Synthesis and Characterization of [OsCl₂(=C=CHR)(PPh₃)₂] and Related Complexes

Ting Bin Wen,^[a] Wai Yiu Hung,^[a] Zhong Yuan Zhou,^[b] Man Fung Lo,^[a] Ian D. Williams,^[a] and Guochen Jia^{*[a]}

Keywords: Carbyne ligands / Osmium / Vinylidene ligands

Treatment of $[OsCl_2(PPh_3)_3]$ with $HC \equiv CR$ (R = Ph, *p*-tolyl, CMe_3) in the presence of HCl gives the corresponding trichloro(carbyne) complexes $[OsCl_3(\equiv CCH_2R)(PPh_3)_2]$ in good yields. The vinylidene complexes $[OsCl_2(=C=CHR)(PPh_3)_2]$ (R = Ph, *p*-tolyl, CMe_3) are, in turn, prepared from the reactions of the carbyne complexes $[OsCl_3(\equiv CCH_2R)(PPh_3)_2]$ with NEt₃. These new vinylidene complexes are hygroscopic

Introduction

(Vinylidene)ruthenium complexes^[1] of the type [RuCl₂- $(=C=CHR)(PR'_{3})_{2}$ have attracted attention because they are catalytically active for olefin metathesis,^[2a-2c] dimerization and carboxylation of terminal alkynes,^[2d] and they can be used as precursors to other vinylidene complexes.^[2d,2e] A number of such complexes have been prepared from the reactions of HC=CR with dichlorocomplexes such as $[RuCl_2(PPh_3)_3], [3,4]$ ruthenium $[RuCl_2H_2(PR'_3)_2]$ (R' = Cy, *i*Pr),^[5] $[RuCl_2(PiPr_3)_2]_{n_2}^{[6]}$ $[RuCl_2(MeCN)_2(PiPr_3)_2],^{[6]}$ $[RuCl_2(p-cymene)]_2/PR'_3^{[6]}$ and $[{RuCl_2(TPPMS)_2}Na_2]_2 \cdot 4H_2O$ [TPPMS = Ph₂P(2- $OSO_2C_6H_4)Na$ ^[7] or from the reaction of [RuCl₂-(=CHPh)(PCy₃)₂] with 1,2-propadiene.^[2a]

In contrast to ruthenium, the chemistry of related (vinylidene)osmium complexes of the type $[OsCl_2(=C=CHR)(PR'_3)_2]$ is still underdeveloped, despite the fact that a large number of other (vinylidene)osmium complexes have been prepared.^[8–21] To the best our knowledge, only $[OsCl_2(=C=CHPh)(PiPr_3)_2]$, which was produced by elimination of the imine ligands from the (imine)(vinylidene) complexes $[OsCl_2(=C=CHPh)(NH=CR_2)(PiPr_3)_2]$ [CR₂ = CMe₂, C(CH₂)₅] in refluxing toluene, has been reported by Esteruelas and co-workers.^[13] and react with H_2O to give (aqua)(vinylidene) complexes $[OsCl_2(H_2O)(=C=CHR)(PPh_3)_2]$. The structures of several of these new complexes have been determined by X-ray diffraction studies.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004)

Prompted by the facile preparation of the (vinylidene)ruthenium complex $[RuCl_2(=C=CHCMe_3)(PPh_3)_2]$ from the reaction of HC=CCMe₃ with [RuCl₂(PPh₃)₃], we have attempted to prepare analogous (vinylidene)osmium complexes $[OsCl_2(=C=CHR)(PPh_3)_2]$ from the reactions of $[OsCl_2(PPh_3)_3]$ with HC=CR. However, it was found that the expected vinylidene complexes $[OsCl_2(=C=$ CHR)(PPh₃)₂] could not be isolated from the reactions of $[OsCl_2(PPh_3)_3]$ with HC=CR (R = CMe_3, [22] SiMe_3 [23]). Instead, the reactions afford a series of complexes including carbyne complexes $[OsCl_3(\equiv CCH_2R)(PPh_3)_2]$, osmabenand vinyl(vinylidene) complexes zyne complexes, $[OsX{C(C \equiv CR) = CHR}(=C = CHR)(PPh_3)_2]$ (X = Cl, $C \equiv CR$).^[22,23] It was suggested that these complexes are formed via vinylidene intermediates $[OsCl_2(=C=$ CHR)(PPh₃)₂], although attempts to isolate them from the reactions failed. In this report, we will show that the vinylidene complexes $[OsCl_2(=C=CHR)(PPh_3)_2]$ can be obtained from the deprotonation reactions of (carbyne)osmium complexes $[OsCl_3 (\equiv CCH_2R)(PPh_3)_2]$.

Results and Discussion

Preparation of Carbyne Complexes $[OsCl_3 (\equiv CCH_2R)(PPh_3)_2]$

We have previously shown that the carbyne complexes $[OsCl_3(\equiv CCH_2CMe_3)(PPh_3)_2]$ (4) and $[OsCl_3(\equiv CCH_3)-(PPh_3)_2]$ (5) are formed as one of the products from the reaction of $[OsCl_2(PPh_3)_3]$ (1) with $HC \equiv CCMe_3$ and $HC \equiv CSiMe_3$, respectively.^[22,23] It was suspected that the carbyne complexes were produced by protonation of the vinylidene intermediates $[OsCl_2(=C=CHR)(PPh_3)_2]$ with HCl generated in situ. Thus, it was expected that carbyne

