ [M + NH₄]* 340.1396, found 340.1395; [α]_D²⁰ = - 58 (CHCl₃, c = 1.85).

(2R,4aR,5aR,8aR,9S,9aS)-9-hydroxy-5a-methoxy-2-

phenylhexahydrofuro[2',3':5,6]pyrano[3,2-d][1,3]dioxin-7(8aH)-one 8. To a

solution of lactone 2 (800 mg, 1.83 mmol) in THF (30 mL), was added a solution of HF.pyridine (dry THF/dry pyridine/HF.pyridine, 2:2:1, 21 mL, 183 mmol) at room temperature. After 18 h, ethyl acetate (100 mL) and a saturated solution of NaHCO₃ (400 mL) were carefully added. After 30 min, the organic layer was separated and the aqueous layer was extracted with ethyl acetate (3 x 150 mL). The combined organic layers were dried (MgSO₄), filtrated, and concentrated under reduce pressure. Purification by silica gel chromatography (cyclohexane / ethyl acetate 1.5:1) gave 8 as a white foam (560 mg, 95%). $R_f = 0.38$ (Silica, dichloromethane/ethyl acetate 15:1); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.50-7.38 (m, 5H, H_{Ar}), 5.57 (s, 1H, H7), 4.43 (d, J = 6.4 Hz, 1H, H2), 4.35 (dd, J = 10.0, 4.9 Hz, 1H, H6), 3.91 (dd, J = 10.2, 6.4 Hz, 1H, H3), 3.78-3.73 (m, 2H, H6, H4), 3.62 (ddd, / = 10.0, 9.1, 4.9 Hz, 1H, H5), 3.38 (s, 3H, OMe), 2.93 (br s, 1H, OH), 2.82 (d, J = 17.1 Hz, 1H, <u>CH</u>₂-C=O), 2.67 (d, J = 17.1 Hz, 1H, <u>CH</u>₂-C=O); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 172.0 (C=O), 136.7 (Cq_{Ar}), 129.6 (C_{Ar}), 128.6 (C_{Ar}), 126.4 (C_{Ar}), 103.8 (C1), 102.0 (C7), 83.4 (C2), 78.1 (C4), 72.8 (C3), 68.7 (C6), 66.0 (C5), 50.4 (OMe), 35.9 (CH₂-C=O); FT-IR (film): 3454, 2922, 2857, 1788, 1456, 1380, 1212, 1167, 1079, 1007, 918, 835, 754, 699, 542 cm⁻¹; HRMS (ESI): m/z Calcd for C₁₆H₂₂NO₇ [M + NH₄]⁺ 340.1396, found 340.1396; $[\alpha]_D^{20} = + 3$ (CHCl₃, c = 1.0).

(2R,4aR,5aS,8aS,9S,9aR)-9-(benzyloxy)-5a-methoxy-2-

phenylhexahydrofuro[2',3':5,6]pyrano[3,2-*d*][1,3]dioxin-7(8aH)-one 6. Procedure <u>A</u>: A suspension of alcohol 5 (100 mg, 0.310 mmol), MgO (25 mg, 0.620 mmol) and 2benzyloxy-methylpyridinium triflate (217 mg, 0.620 mmol) in trifluorotoluene (0.6 mL) under an argon atmosphere was heated under microwave irradiation at 85 °C. After 10 h, dichloromethane (3 mL) and a saturated solution of NaHCO₃ (3 mL) were added, and the mixture was stirred until it became homogenous. After separation, the aqueous layer was extracted with dichloromethane, the combined organic phases were dried (MgSO₄),

The Journal of Organic Chemistry

filtered, and concentrated under reduce pressure. After purification by silica gel chromatography (cyclohexane/ethyl acetate 3:1), **6** was obtained as a colourless oil (85 mg, 66%). <u>Procedure B:</u> A suspension of **5** (300 mg, 0.93 mmol), Ag₂O (646.5 mg, 2.79 mmol) and benzyl bromide (265 μ L, 2.23 mmol) in dichloromethane (2.1 mL) under an argon atmosphere was heated at 40 °C in a sealed tube (dark). After 4h30, the reaction mixture was diluted with dichloromethane (20 mL), filtered through a Celite pad, and added with a saturated solution of NaHCO₃ (20 mL). After separation of the organic layer, the aqueous layer was extracted with dichloromethane (2 x 20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduce pressure. After purification by silica gel chromatography (cyclohexane/ethyl acetate 2:1) **6** was obtained as a colourless oil (340 mg, 88%).

R_f = 0.28 (Silica, cyclohexane/ethyl acetate 3:1); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.53-7.25 (m, 10H, H_Ar), 5.61 (s, 1H, H7), 4.88 (d, *J* = 12.3 Hz, 1H, O-<u>CH₂</u>-Ph), 4.78 (d, *J* = 12.3 Hz, 1H, O-<u>CH₂</u>-Ph), 4.58 (d, *J* = 3.6 Hz, 1H, H2), 4.28 (dd, *J* = 9.8, 3.6 Hz, 1H, H6), 4.06 (t, *J* = 9.5 Hz, 1H, H4), 3.99 (dd, *J* = 9.5, 3.6 Hz, 1H, H3), 3.77 (t, *J* = 9.8 Hz, 1H, H6), 3.76-3.74 (m, 1H, H5), 3.30 (s, 3H, OMe), 2.80 (d, *J* = 16.5 Hz, 1H, <u>CH₂-C=O</u>), 2.66 (d, *J* = 16.5 Hz, 1H, <u>CH₂-C=O</u>); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 171.6 (C=O), 137.8 (Cq_{Ar}), 137.2 (Cq_{Ar}), 129.2 (C_{Ar}), 128.5 (C_{Ar}), 128.4 (C_{Ar}), 127.9 (C_{Ar}), 126.1 (C_{Ar}), 103.7 (C1), 101.6 (C7), 80.1 (C2), 77.6 (C4), 73.2 (C3), 73.1 (O-<u>CH₂</u>-Ph), 68.3 (C6), 64.6 (C5), 51.9 (OMe), 40.3 (<u>CH₂-C=O</u>); FT-IR (film): 2933, 2871, 1797, 1493, 1454, 1377, 1302, 1282, 1217, 1177, 1155, 1096, 1077, 1004, 962, 750, 698 cm⁻¹; HRMS (ESI): m/z Calcd for C₂₃H₂₅O₇ [M + H]⁺ 413.1600, found 413.1613; [α]_D²⁰ = - 40 (CHCl₃, c = 1.0).

