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Abstract: Optically active spiroacetals are prepared from carbohydrates with an imramolecular hydro- 
gen abstraction reaction as the key step. Both spiroacetai enantiomers are formally available from the 
same sugar. 

A large variety of natural products of biological interest, particularly insect pheromones and polyether 

antibiotics, contain spiroacetal moieties in their structures. These spiroacetal metabolites are produced in 
Nature by a large number of insect species, plants, and fungi.l The most common synthetic approaches are 

based on the acid catalyzed cyclization of dihydroxyketone equivalents prepared by aldol chemistry, and on 
the addition of appropriate organometallic derivatives to lactones. 2 

We wish to report here on a convenient methodology for the synthesis of optically active spiroacetals 

from carbohydrates by intramolecular hydrogen abstraction reactions promoted by alkoxy radicals. Thus, 
dioxaspiro-[5.5]undecanes, -[4.5]decanes, and -[4.4]nonanes are prepared in good yields. 
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As depicted in Scheme l, both spiroacetal enantiomors could be formally obtained from the same 
carbohydrate depending on the carbon atom (C-l or C-6) in which the additional side chain is formed, since 
a hydroxymethylenation 3 of the anorneric carbon of B gives rise to the optical isomer of A. Taking into 
account the relatively limited variety in Nature of sugars, particularly hexosos, this latter feature is syntbeti- 

cally interesting because it allows the required absolute configuration of the storeogonic contres in natural 

spiroacotals to be achieved. 
The allylation of the totrabonzylgiucopyranose I was performed according to Kishi methodology 4 by 
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Scheme 2 i) p-NO2-CtH4COCI; ii) CH2=CHCH2TMS, BF3.Et20; iii) BH3.THF, then NaOH, H202; iv) see table 1. 
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Scheme 3 i) TsCI, Py; ii) CH2=CHCH2MgBr, Et20; iii) 03, MeOH/CH2CI2; iv) NaBI-14; v) see table I. 

treatment with allyltrimethylsilane and boron trifluoride etherate, after activation of the C-1 anomeric carb- 

on by formation of the p-nitrobenzoate ester, to yield a 9:1 (a:[3) mixture of allylglucopyrans 2 in 85% yield 

(Scheme 2). Hydroboration-oxidation of the major stereoisomer (a-allyl derivative) gave rise to alcohol 3 

(73%) which underwent intramolecular hydrogen abstraction when submitted to reaction with (diacetoxy- 

iodo)benzene (DIB) and iodine 5 in cyclohexane at 40 °C under irradiation with two 100W tungsten-filament 

lamps for 1 h, yielding the isomeric spiroacetals 4 and 5 in 68% combined yield (Table 1, entry 1). 6 

The minor compound 5 is the thermodynamically favoured one (stabilizing anomeric effect), 7 as indi- 

cated by the acid-catalyzed isomerization of 4 to 5 (heating at 50 °C in AcOH with traces of HCI for 611, 

100% yield, ratio 4:5=1:4). The structures of 4 and $ and the configuration of the spirocentres were also 

unambiguously established by HETCOR and ROESY experiments. 

The elaboration of the corresponding three-carbon side chain through C-6 was accomplished from 

commercially available methyl a-D-glucopyranoside as follows (Scheme 3): Compound 6, obtained in three 

steps 8 from the above-mentioned glucopyranose in 60% overall yield, was allylated by reaction of the 

corresponding 6-tosyl derivative with freshly prepared allylmagnesium bromide in ether (88%). 9 
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Table 1. Synthesis of Chiral Spiroacetals. a 

Entry Substra~ 

3 

8 

11 

11 

11 

14 

Reagents b 

(retool) 

DIBfI2(1.1/1) 

DIB/I2(1.1/1) 

HGO/I2(2.5/2.5) 

AHDS/I2(2.3/1.1) 

DIB/I2(1.1/I) 

DIB/I2(I.2/1) 

Conditions 

Time (h) T (°C) 

1 40 

0.6 40 

5 20 

5 80 

0.5 40 

3 40 

Products 

(?ield %) 

4(51); s(17) 
9(47); 10(28) 

12(18); 13(33) 

12(33); 13(24) 

12(53); 13(33) 

15(42); 16(25) 

a) All reactions were performed in cyclohexane by irradiation with two 100W tungsten-filament lamps, b) Per mmol of substrate; 
DIB = (diacetoxyiodo)benzene; AHDS = acetoxyhydroxydiphenylselenurane. 

The required alcohol 8, prepared by ozonolysis of 7 in a 1/1 mixture of CH2CI2/MeOH followed by 

in situ reduction with NaBH4 (91%), was also cyclised with the DIB/iodine system, as shown in Table 1 

(entry 2), to yield the isomers 9 and 10 (75%). In this case, the thermodynamically less favoured spiroacetal 

was 10 (minor component of the reaction) probably caused by 1,3-diaxial interactions between the oxygen 

of the tetrahydrofuran ring and the methoxyl group of the anomeric carbon. 1 Compound 10 underwent slow 

isomerization to 9 in the presence of acid (AcOH/p-TsOH 0.1 M, 18 °C, 7 h; ratio 10~-1/1); attempts to 

improve the reaction conditions by increasing the reaction temperature or the p-TsOH concentration led to 

decomposition products. 

MeO MoO 

11 12 13 

oXo oXo 

14 lS 16 

The preparations of dioxaspiro[5.5]undecanes are shown in Table 1 (entries 3-5). The required alcohol 

11 was obtained by hydroboration-oxidation of the corresponding olefin, which in turn was synthesized 

from methyl I~D-glucopyranoside in a similar way to compound 7. To accomplish the intramolecular hydro- 
gen abstraction three systems were tested: HgO, acetoxyhydroxydiphenylselenurane, 1° and DIB, all com- 

bined with 12, the best result (86%) being obtained with the last one. The structure of isomeric spiroacetals 

12 and 13 was deduced from their spectroscopic data: NOe, COSY, HETCOR, and ROESY expcriments, ll  
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Finally, the d ioxaspi ro[4 .4]nonanes  15 and 1612 were synthesized by radical spirocyclization o f  the 

pentose derivat ive 1413 in an overall  yield of  67% (Table 1, entry 6). 
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