^[a] Department of Chemistry and Open Laboratory of Chirotechnology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong, P. R. China
 Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong, P. R. China

complexes $[OsCl_3(\equiv CCH_2R)(PPh_3)_2]$ might be readily prepared from the reaction of $[OsCl_2(PPh_3)_3]$ (1) with $HC \equiv CR$ in the presence of HCl. Indeed, treatment of $[OsCl_2(PPh_3)_3]$ (1) with $HC \equiv CR$ (R = Ph, p-tolyl, CMe_3) and HCl gave exclusively the corresponding (carbyne)trichloro complexes $[OsCl_3(\equiv CCH_2R)(PPh_3)_2]$ (2–4) in good yields [Equation (1)].

$$OsCl_{2}(PPh_{3})_{3} + H = -R \frac{HCl (ether solution)}{benzene, -PPh_{3}} Cl \\ Cl \\ Cl \\ Cl \\ Cl \\ S \equiv C - CH_{2} - R \\ Cl \\ PPh_{3}$$
(1)
2, R = Ph; 3, R = p-tolyl; 4, R = CMe_{3}

The analogous reaction of **1** with HC=CSiMe₃ in the presence of HCl led to the known desilylated (carbyne)trichloro complex $[OsCl_3(\equiv CCH_3)(PPh_3)_2]$ (**5**), which was isolated as a yellow solid in 71% yield [Equation (2)]. It is assumed that reaction of **1** with HC=CSiMe₃ initially generates the vinylidene intermediate $[OsCl_2(=C=CHSi-Me_3)(PPh_3)_2]$, which reacts with HCl to give the (carbyne)trichloro complex $[OsCl_3(\equiv CCH_2SiMe_3)(PPh_3)_2]$. Desilylation of the later carbyne complex by electrophilic reagents (e.g. HCl or H₂O) produces the carbyne complex **5**. There are many reports on the cleavage of Si-C bonds by H₂O or acids to give C-H bonds.^[24-27]

$$OsCl_{2}(PPh_{3})_{3} + H = SiMe_{3} \frac{HCl (ether solution)}{benzene, - PPh_{3}} Cl = Os = C-CH_{3}$$

$$Cl = Os = C-CH_{3}$$

$$PPh_{3} =$$

The new complexes 2 and 3 were characterized by multinuclear NMR spectroscopy. The ³¹P{¹H} NMR spectra (in CDCl₃) of complexes 2 and 3 display singlet ³¹P signals at $\delta = -12.9$ and -12.1 ppm, respectively. The ¹H NMR spectra (in CDCl₃) display the \equiv CCH₂ proton signals at $\delta = 1.77$ (for 2) and 1.72 ppm (for 3). The ¹³C{¹H} NMR spectra (in CD₂Cl₂) exhibit the resonances of the C- α atoms of the carbyne ligands as a triplet at $\delta = 278.2$ (2) and 280.1 ppm (3) and the signals of the CH₂ carbon atoms as a singlet at $\delta = 57.3$ (2) and 57.1 ppm (3). The ³¹P{¹H} and ¹³C{¹H} NMR spectroscopic data suggest that the two PPh₃ ligands in 2 and 3 are *trans* to each other and that the carbyne ligand is *trans* to a chloro ligand.

The structure of **2** was confirmed by an X-ray diffraction study. A view of the molecular geometry of **2** is shown in Figure 1. Selected bond lengths and angles are given in Table 1. Similarly to **4**,^[22] the geometry around the osmium atom in **2** can be viewed as a distorted octahedron with two PPh₃ ligands at the axial positions and the three chlorides and the carbyne ligand in the equatorial plane. The Os-C(1)-C(2) unit in **2** is almost linear with a bond angle of 174.8(3)°. The Os-C(carbyne) bond length in **2** [1.734(3) Å] is nearly identical to that in **4** [1.728(3) Å],^[22] and is within the range of those reported previously for other (carbyne)osmium complexes.^[10,16,18,22,24,25,27-34] As expected, the Os-Cl(1) bond [2.4621(8) Å] is significantly longer than the mutually *trans* bonds Os-Cl(2) [2.4105(7) Å] and

Figure 1. Molecular structure for $[OsCl_3(\equiv CCH_2Ph)(PPh_3)_2]$ (2)

Table 1. Selected bond lengths [Å] and bond angles $[\circ]$ for $[OsCl_3(\equiv CCH_2Ph)(PPh_3)_2] \cdot 1.5C_6H_6$ (2·1.5C₆H₆) and $[OsCl_3(\equiv CCH_3)(PPh_3)_2] \cdot CH_2Cl_2$ (5·CH₂Cl₂)

	2	5		2	5
Os(1) - C(1)	1.734(3)	1.724(5)	C(1)-C(2)	1.457(5)	1.434(7)
Os(1) - P(1)	2.4501(8)	2.4476(14)	Os(1) - P(2)	2.4339(8)	2.4426(14)
Os(1) - Cl(1)	2.4621(8)	2.4827(13)	Os(1) - Cl(2)	2.4105(7)	2.3845(13)
Os(1)-Cl(3)	2.3874(8)	2.4227(14)	C(2) - C(3)	1.515(5)	
P(2) - Os(1) - P(1)	175.83(3)	176.16(4)	Cl(3) - Os(1) - Cl(2)	170.77(3)	178.56(5)
C(1) - Os(1) - Cl(1)	173.84(10)	175.40(17)	C(2) - C(1) - Os(1)	174.8(3)	174.0(5)
P(1) - Os(1) - Cl(1)	92.46(3)	89.57(5)	P(2) - Os(1) - Cl(1)	84.71(3)	87.86(5)
Cl(2) - Os(1) - P(1)	86.72(3)	87.41(5)	Cl(2) - Os(1) - P(2)	90.16(3)	89.74(5)
Cl(3) - Os(1) - P(1)	92.21(3)	91.84(5)	Cl(3) - Os(1) - P(2)	90.43(3)	90.96(5)
Cl(2) - Os(1) - Cl(1)	88.81(3)	88.65(5)	Cl(3) - Os(1) - Cl(1)	82.07(3)	90.12(5)
C(1) - Os(1) - P(1)	89.87(10)	91.32(17)	C(1) - Os(1) - P(2)	93.26(10)	91.47(17)
C(1) - Os(1) - Cl(2) C(1) - C(2) - C(3)	97.02(10) 111.1(3)	94.44(18)	C(1) - Os(1) - Cl(3)	92.14(10)	86.81(18)