(2R,4aR,5aR,8aR,9S,9aR)-9-(benzyloxy)-5a-methoxy-2-

phenylhexahydrofuro[2',3':5,6]pyrano[3,2-d][1,3]dioxin-7(8aH)-one 9. Procedure

A: A suspension of alcohol 8 (100 mg, 0.310 mmol), MgO (25 mg, 0.620 mmol) and 2benzyloxy-methylpyridinium triflate (217 mg, 0.620 mmol) in trifluorotoluene (0.6 mL) under an argon atmosphere was heated under microwave irradiation at 85 °C. After 10 h, dichloromethane (3 mL) and a saturated solution of NaHCO₃ (3 mL) were added, and the mixture was stirred until it became homogenous. After separation, the aqueous layer was extracted with dichloromethane, the combined organic phases were dried (MgSO₄), filtered, and concentrated under reduce pressure. After purification by silica gel chromatography (cyclohexane/ethyl acetate 3:1), 9 was obtained as a colourless oil (77 mg, 60%). Procedure B: A suspension of 8 (300 mg, 0.93 mmol), Ag₂O (646.5 mg, 2.79 mmol) and benzyl bromide (265 µL, 2.23 mmol) in dichloromethane (2.1 mL) under an argon atmosphere was heated at 40 °C in a sealed tube (dark). After 3h30, the reaction mixture was diluted with dichloromethane (20 mL), filtered through a Celite pad, and added with a saturated solution of NaHCO₃ (20 mL). After separation, the aqueous layer was extracted with dichloromethane (2 x 20 mL), and the combined organic layers were dried (MgSO₄), filtered and concentrated under reduce pressure. After purification by silica gel chromatography (cyclohexane/ethyl acetate 2:1) 9 was obtained as a colourless oil (365 mg, 95%). R_f = 0.34 (Silica, cyclohexane/ethyl acetate 3:1); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.52-7.31 (m, 10H, H_{Ar}), 5.63 (s, 1H, H7), 4.85 (s, 2H, 0-<u>CH</u>₂-Ph), 4.54 (d, *J* = 5.6 Hz, 1H, H2), 4.34 (dd, *J* = 10.3, 4.8 Hz, 1H, H6), 3.99 (t, *J* = 9.7 Hz, 1H, H4), 3.87-3.74 (m, 2H, H3, H6), 3.67 (dt, / = 9.7, 4.8 Hz, 1H, H5), 3.40 (s, 3H, OMe), 2.86 (d, J = 17.2 Hz, 1H, <u>CH₂-C=O</u>), 2.69 (d, J = 17.2 Hz, 1H, <u>CH₂-C=O</u>); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 171.6 (C=0), 137.4 (Cq_{Ar}), 136.9 (Cq_{Ar}), 129.2 (C_{Ar}), 128.5 (C_{Ar}), 128.4 (C_{Ar}), 128.0 (C_{Ar}), 126.1 (C_{Ar}), 103.9 (C1), 101.6 (C7), 83.9 (C2), 78.8 (C3), 78.2 (C4), 73.7 (O-CH₂-Ph), 68.9 (C6), 66.4 (C5), 50.7 (OMe), 36.8 (CH₂-C=O); FT-IR (film): 2933, 1793, 1605, 1497, 1454, 1372, 1331, 1268, 1245, 1213, 1170, 1091, 1028, 916, 890, 752, 698,

601 cm⁻¹; HRMS (ESI): m/z Calcd for C₂₃H₂₄O₇Na [M + Na]⁺ 435.1420, found 435.1415; $[\alpha]_D^{20} = + 5$ (CHCl₃, c = 1.0).

(2R,4aR,6S,7S,8R,8aR)-6-allyl-8-(benzyloxy)-6-methoxy-2-

phenvlhexahydropyrano[3,2-d][1,3]dioxin-7-ol 7. To a solution of 6 (520 mg, 1.26 mmol) in CH₂Cl₂ (10 mL) at -78 °C was added drop-wise a 1 M solution of DIBAL-H in hexanes (1.388 mL, 1.388 mmol). After 15 min at -78 °C, the mixture was quenched with methanol, and added with CH₂Cl₂ (20 mL) and Rochelle salts (1 M, 20 mL). After 12 h of vigorous stirring at room temperature, the organic layer was separated, and the aqueous layer was extracted with dichloromethane (3 x 15 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduce pressure. Filtration over a silica plug delivered the lactol as a mixture of diastereoisomers. A suspension of methyltriphenylphosphonium bromide (678 mg, 1.89 mmol) in THF (8 mL) at 0 °C was added with potassium tert-butoxide (213 mg, 1.89 mmol) and a solution of lactol in THF (2 mL). After 15 min stirring at room temperature, CH₂Cl₂ (25 mL) and water (15 mL) were added. After separation, the aqueous layer was extracted with dichloromethane (3 x 25 mL), and the combined organic layers were dried (MgSO₄), filtered and concentrated under reduce pressure. Purification by silica gel chromatography (dichloromethane/ethyl acetate from 100:0 to 90:10) gave 7 as a colorless oil (442 mg, 85% over 2 steps). $R_f = 0.53$ (silica, cyclohexane / ethyl acetate 2.5:1); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.54-7.29 (m, 10H, H_{Ar}), 5.77 (dddd, *J* = 17.1, 10.3, 7.3, 6.7 Hz, 1H, CH₂-<u>CH</u>=CH₂), 5.63 (s, 1H, H7), 5.28-5.18 (m, 2H, CH₂-CH=<u>CH₂</u>), 4.86 (d, *J* = 11.9 Hz, 1H, O-<u>CH2</u>-Ph), 4.74 (d, J = 11.9 Hz, 1H, O-<u>CH2</u>-Ph), 4.30 (dd, J = 10.4, 4.8 Hz, 1H, H6), 4.11 (t, J = 9.1 Hz, 1H, H4), 4.04-3.99 (m, 2H, H2, H3), 3.88 (t, *J* = 10.4 Hz, 1H, H6), 3.70 (ddd, *J* = 10.4, 9.1, 4.8 Hz, 1H, H5), 3.27 (s, 3H, OMe), 2.73 (m, 2H, CH₂-CH=CH₂, OH), 2.54 (dd, J = 14.7, 6.7 Hz, 1H, <u>CH</u>₂-CH=CH₂); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 138.1 (Cq_{Ar}), 137.6

(Cq_{Ar}), 131.6 (CH₂-<u>CH</u>=CH₂), 128.9 (C_{Ar}), 128.5 (C_{Ar}), 128.2 (C_{Ar}), 127.85 (C_{Ar}), 127.83 (C_{Ar}), 126.1 (C_{Ar}), 119.1 (CH₂-CH=<u>CH₂</u>), 102.6 (C1), 101.5 (C7), 78.6 (C4), 76.1 (C3), 72.8 (O-<u>CH₂-Ph</u>), 69.5 (C2), 68.9 (C6), 64.1 (C5), 47.4 (OMe), 35.2 (<u>CH₂-CH=CH₂</u>); FT-IR (film): 3482, 3033, 2912, 1643, 1497, 1454, 1374, 1211, 1094, 1059, 1026, 1004, 915, 848, 817, 745, 695, 649 cm⁻¹; HRMS (ESI): m/z Calcd for C₂₄H₂₉O₆ [M + H]+ 413.1964, found 413.1963; $[\alpha]_D^{20} = -26$ (CHCl₃, c = 1.0).

(2R,4aR,6R,7R,8R,8aR)-6-allyl-8-(benzyloxy)-6-methoxy-2-

phenylhexahydropyrano[3,2-d][1,3]dioxin-7-ol 10. To a solution of 9 (450 mg, 1.08 mmol) in CH₂Cl₂ (3 mL) at -78 °C was added drop wise a 1 M solution of DIBAL-H in hexanes (1.42 mL, 1.42 mmol). After 15 min at -78 °C, the mixture was quenched with methanol, and added with CH₂Cl₂ (5 mL) and Rochelle salts (1 M, 5 mL). After 12 h of vigorous stirring at room temperature, the organic layer was separated, and the aqueous layer was extracted with dichloromethane (3 x 15 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduce pressure. Filtration over a silica plug delivered the lactol as a mixture of diastereoisomers. A suspension of methyltriphenylphosphonium bromide (1.02 g, 2.86 mmol) in THF (2.5 mL) at 0 °C was added with potassium *tert*-butoxide (321 mg, 2.86 mmol) and a solution of lactol in THF (2.5 mL). After 15 min stirring at room temperature, CH₂Cl₂ (10 mL) and water (10 mL) were added. After separation, the aqueous layer was extracted with dichloromethane (3) x 15 mL), and the combined organic layers were dried (MgSO₄), filtered and concentrated under reduce pressure. Purification by silica gel chromatography (cyclohexane/ethyl acetate from 3:1) gave **10** as a colorless oil (374 mg, 84% over 2 steps). $R_f = 0.28$ (silica, cyclohexane/ethyl acetate 3:1); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.51-7.29 (m, 10H, H_{Ar}), 5.91 (dddd, I = 18.0, 11.8, 7.8, 6.3 Hz, 1H, $CH_2-CH=CH_2$), 5.59 (s, 1H, H7), 5.19-5.14 (m, 2H, CH₂-CH=<u>CH₂</u>), 5.02 (d, *J* = 11.4 Hz, 1H, O-<u>CH₂-Ph</u>), 4.76

(d, J = 11.4 Hz, 1H, O-<u>CH</u>₂-Ph), 4.31 (dd, J = 10.4, 4.5 Hz, 1H, H6), 3.93-3.90 (m, 1H, H3), 3.80-3.72 (m, 3H, H2, H4, H6), 3.60 (td, J = 9.4, 4.5 Hz, 1H, H5), 3.37 (s, 3H, OMe), 2.72 (dd, J = 15.2, 6.3 Hz, 1H, <u>CH</u>₂-CH=CH₂), 2.59 (dd, J = 15.2, 7.8, Hz, 1H, <u>CH</u>₂-CH=CH₂), 2.37 (d, 1H, OH, J = 2.4 Hz); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 138.2 (Cq_{Ar}), 137.3 (Cq_{Ar}), 131.6 (CH₂-<u>CH</u>=CH₂), 129.0 (C_{Ar}), 128.5 (C_{Ar}), 128.3 (C_{Ar}), 128.1 (C_{Ar}), 127.9 (C_{Ar}), 125.9 (C_{Ar}), 118.2 (CH₂-CH=<u>CH₂</u>), 102.4 (C1), 101.2 (C7), 82.2 (C2), 80.1 (C4), 74.6 (O-<u>CH₂</u>-Ph), 71.6 (C3), 69.2 (C6), 64.7 (C5), 48.9 (OMe), 35.3 (<u>CH</u>₂-CH=CH₂); FT-IR (film): 3479, 3362, 2922, 2854, 1454, 1375, 1212, 1177, 1076, 1059, 1026, 1006, 962, 915, 865, 762, 745, 697, 660, 488 cm⁻¹; HRMS (ESI): m/z Calcd for C₂₄H₃₂NO₆ [M + NH₄]⁺ 430.2230, found 430.2228; [α]_D²⁰ = + 10 (CHCl₃, c = 1.0).

(2R,4aR,6S,8R,8aR)-6-allyl-8-(benzyloxy)-6-methoxy-2-

phenyltetrahydropyrano[3,2-*d*][1,3]dioxin-7(6H)-one 11. A solution of Dess-Martin periodinane (144 mg, 0.338 mmol) in pyridine (1 mL) was stirred at room temperature for 30 min, and added with a solution of alcohol 7 (140 mg, 0.338 mmol) in dichloromethane (1 mL). After 10 h at room temperature, additional Dess-Martin periodinane (144 mg, 0.338 mmol) was added to the reaction mixture. After 10 h, TLC revealed complete consumption of the starting material, and dichloromethane (8 mL), a saturated solution of NaHCO₃ (4 mL) and a saturated solution of Na₂S₂O₃ (4 mL) were added. After 4 h, the organic layer was separated and the aqueous layer was extracted with dichloromethane (3 x 10 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduce pressure. After purification by silica gel chromatography (cyclohexane/ethyl acetate 5:1), ketone **11** was obtained as a colorless film (90 mg, 64%). R_f = 0.85 (silica, cyclohexane / ethyl acetate 3:1); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.53-7.27 (m, 10H, H_{Ar}), 5.81 (dddd, *J* = 17.6, 10.4, 7.4, 6.2 Hz, 1H, CH₂-CH=CH₂), 5.56 (s, 1H, H7), 5.21-5.12 (m, 2H, CH₂-CH=CH₂), 4.93 (d, *J* = 12.0 Hz, 1H, O- <u>CH</u>₂-Ph), 4.69 (d, J = 12.0 Hz, 1H, O-<u>CH</u>₂-Ph), 4.61 (d, J = 10.4 Hz, 1H, H3), 4.39 (dd, J = 10.3, 5.3 Hz, 1H, H6), 4.09 (td, J = 10.3, 5.3 Hz, 1H, H5), 3.86-3.78 (m, 2H, H4, H6), 3.31 (s, 3H, OMe), 2.70-2.56 (m, 2H, <u>CH</u>₂-CH=CH₂); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 198.2 (C2), 137.7 (Cq_{Ar}), 137.0 (Cq_{Ar}), 131.5 (CH₂-<u>CH</u>=CH₂), 129.2 (C_{Ar}), 128.4 (C_{Ar}), 128.3 (C_{Ar}), 127.9 (C_{Ar}), 127.8 (C_{Ar}), 126.2 (C_{Ar}), 118.9 (CH₂-CH=<u>CH₂</u>), 102.2 (C1), 101.1 (C7), 82.4 (C4), 80.5 (C3), 73.4 (O-<u>CH</u>₂-Ph), 68.8 (C6), 63.9 (C5), 48.6 (OMe), 35.4 (<u>CH</u>₂-CH=CH₂); FT-IR (film): 3063, 3030, 2924, 2854, 1720, 1602, 1495, 1454, 1361, 1313, 1270, 1207, 1176, 1095, 1069, 1027, 910, 733, 712, 695, 604, 461 cm⁻¹; HRMS (ESI): m/z Calcd for C₂₄H₃₀NO₆ [M + NH₄]+ 428.2073, found 428.2071; [α]_D²⁰ = -7 (CHCl₃, c = 2.5).