Os-Cl(3) [2.3874(8) Å], due to the strong *trans* influence of the carbyne ligand.

The structure of **5** has been previously assigned on the basis of NMR spectroscopic data.^[23] Its structure was now also confirmed by an X-ray diffraction study. A view of the molecular geometry of **5** is shown in Figure 2. Selected bond lengths and angles are given in Table 1. Overall, the structural features of **5** are similar to those of **2** and **4**.

Figure 2. Molecular structure for $[OsCl_3(\equiv CCH_3)(PPh_3)_2]$ (5)

The chemistry of (carbyne)osmium complexes has received considerable attention, especially in recent years.[8,10,13,15-19,20a,20c,20d,20e,21-25,28-38] Reported compounds closely related to 2-5 include [OsCl₃(=CPh)- $(PPh_3)_2$].^[35] $[OsCl_2(SCN)(\equiv CC_6H_4NMe_2)(PPh_3)_2],^{[35]}$ $[OsHCl_2(\equiv CR')(PR_3)_2]$ (R = Cy, *i*Pr),^[19,24,25,36] [OsH- $Cl(OPh)(\equiv CMe)(PiPr_3)_2]$,^[19] and $[OsCl_2 (\equiv C - CH =$ CRPh)[P(*i*Pr)₂CH₂CO₂Me)[P(*i*Pr)₂CH₂CO₂)] (R = Ph, Me).^[34] The analogous carbyne complex [OsCl₃- $(\equiv CPh)(PPh_3)_2$] was previously obtained from the reaction of HCl with $[OsCl(=CPh)(O_2CO)(PPh_3)_2]$, which was in turn prepared from the reaction of [OsCl(≡CPh)- $(CO)(PPh_3)_2$ with O_2 .^[35b] Thus, the reactions reported here represent a much simpler route to (carbyne)osmium complexes of the type $[OsX_3 (\equiv CR')(PR_3)_2]$ (X = halide).

Preparation of Vinylidene Complexes [OsCl₂(=C=CHR)-(PPh₃)₂]

Deprotonation of (carbyne)metal complexes is one of the common routes to prepare vinylidene complexes. For example, deprotonation of $[CpOsH(=CCH_2Ph)[P(iPr_3)]BF_4$, $[OsH(OAc)(=CCH_3)(PiPr_3)_2]BF_4$, $[OsHCl_2(=CCH_2Ph)-(PiPr_3)_2]$, and $[CpMn(=CCH_3)(CO)_2]BCl_4$ produces the vinylidene complexes $[CpOsH(=C=CHPh)(PiPr_3)_2]$, $[OsH(OAc)(=C=CH_2)(PiPr_3)_2]$, $^{[21]}$ $[OsHCl(=C=CHPh)-(PiPr_3)_2]^{[37]}$ and $[CpMn(=C=CH_2)(CO)_2]$, $^{[39]}$ respectively. Thus, it was reasoned that the vinylidene complexes $[OsCl_2(=C=CHR)(PPh_3)_2]$ might be obtained by treatment of the easily accessible (carbyne)trichloro complexes $[OsCl_3(=CCH_2R)(PPh_3)_2]$ with bases. Indeed, the (carbyne)-

trichloro complexes 2-4 were readily deprotonated by NEt₃ to give the corresponding moisture-sensitive dichloro-(vinylidene) complexes 6-8, which can be isolated in good to excellent yields [Equation (3)].

Our attempt to isolate the vinylidene complex $[OsCl_2-(=C=CH_2)(PPh_3)_2]$ from the deprotonation reaction of the (carbyne)trichloro complex $[OsCl_3(\equiv CCH_3)(PPh_3)_2]$ (5) failed, however. The in situ ³¹P{¹H} NMR spectrum for the reaction of 5 with NEt₃ in CD₂Cl₂ also showed a new broad peak at $\delta \approx 3.7$ ppm, which is similar to those observed for the in situ reactions of $[OsCl_3(\equiv CCH_2R)(PPh_3)_2]$ (R = Ph or *p*-tolyl, CMe₃) with NEt₃, indicative of the formation of the vinylidene complex $[OsCl_2(=C=CH_2)(PPh_3)_2]$. However, after workup with a procedure similar to that used for the isolation of 6-8, the isolated solid showed the ³¹P{¹H} NMR signal of 5 and several unidentified broad peaks. Apparently, the initially formed vinylidene complex decomposes during workup.

The solid-state structure of the vinylidene complex **8** was determined by an X-ray diffraction study. A view of the molecular geometry of **8** is shown in Figure 3. Selected bond lengths and angles are given in Table 2. The geometry around the osmium atom in **8** may be described as a distorted trigonal bipyramid with two PPh₃ ligands at the axial positions and the other three ligands in the equatorial plane. The deviation is reflected by the P(1)–Os–P(2) angle [168.13(2)°] (which is bent away from the vinylidene ligand) and the Cl(1)–Os–Cl(2) angle [149.31(2)°]. The Cl–Os–Cl angle is close to that calculated for the model complex [OsCl₂(=C=CH₂)(PH₃)₂] (146.9°)^[40] and the X–M–X angles observed in the analogous compounds

Figure 3. Molecular structure for $[OsCl_2(=C=CHCMe_3)(PPh_3)_2]$ (8)

FULL PAPER

 $[RuBr_2(=C=CHCMe_3)(PPh_3)_2] [144.81(7)^{\circ}]^{[3b]} and$ $[RuCl_2(=C=C[Se($ *i* $Pr)Ph](PPh_3)_2] [148.89(6)^{\circ}].^{[41]} The$ $Cl-Ru-Cl angles in the vinylidene complexes [RuCl_2 (=C=CHPh)(PR_3)_2] [PR_3: PCy_3 = 158.31(7)^{\circ[5b]/}$ $156.93(2)^{\circ};^{[6]} PiPr_3 = 158.63(4)^{\circ[6]}] are significantly larger,$ however. The Os-C(1)-C(2) unit is nearly linear, with an $Os-C(1)-C(2) angle of 175.5(2)^{\circ} and Os-C(1) and$ C(1)-C(2) bond lengths of 1.796(3) and 1.320(4) Å, respectively, which compare well with those reported for other(vinylidene)osmium complexes.^[8-16]

Table 2. Selected bond lengths [Å] and bond angles [°] for $[OsCl_2-(=C=CHCMe_3)(PPh_3)_2]$ (8)

$ \begin{array}{l} Os(1) - Cl(1) \\ Os(1) - P(1) \\ Os(1) - C(1) \\ C(2) - C(3) \end{array} $	2.3399(7) 2.3698(7) 1.796(3) 1.521(4)	Os(1)-Cl(2) Os(1)-P(2) C(1)-C(2)	2.3457(6) 2.3690(7) 1.320(4)
$\begin{array}{l} P(1)-Os(1)-P(2)\\ C(1)-Os(1)-Cl(1)\\ Cl(1)-Os(1)-P(1)\\ Cl(1)-Os(1)-P(2)\\ C(1)-Os(1)-P(1)\\ C(2)-C(1)-Os(1)\\ \end{array}$	168.13(2) 103.28(8) 88.22(2) 87.27(2) 96.15(9) 175.5(2)	$\begin{array}{c} Cl(1) - Os(1) - Cl(2) \\ C(1) - Os(1) - Cl(2) \\ Cl(2) - Os(1) - P(1) \\ Cl(2) - Os(1) - P(2) \\ C(1) - Os(1) - P(2) \\ C(1) - C(2) - C(3) \end{array}$	149.31(2) 107.39(8) 89.69(2) 88.61(2) 95.57(9) 129.1(3)

As mentioned previously, (vinylidene)osmium complexes with the general composition $[OsCl_2(=C=CHR)(PR_3)_2]$ are still very rare. Esteruelas et al. recently reported the vinylidene complex $[OsCl_2(=C=CHPh)(PiPr_3)_2]$, which was prepared by elimination of the imine ligands from the (imine)- $[OsCl_2(=C=CHPh)(NH=$ (vinylidene) complexes $(CR_2)(PiPr_3)_2$ [$CR_2 = CMe_2$, $C(CH_2)_5$] in a refluxing toluene solution.^[13] As far as we know, complex 8 is the first structurally characterized osmium complex of this kind. Other reported five-coordinate (vinylidene)osmium complexes include $[OsHCl(=C=CHR)(PR'_3)_2]$ $(PR'_3 = PCy_3,$ $P_i Pr_3$],^[19,24,37,42] [OsCl(=N=CR₂)(=C=CHPh)(P_i Pr_3)_2],^[13] $[OsCl(=C=CHR)(2,6-[P(tBu)_2CH_2]_2C_6H_3)],^{[11]}$ [Os[C- $(C \equiv CR) = CHR)Cl(=C = CHR)(PPh_3)_2]^{[22,23]}$ and $[Os(CH = CHR)(PPh_3)_2]^{[22,23]}$ $CHSiMe_3$)Cl(=C=CHPh)(PiPr_3)₂].^[43] These compounds adopt a Y-shaped geometry around the osmium atom.

Consistent with the solid-state structure, a freshly prepared and vacuum-dried sample of **8** in freshly distilled dry CD_2Cl_2 at room temperature shows a singlet ³¹P{¹H} signal at δ = 3.4 ppm. The ¹H NMR spectrum in CD₂Cl₂ exhibits a triplet at δ = 1.20 ppm with a P-H coupling constant of 3.6 Hz for the vinylidene =CH proton and the ¹³C{¹H} NMR spectrum displays two triplets at δ = 274.1 (J_{PC} = 12.5 Hz) and 120.5 ppm ($J_{P,C}$ = 5.5 Hz), which are due to C- α and - β of the vinylidene ligand, respectively.

Complexes 6 and 7 presumably have similar structures, as indicated by their NMR spectroscopic data. Freshly prepared and vacuum-dried samples of 6 and 7 in freshly distilled CD₂Cl₂ at room temperature show the ³¹P{¹H} signals at $\delta = 9.6$ and 9.2 ppm, respectively. The ¹H NMR spectra exhibits triplets at $\delta = 2.56$ and 2.46 ppm for the vinylidene =CH protons of 6 and 7, respectively. The ¹³C{¹H} NMR spectra displays C- α signals of the vinylidene ligands at $\delta = 280.8$ and 281.0 ppm for 6 and 7, respectively.