(2R,4aR,6R,8R,8aR)-6-allyl-8-(benzyloxy)-6-methoxy-2-

phenyltetrahydropyrano[3,2-*d***][1,3]dioxin-7(6H)-one 12**. A solution of Dess-Martin periodinane (236 mg, 0.557 mmol) in pyridine (2 mL) was stirred at room temperature for 30 min, and added with a solution of alcohol **10** (230 mg, 0.557 mmol) in dichloromethane (2 mL). After 10 h at room temperature, additional Dess-Martin periodinane (236 mg, 0.557 mmol) was added to the reaction mixture. After 10 h, TLC revealed complete consumption of the starting material, and dichloromethane (20 mL), a saturated solution of NaHCO₃ (10 mL) and a saturated solution of Na₂S₂O₃ (10 mL) were added. After 4 h, the organic layer was separated and the aqueous layer was extracted with dichloromethane (3 x 20 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated under reduce pressure. After purification by silica gel chromatography (cyclohexane/ethyl acetate 5:1), ketone **12** was obtained as a colorless film (150 mg, 65%). R_f = 0.82 (silica, cyclohexane / ethyl acetate 3:1); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.53-7.29 (m, 10H, H_{Ar}), 5.76 (ddt, *J* = 17.3, 10.2, 7.0 Hz, 1H, CH₂-CH=CH₂), 5.60 (s, 1H, H7), 5.17-5.02 (m, 2H, CH₂-CH=<u>CH₂</u>), 4.98 (d, *J* = 12.2 Hz, 1H, O-CH₂-Ph), 4.78 (d, *J* = 12.2 Hz, 1H, O-CH₂-Ph), 4.43-4.40 (m, 1H, H6), 4.22 (d, *J* = 10.2 Hz, 1H, O-CH₂-Ph), 4.78 (d, *J* = 12.2 Hz, 1H, O-CH₂-Ph), 4.43-4.40 (m, 1H, H6), 4.22 (d, *J* = 10.2 Hz, 1H, O-CH₂-Ph), 4.78 (d, *J* = 12.2 Hz, 1H, O-CH₂-Ph), 4.43-4.40 (m, 1H, H6), 4.22 (d, *J* = 10.2 Hz, 1Hz)

1H, H3), 3.98-3.76 (m, 3H, H4, H5, H6), 3.33 (s, 3H, OMe), 2.55-2.53 (m, 2H, <u>CH₂-CH=CH₂</u>); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 201.4 (C2), 137.3 (Cq_{Ar}), 136.9 (Cq_{Ar}), 129.8 (CH₂-<u>CH</u>=CH₂), 129.3 (C_{Ar}), 128.6 (C_{Ar}), 128.4 (C_{Ar}), 128.20 (C_{Ar}), 128.17 (C_{Ar}), 126.2 (C_{Ar}), 119.8 (CH₂-CH=<u>CH₂</u>), 104.9 (C1), 101.1 (C7), 81.4 (C4), 81.3 (C3), 74.0 (O-<u>CH₂-Ph</u>), 69.1 (C6), 65.1 (C5), 51.9 (OMe), 38.9 (<u>CH₂-CH=CH₂</u>); FT-IR (film): 3040, 2921, 2857, 1735, 1640, 1497, 1455, 1441, 1370, 1243, 1214, 1132, 1076, 999, 876, 741, 699, 459 cm⁻¹; HRMS (ESI): m/z Calcd for C₂₄H_{30N}O₆ [M + NH₄]+ 428.2073, found 428.2066; [α]_D²⁰ = -10 (CHCl₃, c = 2.1).

(2R,4aR,6S,7R,8R,8aR)-6-allyl-8-(benzyloxy)-6-methoxy-2-

phenylhexahydropyrano[3,2-d][1,3]dioxin-7-ol 15. A solution of 11 (53mg, 0.129mmol) in dichloromethane/methanol 1:1 (1.3 mL) was cooled to 0 °C and added with NaBH₄ (20 mg, 0.516 mmol). After 15 min, dichloromethane (2.5 mL) and a 2%aqueous solution of AcOH (2.5 mL) were added, and the mixture was stirred at room temperature for 30 min. After separation, the aqueous layer was extracted with dichloromethane (3 x 10 mL), and the combined organic phases were dried (MgSO₄), filtered and concentrated under reduce pressure. Purification by silica gel chromatography (cyclohexane/ethyl acetate 4:1) gave alcohols 7 (18 mg, 34%) and 15 (30 mg, 57%) as colorless films. $R_f = 0.44$ (silica, cyclohexane/ethyl acetate 3:1); ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$: δ (ppm) 7.52-7.29 (m, 10H, H_{Ar}), 5.79 (dddd, J = 16.8, 10.4, 8.2, 6.3 Hz, 1H, CH₂-CH=CH₂), 5.57 (s, 1H, H7), 5.19-5.11 (m, 2H, CH₂-CH=CH₂), 4.96 (d, *J* = 11.4 Hz, 1H, O-<u>CH</u>₂-Ph), 4.78 (d, *J* = 11.4 Hz, 1H, O-<u>CH</u>₂-Ph), 4.33-4.28 (m, 1H, H6), 3.85 (t, *J* = 9.1 Hz, 1H, H3), 3.80-3.64 (m, 3H, H6, H5, H2), 3.59 (t, *J* = 9.1 Hz, 1H, H4), 3.30 (s, 3H, OMe), 2.63-2.49 (m, 2H, <u>CH</u>₂-CH=CH₂), 2.26 (d, 1H, OH, J = 6.9Hz); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 138.6 (Cq_{Ar}), 137.5 (Cq_{Ar}), 132.5 (CH₂-<u>CH</u>=CH₂), 129.1 (C_{Ar}), 128.5 (C_{Ar}), 128.4 (C_{Ar}), 128.2 (C_{Ar}), 127.9 (C_{Ar}), 126.1 (C_{Ar}), 119.2 (CH₂-CH=<u>CH₂</u>), 101.8 (C1), 101.3 (C7),