Preparation of (Aqua)(vinylidene) Complexes [OsCl₂(H₂O)(=C=CHR)(PPh₃)₂]

During the process of recording the ${}^{31}P{}^{1}H$ NMR spectra of the vinylidene complexes 6 and 7 with commercially available CD₂Cl₂, it was found that the chemical shifts of the signals of the vinylidene complexes changed with different batches of solvent and with time when a non-sealed NMR tube was used. It was suspected that this change might be caused by coordination of water present in solution to give the (aqua)(vinylidene) complexes $[OsCl_2(H_2O)(=C=CHR)(PPh_3)_2]$, which equilibrate with $[OsCl_2(=C=CHR)(PPh_3)_2]$. As a result of fast dissociation and association of water, only one ³¹P signal with an average ³¹P shift is observed at room temperature. Different amounts of water present in the solution will therefore affect the relative amounts of the five-coordinate vinylidene complexes and the corresponding six-coordinate (aqua)(vinylidene) complexes, therefore resulting in different ³¹P chemical shifts in the NMR spectra. This speculation was confirmed by experiments. At low temperature, the ${}^{31}P{}^{1}H{}$ NMR spectra in commercial CD₂Cl₂ show two singlets. The chemical shift of one of the ³¹P signals is close to that of $[OsCl_2(=C=CHAr)(PPh_3)_2]$ in freshly dried CD_2Cl_2 . The other signal can therefore be attributed to [OsCl₂(H₂O)- $(=C=CHR)(PPh_3)_2$]. Treatment of a blue solution of 6 or 7 in CD_2Cl_2 in an NMR tube with a drop of water gave an orange solution immediately, the ³¹P{¹H} NMR spectra of which shows sharp singlets at $\delta \approx -3.6$ or -3.8 ppm, respectively. The chemical shifts are very close to those of the ³¹P signals suspected for the (aqua)(vinylidene) complexes observed at low temperature. The possibility of isomerism arising from the rotation of the vinylidene group at low temperature can be excluded because such a rotation does not generate two different electronically favourable conformers.

The (aqua)(vinylidene) complexes $[OsCl_2(H_2O)(=C=CHPh)(PPh_3)_2]$ (9) and $[OsCl_2(H_2O)(=C=CH-p-to-lyl)(PPh_3)_2]$ (10) were isolated as orange solids on a preparative scale by treatment of 6 and 7 with excess water [Equation (4)]. Orange solids of 9 and 10 were also obtained when blue solids of 6 and 7 were exposed to air for 18 h.

The solid-state structure of 9 (Figure 4) was confirmed by an X-ray diffraction study. Selected bond lengths and angles are given in Table 3. The geometry around the osmium atom in 9 can be viewed as a distorted octahedron with two PPh₃ ligands *trans* to each other lying in the axial positions. The equatorial plane is formed by two chloro, the vinylidene and water ligands with the coordinated molecule *trans* to the vinylidene water ligand $[O(1W)-Os-C(1) = 175.8(2)^{\circ}]$. The two mutually transdisposed chloro ligands severely bend away from the vinylidene ligand and toward the water molecule with a Cl(1)-Os-Cl(2) angle of 158.56(5)° and Cl(1)-Os-O and Cl(2)-Os-O angles of 81.13(11)° and 77.53(11)°, respectively. These angles deviate greatly from the ideal value of 180° for a trans angle and 90° for a cis angle. The vinylidene ligand is bound to the metal atom in a nearly linear fashion with an Os-C(1)-C(2) angle of 174.7(6)°. The Os-C(1)[1.812(7) Å] and C(1)-C(2) [1.298(8) Å] bond lengths are similar to those of 8, and compare well with those observed in other (vinylidene)osmium complexes.[8-16] The Os–O bond length is 2.289(4) Å, which is close to those in [OsCl(=C=CHPh)(NH=CMe₂)(H₂O)(PiPr₃)₂]OTf $[2.281(6) \text{ Å}],^{[14]} [OsCl(=CHPh)(H_2O)(CO)(PiPr_3)_2]BF_4$ $[2.182(5) \text{ Å}], [44a] [OsMe(H_2O)(CO)_2(PMe_3)_2]OTf [2.155(6)]$ Å],^[44b] [Cp*Os(η^3 -C₄H₇)Me(H₂O)]BF₄ ^[44c] [2.158(5) Å] and $[OsCl_2(H_2O)(\equiv CCH = CPh_2)(PPh_3)_2]BF_4$ [2.209(5) Å].^[45]

Figure 4. Molecular structure for $[OsCl_2(H_2O)(=C=CHPh)-(PPh_3)_2]$ (9)

Table 3. Selected bond lengths [Å] and angles [°] for $[OsCl_2(H_2O)-(=C=CHPh)(PPh_3)_2]$ ·C₆H₆ (9·C₆H₆)

Os(1) - P(1)	2.3848(15)	Os(1) - P(2)	2.3959(15)
Os(1)-Cl(1)	2.3699(15)	Os(1)-Cl(2)	2.3886(14)
Os(1) - C(1)	1.812(7)	Os(1)-O(1 W)	2.289(4)
C(1) - C(2)	1.298(8)	C(2)-C(3)	1.479(9)
P(1) - Os(1) - P(2)	178.88(5)	Cl(1) - Os(1) - Cl(2)	158.56(5)
C(1) - Os(1) - O(1W)	175.8(2)	C(2) - C(1) - Os(1)	174.7(6)
C(1) - C(2) - C(3)	127.2(7)	O(1W) - Os(1) - P(1)	91.07(9)
O(1W) - Os(1) - Cl(1)	81.13(11)	O(1W) - Os(1) - Cl(2)	77.58(11)
C(1) - Os(1) - Cl(1)	102.54(18)	C(1) - Os(1) - Cl(2)	98.83(19)
C(1) - Os(1) - P(1)	87.08(16)	C(1) - Os(1) - P(2)	91.96(16)
Cl(1) - Os(1) - P(1)	88.84(5)	P(1) - Os(1) - Cl(2)	94.06(6)
Cl(1) - Os(1) - P(2)	90.83(6)	Cl(2) - Os(1) - P(2)	86.64(6)
O(1W) - Os(1) - P(2)	89.93(10)		