82.1 (C4), 79.5 (C3), 75.1 (O-<u>CH₂</u>-Ph), 73.6 (C2), 69.1 (C6), 63.6 (C5), 47.9 (OMe), 37.2 (<u>CH₂-CH=CH₂</u>); FT-IR (film): 3556, 2921, 2853, 1643, 1495, 1454, 1373, 1200, 1179, 1084, 986, 919, 763, 736, 697, 463 cm⁻¹; HRMS (ESI): m/z Calcd for C₂₄H₃₂NO₆ [M + NH₄]⁺ 430.2230, found 430.2213; [α]_D²⁰ = +56 (CHCl₃, c = 1.0);

(2R,4aR,6R,7S,8R,8aR)-6-allyl-8-(benzyloxy)-6-methoxy-2-

phenylhexahydropyrano[3,2-d][1,3]dioxin-7-ol 16. A solution of 12 (26 mg, 0.06 mmol) in THF (0.6 mL) was cooled to -78 °C and added drop-wise with a 1M solution of L-selectride in THF (0.3 mL, 0.30 mmol). After 20 min at -78 °C the mixture was quenched with methanol. Dichloromethane (5 mL) and Rochelle salts (1 M, 5 mL) were added, and after 18 h stirring at room temperature, the organic layer was separated and the aqueous layer was extracted with dichloromethane (3 x 10 mL). The combined organic phases were dried (MgSO₄), filtered, and concentrated under reduce pressure. After purification by silica gel chromatography (dichloromethane/acetonitrile 97:3), alcohol **16** was obtained as a colorless film (16 mg, 61%). $R_f = 0.39$ (silica, cyclohexane / ethyl acetate 3:1); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.52-7.28 (m, 10H, H_{Ar}), 5.70 (ddt, *I* = 17.1, 10.2, 7.1 Hz, 1H, CH₂-<u>CH</u>=CH₂), 5.59 (s, 1H, H7), 5.09-4.93 (m, 2H, CH₂-CH=<u>CH₂</u>), 4.86 (d, J = 12.3 Hz, 1H, O-<u>CH</u>₂-Ph), 4.77 (d, J = 12.3 Hz, 1H, O-<u>CH</u>₂-Ph), 4.32-4.23 (m, 2H, H6, H4), 4.03-4.01 (m, 1H, H2), 3.85-3.76 (m, 2H, H3, H6), 3.52 (ddd, J = 10.5, 9.3, 4.7 Hz, 1H, H5), 3.41 (s, 3H, OMe), 2.90 (d, J = 2.7Hz, 1H, OH), 2.56-2.54 (m, 2H, <u>CH</u>₂-CH=CH₂); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 138.1 (Cq_{Ar}), 137.6 (Cq_{Ar}), 131.8 (CH₂-<u>CH</u>=CH₂), 129.1 (CAr), 128.6 (CAr), 128.4 (CAr), 128.2 (CAr), 127.9 (CAr), 126.2 (CAr), 119.2 (CH₂-CH=<u>CH</u>₂), 101.7 (C7), 101.0 (C1), 79.4 (C4), 74.9 (C3), 73.1 (O-<u>CH</u>₂-Ph), 69.69 (C6), 69.67 (C2), 65.6 (C5), 49.4 (OMe), 35.2 (<u>CH</u>₂-CH=CH₂); FT-IR (film): 3527, 3070, 3031, 2922, 2853, 1728, 1640, 1496, 1454, 1373, 1314, 1274, 1210, 1176, 1093, 1028, 999, 918, 743,

The Journal of Organic Chemistry

films.

696 cm⁻¹; HRMS (ESI): m/z Calcd for C₂₄H₃₂NO₆ [M + NH₄]⁺ 430.2230, found 430.2240; $[\alpha]_D^{20} = + 15$ (CHCl₃, c = 3.6).

Preparation of quaternary methyl- α -D GlcNAc and ManNAc derivatives **17** and **18**. A solution of **11** (48 mg, 0.116 mmol) and ammonium acetate (360 mg, 4.665 mmol) in THF / methanol (0.2 mL / 0.9 mL) was heated at 80 °C under microwave irradiation. After 10 min, NaBH₃CN (74 mg, 1.165 mmol) was added and the solution was heated at 80 °C under microwave irradiation for 5 mn. After cooling to room temperature, dichloromethane (5 mL) and NaHCO₃ (5 mL) were added. After separation, the aqueous phase was extracted with dichloromethane $(3 \times 10 \text{ mL})$, and the combined organic layers were dried (MgSO₄), filtered, and concentrated under reduce pressure. The residue was dissolved in dichloromethane (3 mL) and added with pyridine (190 μ L, 2.33 mmol) and acetic anhydride (110 μ L, 1.16 mmol). After 1 h, methanol (0.1 mL), dichloromethane (5 mL) and NaHCO₃ (5 mL) were added, and the phases were separated. The aqueous phase was extracted with dichloromethane $(3 \times 10 \text{ mL})$, and the combined organic layers were dried (MgSO₄), filtered, and concentrated under reduce pressure. Purification by silica gel chromatography (chloroforme/methanol 99.5:0.5) gave **17** (20 mg, 38% over two steps) and **18** (17 mg, 33% over two steps) as colorless

phenylhexahydropyrano[3,2-*d*][1,3]dioxin-7-yl)acetamide 17: $R_f = 0.33$ (silica, chloroforme/methanol 99.5:0.5); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.50-7.23 (m, 10H, H_{Ar}), 5.72 (ddt, *J* = 17.6, 9.6, 7.3 Hz, 1H, CH₂-CH=CH₂), 5.55 (s, 1H, H7), 5.41 (d, *J* = 10.2 Hz, 1H, NH), 5.19-5.04 (m, 2H, CH₂-CH=CH₂), 4.86 (d, *J* = 12.3 Hz, 1H, O-<u>CH₂-Ph</u>), 4.61 (d, *J* = 12.3 Hz, 1H, O-<u>CH₂-Ph</u>), 4.28-4.22 (m, 2H, H2, H6), 3.78-3.57 (m, 4H, H6, H4, H3, H5), 3.20 (s, 3H, OMe), 2.45 (dd, *J* = 14.1, 7.3 Hz, 1H, <u>CH₂-CH=CH₂), 2.25 (dd, *J* = 14.1, 7.3 Hz, 1H, <u>CH₂-CH=CH₂), 1.86 (s, 3H, <u>CH₃-C=O</u>); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 169.4 (C=O),</u></u>

N-((2R,4aR,6S,7R,8R,8aS)-6-allyl-8-(benzyloxy)-6-methoxy-2-

138.8 (Cq_{Ar}), 137.5 (Cq_{Ar}), 131.4 (CH₂-<u>CH</u>=CH₂), 129.1 (C_{Ar}), 128.38 (C_{Ar}), 128.36 (C_{Ar}), 128.1 (C_{Ar}), 127.6 (C_{Ar}), 126.1 (C_{Ar}), 119.3 (CH₂-CH=<u>CH₂</u>), 102.2 (C1), 101.2 (C7), 82.5 (C4), 77.5 (C3), 74.1 (O-<u>CH₂-Ph</u>), 69.0 (C6), 63.6 (C5), 54.1 (C2), 47.9 (OMe), 37.6 (<u>CH₂-CH=CH₂</u>), 23.7 (<u>CH₃-C=O</u>); FT-IR (film): 3286, 3065, 3033, 2923, 2856, 1656, 1515, 1498, 1371, 1313, 1213, 1172, 1087, 997, 915, 748, 696, 598, 478 cm⁻¹; HRMS (ESI): m/z Calcd for C₂₄H₃₂NO₆ [M + H]⁺ 454.2230, found 454.2216; $[\alpha]_D^{20} = +$ 47 (CHCl₃, c =12.5). **N**-((2*R*,4*a*R,6*S*,7*S*,8*R*,8*aS*)-6-allyl-8-(benzyloxy)-6-methoxy-2-

phenylhexahydropyrano[3,2-*d*][1,3]dioxin-7-yl]acetamide 18: $R_f = 0.28$ (silica, chloroforme/methanol 99.5:0.5); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.44-7.15 (m, 10H, H_{Ar}), 5.68 (dddd, *J* = 17.0, 10.2, 7.6, 6.6 Hz, 1H, CH₂-<u>CH</u>=CH₂), 5.51 (s, 1H, H7), 5.47 (d, *J* = 10.8 Hz, 1H, NH), 5.10-4.99 (m, 2H, CH₂-CH=<u>CH₂</u>), 4.75 (dd, *J* = 10.8, 4.5 Hz, 1H, H2), 4.69 (d, *J* = 12.0 Hz, 1H, O-<u>CH₂-Ph</u>), 4.47 (d, *J* = 12.0 Hz, 1H, O-<u>CH₂-Ph</u>), 4.19 (dd, *J* = 9.0, 2.7 Hz, 1H, H6), 4.07 (dd, *J* = 9.6, 4.5 Hz, 1H, H3), 3.74-3.54 (m, 3H, H6, H4, H5), 3.15 (s, 3H, OMe), 2.46 (dd, *J* = 15.1, 7.6 Hz, 1H, <u>CH₂-CH=CH₂</u>), 2.30 (dd, *J* = 15.1, 6.6 Hz, 1H, <u>CH₂-CH=CH₂), 1.98 (s, 3H, <u>CH₃-C=O)</u>; ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 169.7 (C=O), 138.3 (Cq_{Ar}), 137.3 (Cq_{Ar}), 130.7 (CH₂-<u>CH</u>=CH₂), 103.4 (C1), 101.7 (C7), 78.5 (C4), 74.1 (C3), 71.4 (O-<u>CH₂-Ph</u>), 68.9 (C6), 64.5 (C5), 50.6 (C2), 48.0 (OMe), 36.6 (<u>CH₂-CH=CH₂</u>), 23.7 (<u>CH₃-C=O</u>); FT-IR (film): 3358, 2960, 2922, 2852, 1654, 1538, 1455, 1374, 1260, 1091, 1016, 798, 696, 498 cm⁻¹; HRMS (ESI): m/z Calcd for C₂₄H₃₂NO₆ [M + H]+ 454.2230, found 454.2243; [α]p²⁰ = 16 (CHCl₃, c = 2.3).</u>

Preparation of quaternary methyl- β -D GlcNAc and ManNAc derivatives **19** and **20**.

A solution of **12** (65 mg, 0.158 mmol) and ammonium acetate (488 mg, 6.331 mmol) in THF / methanol (0.3 mL / 1.4 mL) was heated at 80 °C under microwave irradiation. After 10 min, NaBH₃CN (98 mg, 1.58 mmol) was added and the solution was heated at

The Journal of Organic Chemistry

80 °C under microwave irradiation for 5 mn. After cooling to room temperature, dichloromethane (5 mL) and NaHCO₃ (5 mL) were added. After separation, the aqueous phase was extracted with dichloromethane $(3 \times 10 \text{ mL})$, and the combined organic layers were dried (MgSO₄), filtered, and concentrated under reduce pressure. The residue was dissolved in dichloromethane (3 mL) and added with pyridine (256 μ L, 3.166 mmol) and acetic anhydride (150 µL, 1.58 mmol). After 1 h, methanol (0.2 mL), dichloromethane (5 mL) and NaHCO₃ (5 mL) were added, and the phases were separated. The aqueous phase was extracted with dichloromethane (3 x 10 mL), and the combined organic layers were dried (MgSO₄), filtered, and concentrated under reduce pressure. Purification by silica gel chromatography (dichloromethane/methanol from 96:4 to 93:7) gave **19** (23 mg, 32% over two steps) and **20** (21 mg, 29% over two as colorless films. N-((2R,4aR,6R,7R,8R,8aS)-6-allyl-8-(benzyloxy)-6steps) methoxy-2-phenylhexahydropyrano[3,2-d][1,3]dioxin-7-yl)acetamide 19: $R_f =$ 0.33 (silica, dichloromethane/methanol 95:5); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.45-7.19 (m, 10H, H_{Ar}), 5.76 (ddt, *J* = 17.1, 10.1, 7.2 Hz, 1H, CH₂-<u>CH</u>=CH₂), 5.53 (s, 1H, H7), 5.08-4.99 (m, 3H, CH₂-CH=<u>CH₂</u>, NH), 4.86 (d, *J* = 12.4 Hz, 1H, O-<u>CH₂</u>-Ph), 4.66 (d, *J* = 12.4 Hz, 1H, O-<u>CH</u>₂-Ph), 4.41 (t, *J* = 9.2 Hz, 1H, H2), 4.23 (dd, *J* = 10.2, 4.8 Hz, 1H, H6), 3.85 (t, *J* = 9.3 Hz, 1H, H4), 3.69 (t, J = 10.2 Hz, 1H, H6), 3.57-3.44 (m, 2H, H3, H5), 3.34 (s, 3H, OMe), 2.44 (dd, J = 14.7, 7.2 Hz, 1H, <u>CH</u>₂-CH=CH₂), 2.35 (dd, J = 14.7, 7.2 Hz, 1H, <u>CH</u>₂-CH=CH₂), 1.87 (s, 3H, <u>CH</u>₃-C=O); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 169.6 (C=O), 138.4 (Cq_{Ar}), 137.3 (Cq_{Ar}), 131.3 (CH₂-<u>CH</u>=CH₂), 129.1 (C_{Ar}), 128.5 (C_{Ar}), 128.4 (C_{Ar}), 128.3 (C_{Ar}), 127.9 (C_{Ar}), 126.1 (C_{Ar}), 118.6 (CH₂-CH=<u>CH₂</u>), 102.1 (C1), 101.3 (C7), 82.6 (C4), 77.9 (C3), 73.4 (0-<u>CH</u>₂-Ph), 69.4 (C6), 64.9 (C5), 52.5 (C2), 49.2 (OMe), 36.9 (<u>CH</u>₂-CH=CH₂), 23.7 (<u>CH₃-C=O</u>); FT-IR (film): 3285, 2961, 2924, 2853, 1651, 1514, 1454, 1371, 1312, 1260, 1216, 1092, 1053, 1016, 920, 800, 735, 696, 497 cm⁻¹; HRMS (ESI): m/z Calcd for $C_{24}H_{32}NO_6 [M + H]^+ 454.2230$, found 454.2227; $[\alpha]_D^{20} = +15$ $(CHCl_3, c = 3.7).$ N-((2R,4aR,6R,7S,8R,8aS)-6-allyl-8-(benzyloxy)-6-methoxy-2-