The water in 9 and 10 is only weakly bound to the metal center. Thus, when the orange solids of 9 or 10 are placed under vacuum for 3 h, the color changed to blue, indicating the reformation of 6 or 7. Similarly, if the isolated orange solids of 9 or 10 are redissolved in CD_2Cl_2 , the ${}^{31}P{}^{1}H$ NMR spectra at room temperature show a broad signal with a chemical shift significantly downfield from those observed in the presence of added water, indicating that water is partially dissociated and the equilibrium shown in Equation (4) occurs in solution. Thus, the NMR spectroscopic data of 9 and 10 have to be collected in the presence of added water. The ${}^{13}C{}^{1}H$ NMR spectrum of 9 in a CD₂Cl₂ solution saturated with H₂O shows the Os=C ${}^{13}C{}^{1}H{}$ signal as a triplet at $\delta = 289.1$ ppm ($J_{P,C} = 11.4$ Hz). The ¹H NMR signal of $=C=CH_2$ of **9** is observed at $\delta = 2.48$ ppm at room temp. and at $\delta = 2.61$ ppm at 211 K. The ¹H NMR signal of H₂O is observed at $\delta = 1.95$ ppm at 211 K. The NMR spectroscopic data of 9 are consistent with the solidstate structure. Complex 10 presumably has a structure similar to that of 9, as judged by its spectroscopic data.

As indicated by NMR experiments, complex 8 also reacts with water to give the (aqua)(vinylidene) complex $[OsCl_2(H_2O)(=C=CHCMe_3)(PPh_3)_2]$ (11). Thus, the ${}^{31}P{}^{1}H$ NMR spectrum of a sample of 8 in commercially available CD₂Cl₂ at room temperature shows a singlet at $\delta = 2.8$ ppm which is slightly upfield from that obtained with dry CD₂Cl₂. At 188 K, this singlet splits into two peaks at $\delta = 3.6$ and -10.2 ppm, which can be attributed to $[OsCl_2(=C=CHCMe_3)(PPh_3)_2]$ (8) and $[OsCl_2(H_2O) (=C=CHCMe_3)(PPh_3)_2$ (11), respectively. Similarly, the ¹H NMR spectrum in CD₂Cl₂ at room temperature shows one C=CH signal at δ = 1.17 ppm and at 188 K two C=CH signals at $\delta = 1.50$ and 0.91 ppm, which can be assigned to 8 and 11, respectively. The water proton signal appears as a broad peak at $\delta = 2.12$ ppm at room temperature, which sharpens at low temperature with a similar chemical shift and gives a relative integration of 2:1 with the less-intense vinylidene signal of 11. As further evidence for the formation of 11, addition of a drop of water to a solution of 8 in commercial CD₂Cl₂ in an NMR tube causes the ³¹P signal to shift from $\delta = 2.8$ ppm to -5.8 ppm, and the ¹H signal of =CCH to shift from δ = 1.17 ppm to 0.91 ppm. The upfield shift of the ³¹P signal is expected because the relative amount of 11 is increased when the concentration of water in the solution is increased. However, the ³¹P shift cannot, even in the presence of excess water, reach the value of $\delta = -10.2$ ppm observed for 11 at low temperature, suggesting that the equilibrium constant is small (see below).

During the process of the NMR study, it was found that these vinylidene species (8 and 11) are unstable in solution, especially in the presence of added water. The major decomposition product is the carbyne complex 4. Other detectable decomposition species include a small amount of PPh₃ and others showing unidentified doublet and triplet signals. The decomposition is likely initiated by the protonation of the vinylidene ligand of 11 with water present in the solution. Owing to the instability and incomplete

FULL PAPER

conversion of 8 to 11, even in the presence of excess water, complex 11 could not be isolated.

NMR Study of the Equilibria

We carried out variable-temperature ${}^{31}P{}^{1}H{}$ and ${}^{1}H{}$ NMR experiments to study the dynamic process between $[OsCl_2(=C=CHR)(PPh_3)_2]$ and $[OsCl_2(H_2O)(=C=$ CHR)(PPh₃)₂]. As an illustration, the ${}^{31}P{}^{1}H{}$ NMR spectra of a sample of 6 in wet CD_2Cl_2 (the Os/H₂O molar ratio in solution is 1:0.2) at different temperatures are shown in Figure 5. At room temperature (298 K), the ³¹P signal is a singlet at $\delta = 9.1$ ppm, which broadens and shifts upfield upon decreasing the temperature to 239 K. The upfield shift of the ³¹P signal on lowering the temperature indicates that the equilibrium is shifted toward the formation of the (aqua)(vinylidene) complex 9 at lower temperature. The singlet separates into two peaks with unequal intensities when the temperature is lowered below 217 K. At 198 K, two sharp singlets in about a 5:1 ratio at $\delta = 11.6$ and -3.4 ppm are observed, due to the ³¹P signals of **6** and **9**, respectively. Similarly, in the ¹H NMR spectrum in CD₂Cl₂ at room