phenylhexahydropyrano[3,2-*d***][1,3]dioxin-7-yl]acetamide 20:** R_f = 0.30 (silica, dichloromethane/methanol 95:5); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.45-7.28 (m, 10H, H_{Ar}), 5.98 (d, *J* = 9.9 Hz, 1H, NH), 5.75 (ddt, *J* = 17.2, 10.2, 7.5 Hz, 1H, CH₂-<u>CH</u>=CH₂), 5.54 (s, 1H, H7), 5.10-5.03 (m, 2H, CH₂-CH=<u>CH₂</u>), 4.75 (d, *J* = 12.0 Hz, 1H, 0-<u>CH₂-Ph</u>), 4.69-4.62 (m, 2H, 0-<u>CH₂-Ph</u>, H2), 4.39-4.30 (m, 1H, H6), 4.20-4.14 (m, 1H, H4), 3.95 (t, *J* = 6.9 Hz, 1H, H3), 3.69-3.66 (m, 2H, H6, H5), 3.32 (s, 3H, OMe), 2.57 (dd, *J* = 14.5, 7.5 Hz,

1H, <u>CH</u>₂-CH=CH₂), 2.39 (dd, *J* = 14.5, 7.5 Hz, 1H, <u>CH</u>₂-CH=CH₂), 1.95 (s, 3H, <u>CH</u>₃-C=O); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 168.8 (C=O), 137.1 (Cq_{Ar}), 136.4 (Cq_{Ar}), 130.9 (CH₂-<u>CH</u>=CH₂), 128.1 (C_{Ar}), 127.5 (C_{Ar}), 127.4 (C_{Ar}), 127.1 (C_{Ar}), 126.9 (C_{Ar}), 125.2 (C_{Ar}), 117.6 (CH₂-CH=<u>CH</u>), 100.7 (C1), 100.3 (C7), 80.2 (C4), 74.1 (C3), 72.9 (O-<u>CH</u>₂-Ph), 69.0 (C6), 63.6 (C5), 49.3 (C2), 47.2 (OMe), 36.9 (<u>CH</u>₂-CH=CH₂), 22.4 (<u>CH</u>₃-C=O); FT-IR (film): 2962, 2922, 2852, 1632, 1464, 1260, 1093, 1018, 798, 695, 458 cm⁻¹; HRMS (ESI): m/z Calcd for C₂₄H₃₂NO₆ [M + H]⁺ 454.2230, found 454.2228; [α]_D²⁰ = + 11 (CHCl₃, c = 4.5);

(1*R*,2*R*,3*S*,4*S*,5*R*)-5-allyl-3-(benzyloxy)-6,8-dioxabicyclo[3.2.1]octane-2,4-diol 13.

R_f = 0.17 (silica, cyclohexane/ethyl acetate 5:1); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.39-7.31 (m, 5H, H_{Ar}), 5.87 (ddt, J = 17.2, 10.1, 7.3 Hz, 1H, CH₂-<u>CH</u>=CH₂), 5.21-5.13 (m, 2H, CH₂-CH=<u>CH₂</u>), 4.71 (d, J = 11.4 Hz, 1H, O-C<u>H₂-Ph</u>), 4.59 (d, J = 11.4 Hz, 1H, O-C<u>H₂-Ph</u>), 4.45 (d, J = 5.7 Hz, 1H, H2), 4.19 (d, J = 7.5 Hz, 1H, H6), 3.86-3.77 (m, 3H, H5, H6, H3), 3.67 (dd, J = 11.4, 6.0 Hz, 1H, H4), 3.04 (d, J = 11.4 Hz, 1H, OH), 2.73-2.59 (m, 2H, <u>CH₂-CH=CH₂), 2.36 (br d, 9.9 Hz, 1H, OH); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 137.3 (Cq_{Ar}), 131.9 (CH₂-<u>CH</u>=CH₂), 128.8 (C_{Ar}), 128.3 (C_{Ar}), 127.9 (C_{Ar}), 118.8 (CH₂-CH=<u>CH₂)</u>, 108.8 (C1), 78.8 (C3), 77.1 (C2), 74.1 (O-<u>CH₂-Ph</u>), 69.6 (C5), 67.5 (C4), 65.9 (C6), 37.7 (<u>CH₂-CH=CH₂); FT-IR (film): 3427, 3073, 3034, 2897, 1718, 1642, 1454, 1400, 1207, 1063, 918, 796, 736, 696, 608, 460 cm⁻¹; [α]_p²⁰ = - 10 (CHCl₃, c = 4.9).</u></u>

(2R,4aR,6R)-6-allyl-8-hydroxy-6-methoxy-2-phenyl-4,4a-dihydropyrano[3,2-

d][1,3]dioxin-7(6H)-one 14. R_f = 0.11 (silica, cyclohexane/ethyl acetate 5:1); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.57-7.29 (m, 5H, H_{Ar}), 5.97-5.83 (m, 2H, H7, CH₂-<u>CH</u>=CH₂), 5.63 (br s, 1H, OH), 5.22-5.16 (m, 2H, CH₂-CH=<u>CH₂</u>), 4.82 (dd, *J* = 10.1, 6.8 Hz, 1H, H5), 4.51 (dd, *J* = 10.1, 6.8 Hz, 1H, H6), 3.96 (t, *J* = 10.1 Hz, 1H, H6), 3.34 (s, 3H, OMe), 2.71-2.55 (m, 2H, <u>CH₂-CH=CH₂</u>); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 190.2 (C2), 148.0 (C3), 135.2 (Cq_{Ar}), 131.7 (C4), 130.4 (CH₂-<u>CH</u>=CH₂), 130.2 (C_{Ar}), 128.7 (C_{Ar}), 126.5 (C_{Ar}), 119.7

(CH₂-CH=<u>CH₂</u>), 103.3 (C7), 102.7 (C1), 69.0 (C6), 62.3 (C5), 51.9 (OMe), 38.3 (<u>CH₂-CH=CH₂</u>).