Figure 5. The variable-temperature ${}^{31}P{}^{1}H$ NMR spectra of $[OsCl_2(=C=CHPh)(PPh_3)_2]$ (6) and $[OsCl_2(H_2O)(=C=CHPh)(PPh_3)_2]$ (9) in wet CD_2Cl_2 (Os/H₂O molar ratio in solution = 1:0.2) at 121.5 MHz

temperature, the Os=C=CH vinylidene proton displays only one triplet at $\delta = 2.54$ ppm with a P-H coupling constant of 3.3 Hz. This signal is somewhat broader when the temperature is lowered and at 190 K gives rise to two broad singlets (the broadening is probably due to unresolved coupling with the ³¹P nuclei) at $\delta = 2.71$ and 2.65 ppm in an approximate ratio of 5:1. The water proton signal at 190 K appears as a singlet at $\delta = 1.88$ ppm with a relative integration of 2:1 with the less-intense vinylidene signal at $\delta =$ 2.65 ppm. The water content in the solution affects the appearance of the variable-temperature spectra. Thus, when a solution with an Os/H₂O molar ratio of 1:1.6 was used in the variable-temperature experiments, the NMR spectra show a singlet ³¹P signal with a chemical shift between those of 6 and 9 at room temperature, as one might expect, but only show the signal of the (aqua)(vinylidene) complex 9, while the signal of 6 cannot be detected, when the temperature is lowered below 255 K, due to the higher affinity of the metal center for H₂O at low temperature. The variable-temperature spectra of 7/10 and 8/11 show spectroscopic features similar to those of 6 and 8.

The equilibrium constants at several temperatures (between 298 and 270 K) were estimated on the basis of variable-temperature ³¹P{¹H} and ¹H NMR measurements of samples of **9**, **10** and **11** in CD₂Cl₂. The relative amounts of the five-coordinate vinylidene complexes and their corresponding (aqua)(vinylidene) complexes were calculated from the average ³¹P chemical shifts assuming that the chemical shifts of five-coordinate vinylidene complexes and their corresponding (aqua)(vinylidene) complexes do not change with temperature.^[46] The relative concentrations of coordinated and free water in the solution can be obtained from the integrals of the H₂O signals in the ¹H NMR spectra and the concentrations of the aqua complexes. The equilibrium constants at different temperatures calculated based

Table 4. Parameters for the equilibria between [OsCl₂(=C=CHR)(PPh₃)₂] and [OsCl₂(H₂O)(=C=CHR)(PPh₃)₂]

$[OsCl_2(=C=CHPh)(PPh_3)_2] + H_2O \stackrel{\rightarrow}{\leftarrow} [OsCl_2(H_2O)(=C=CHPh)(PPh_3)_2] (9)$					
$T [K] K^{[a]} ln K \Delta G^0 [kcal·mol-1]$	298 202.7 5.312 -3.15	292 312.6 5.745 -3.33	282 788.9 6.671 -3.73	$270 \\ 3085 \\ 8.034 \\ -4.30$	
$[OsCl_2 = C = CH(p-tolyl)]$	$(PPh_3)_2 + H_2O \stackrel{\rightarrow}{\leftarrow} [O]$	$OsCl_2(H_2O) = C = CH(p)$	-tolyl)}(PPh ₃) ₂] (10)		
$T [K] K^{[b]}\ln K\Delta G^0 [\text{kcal·mol}^{-1}]$	298 172.1 5.148 -3.05	287 506.9 6.228 -3.55	280 1197 7.087 -3.94	270 4684 8.452 -4.53	
$[OsCl_2(=C=CHCMe_3)(I)]$	$PPh_{3})_{2}] + H_{2}O \stackrel{\rightarrow}{\leftarrow} [OsC$	$Cl_2(H_2O)(=C=CHMe_3)$	(PPh ₃) ₂] (11)		
$T (K) K^{[c]} ln K \Delta G^0 [kcal·mol-1]$	298 15.51 2.741 -1.62	290 35.22 3.562 -2.05	285 69.37 4.239 - 2.40	279 172.8 5.152 -2.86	275 416.4 6.032 -3.30

^[a] The values were obtained with a CD₂Cl₂ solution having an Os/H₂O molar ratio of 1:1.6. ^[b] The values were obtained with a CD₂Cl₂ solution having an Os/H₂O molar ratio of 1:1.^[c] The values were obtained with a CD₂Cl₂ solution having an Os/H₂O molar ratio of 1:0.4.

on these data are summarized in Table 4. A plot of $\ln K$ against reciprocal absolute temperature gave a straight line. According to the equation $\ln K = -(\Delta H^0/R)(1/T) + \Delta S^0/R$, the standard enthalpy and the standard entropy change of the reaction can be calculated from the slope of the straight line and the intercept, respectively. Approximate values of $\Delta H^0 = -22.7 \text{ kcal·mol}^{-1} \text{ and } \Delta S^0 = -70.96 \text{ cal·mol}^{-1} \text{ K}^{-1}$ were calculated for the equilibrium between 8 and 11 in CD_2Cl_2 , and the value of ΔG^0 at 298 K was -1.62 kcal·mol⁻¹. For the equilibrium between 6 and 9 in CD_2Cl_2 , the relevant values were calculated to be $\Delta H^0 =$ $-15.7 \text{ kcal·mol}^{-1}, \Delta S^0 = -42.3 \text{ cal·mol}^{-1} \cdot \mathrm{K}^{-1}$ and $\Delta G^{0}_{(298)} = -3.15 \text{ kcal} \cdot \text{mol}^{-1}$. These results indicate that formation of the (aqua)(vinylidene) is exothermic and that the equilibria are shifted to the (aqua)(vinylidene) complexes when the temperature is lowered, as mentioned previously.