Associated Content

The supporting Information is available free of charge on the ACS publications website. They include copy of the NMR spectra (¹H and ¹³C) of **5**, **6**, **7**, **8**, **9**, **10**, **11**, **12**, **13**, **14**, **15**, **16**, **17**, **18**, **19**, **20**.

Author Informations

Corresponding Author: *E-mail: <u>Thomas.Lecourt@insa-rouen.fr</u> The authors declare no competing financial interest.

Acknowledgments

The authors would like to thank LABEX SynOrg (ANR-11-LABX-0029) and ANR (JCJC-2013-QuatGlcNAc) for their financial support, and Véronique Chassagne (Engineering and Innovation Center – COBRA Laboratory) for the large-scale preparation of starting diazo sugars.

References

 For recent reviews, see: a) Lowary, T. L. Acc. Chem. Res. 2016, 49, 1379-1388; b) Gervay-Hague, J. Acc. Chem. Res. 2016, 49, 35-47; c) Nigudkar, S. S.; Demchenko, A. V. Chem. Sci. 2015, 6, 2687-2704; d) Seeberger, P. H. Acc. Chem. Res. 2015, 48, 1450-1463; e) Taylor, M. S. Acc. Chem. Res. 2015, 48, 295-305; f) Cecioni, S.; Imberty, A.; Vidal, S. Chem. Rev. 2015, 115, 525-561; g) Wang, L.-X.; Davis, B. G. Chem. Sci. 2013, 4, 3381-3394; h)

Crich, D. Acc. Chem. Res. **2010**, *43*, 1144-1153; i) Boltje, T. J.; Buskas, T.; Boons, G.-J. Nature Chem. **2009**, *1*, 611-622.

- For an account, see: Boultadakis-Arapinis, M.; Lescot, C.; Micouin, L.; Lecourt,
 T. *Synlett* **2013**, 2477-2491.
- (3) a) Boultadakis-Arapinis, M.; Prost, E.; Gandon, V.; Lemoine, P.; Turcaud, S.;
 Micouin, L.; Lecourt, T. *Chem. Eur. J.* 2013, *19*, 2477-2491; b) BoultadakisArapinis, M.; Lemoine, P.; Turcaud, S.; Micouin, L.; Lecourt, T. *J. Am. Chem. Soc.* 2010, *132*, 15477-15479.
- (4) For a recent *de novo* synthesis of 2-deoxy-2-amino ketoheptuloses, see: Leshch, Y.; Jacobsen, A.; Thiem, J. *Org. Lett.* **2013**, *15*, 4948-4951.
- Werz, D. B.; Ranzinger, R.; Herget, S.; Adibekian, A.; von der Lieth, C. W.;
 Seeberger, P. H. ACS Chem. Biol. 2007, 2, 685-691.
- (6) Competitive C-H insertions often occur from diazo amides. For examples, see:
 a) Doyle, M. P.; Shanklin, M. S.; Oon, S.-M.; Pho, H. Q.; van der Heide, F. R.;
 Veal, W. R. *J. Org. Chem.* **1988**, *53*, 3384-3386; b) Wee, A. G. H.; Liu, B.;
 Zhang, L. *J. Org. Chem.* **1992**, *57*, 4404-4414.
- Boultadakis-Arapinis, M.; Lescot, C.; Micouin, L.; Lecourt, T. Synthesis 2012, 44, 3731-3734.
- (8) Strongly basic conditions can induce degradation of sugar lactones by βelimination, see : Boultadakis-Arapinis, M.; Lescot, C.; Micouin, L.; Lecourt, T. *J. Carbohydr. Chem.* **2011**, *30*, 587-604.
- (9) H.-P. Wessel, T. Iversen, D. R. Bundle J. Chem. Soc. Perkin Trans. 1 1985, 2247-2250.
- (10) Poon, K. W. C.; Dudley, G. B. J. Org. Chem. 2006, 71, 3923-3927.

- (11) Wang, T.-W.; Intaranukulkit, T.; Rosana, M. R.; Slegeris, R.; Simon, J.;
 Dudley, G. B. Org. Biomol. Chem. 2012, 10, 248-250.
 - (12) L. Wang, Y. Hashidoko, M. Hashimoto J. Org. Chem. **2016**, *81*, 4464-4474.
 - (13) Batchelor, M. J.; Gillepsie, R. J.; Golec, J. M. C.; Hedgecock, C. J. R.
 Tetrahedron Lett. **1993**, *34*, 167-170.
 - (14) Stereoselectivity of the reduction of 2-ulosides is highly depending on the hydride source, see: Lichtenthaler, F. W.; Lergenmüller, M.; Peters, S.; Varga, Z. Tetrahedron: Asymmetry 2003, 14, 727-736.
 - (15) Lichtenthaler, F. W.; Kaji, E.; Weprek, S. J. Org. Chem. 1985, 50, 3505-3515.
 - (16) Lichtenthaler, F. W.; Schneider-Adams, T. J. Org. Chem. 1994, 59, 6728-6734.
 - (17) Kerékgyarto, J.; Rako, J.; Agoston, K.; Gyémant, G.; Szurmai, Z. *Eur. J. Org. Chem.* 2000, 3931-3935.
 - (18) Lergenmüller, M.; Lichtenthaler, F. W. Carbohydr. Res. 2007, 342, 2132-2137.
 - (19) a) Stoltz, F.; Reiner, M.; Blume, A.; Reutter, W.; Schmidt, R. R. J. Org. Chem.
 2004, 69, 665-6790; b) Emmadi, M.; Kulkarni, S. S. J. Org. Chem. 2011, 76, 4703-4709.
 - (20) a) Karpiesiuk, W.; Banaszek, A. *Carbohydr. Res.* 1994, *261*, 243-253; b)
 Attolino, E.; Bonaccorsi, F.; Catelani, G.; D'Andrea, F. *Carbohydr. Res.* 2008, 343, 2545-2556.
 - (21) Rafferty, R. J.; Williams, R. M. J. Org. Chem. 2012, 77, 519-524.
 - (22) Baran, P. S.; Maimone, T. J.; Richter, J. M. Nature 2007, 446, 404-408.

ACS Paragon Plus Environment