As can be seen from Table 4, the equilibrium constant at room temperature for 6/9 is similar to that of 7/11 and is about 13 times as large as that of 8/11, indicating that $[OsCl_2(=C=CHAr)(PPh_3)_2]$ (6 and 7) have a higher affinity for H₂O than $[OsCl_2(=C=CHCMe_3)(PPh_3)_2]$ (8). This difference may be related to that fact that CMe₃ is more electron-donating than Ar, thus the Lewis acidities of 6 and 7 are higher than that of 8.

Conclusions

Reaction of [OsCl₂(PPh₃)₃] with terminal acetylenes $HC \equiv CR$ (R = Ph, p-tolyl, CMe₃) in the presence of HCl produced readily the carbyne complexes $[OsCl_3 (\equiv CCH_2R)(PPh_3)_2]$. Due to the acidic nature of the protons α to the carbyne carbon atom, the vinylidene complexes $[OsCl_2(=C=CHR)(PPh_3)_2]$ (R = CMe_3, Ph, p-tolyl) can be easily prepared from these carbyne complexes by treatment with NEt₃. Interestingly, these vinylidene complexes are hyproscopic and react with water to give reversibly. $[OsCl_2(H_2O)(=C=CHR)(PPh_3)_2]$ Dynamic NMR studies show that the vinylidene complexes $[OsCl_2(=$ C=CHR)(PPh₃)₂] (R = Ph, *p*-tolyl) have a higher tendency to form the aqua complexes than does $[OsCl_2(=C=$ CHCMe₃)(PPh₃)₂]. Thus, the (aqua)(vinylidene) complexes $[OsCl_2(=C=CHR)(H_2O)(PPh_3)_2]$ (R = Ph, p-tolyl) could be isolated by treatment of the anhydrous vinylidene complexes with water.

Experimental Section

General: All manipulations were carried out at room temperature under nitrogen using standard Schlenk techniques, unless otherwise stated. Solvents were distilled under nitrogen from sodium/benzophenone (hexane, diethyl ether, THF, benzene) or calcium hydride (dichloromethane, CHCl₃). The starting material [OsCl₂(PPh₃)₃]^[47] was prepared according to literature methods. Microanalyses were performed by M-H-W Laboratories (Phoenix, AZ). ¹H, ¹³C{¹H} and ³¹P{¹H} NMR spectra were collected with a Bruker ARX-300 spectrometer (300 MHz) or a JOEL EX-400 spectrometer (400 MHz). ¹H and ¹³C NMR chemical shifts are relative to TMS, and ³¹P NMR chemical shifts are relative to 85% H₃PO₄.

 $[OsCl_3(=C-CH_2Ph)(PPh_3)_2]$ (2): HCl·OEt₂ (1.00 mL, 1.0 M in diethyl ether solution, 1.0 mmol) and HC=CPh (0.32 mL, 2.9 mmol) were added to a solution of [OsCl₂(PPh₃)₃] (0.50 g, 0.48 mmol) in benzene (15 mL). The reaction mixture was stirred at room temperature for 6 h to give a yellow microcrystalline solid, which was collected by filtration, washed with diethyl ether $(2 \times 20 \text{ mL})$ and dried under vacuum (0.33 g). The filtrate was concentrated to ca. 5 mL, and addition of diethyl ether (20 mL) to the residue produced additional yellow solid, which was collected by filtration, washed with diethyl ether (2 \times 20 mL), and dried under vacuum overnight (0.05 g). Total yield: 0.38 g (86%). ¹H NMR $(399.65 \text{ MHz}, \text{ CDCl}_3): \delta = 1.77 \text{ (s, 2 H, Os} \equiv \text{CCH}_2), 6.46 \text{ (d,}$ $J_{\text{H,H}} = 7.1 \text{ Hz}, 2 \text{ H}, o-C_6H_5), 7.08 \text{ (t}, J_{\text{H,H}} = 7.6 \text{ Hz}, 2 \text{ H}, m-C_6H_5),$ 7.19 (t, $J_{H,H} = 7.6$ Hz, 1 H, $p-C_6H_5$), 7.29–7.38 (m, 18 H, PP h_3), 7.81-7.86 (m, 12 H, PPh₃) ppm. ¹³C{¹H} NMR (100.4 MHz, CD₂Cl₂): $\delta = 278.2$ (t, $J_{P,C} = 11.1$ Hz, Os=C), 134.9–125.0 (m, C_6H_5 , PPh₃), 57.3 (s, Os=CCH₂) ppm. ³¹P{¹H} NMR (121.5 MHz, CDCl₃): $\delta = -12.9$ (s) ppm. C₄₄H₃₇Cl₃OsP₂ (924.3): calcd. C 57.18, H 4.04; found C 57.35, H 4.19.

[OsCl₃{=C-CH₂(*p*-tolyl)}(PPh₃)₂] (3): HCl·OEt₂ (1.00 mL, 1.0 м in diethyl ether solution, 1.0 mmol) and 4-ethynyltoluene (0.24 mL, 1.9 mmol) were added to a solution of [OsCl₂(PPh₃)₃] (0.50 g, 0.48 mmol) in benzene (15 mL). The reaction mixture was stirred at room temperature for 6 h to give a yellow microcrystalline solid, which was collected by filtration, washed with diethyl ether (2 \times 20 mL) and dried under vacuum (0.32 g). The filtrate was concentrated to about 5 mL, and addition of diethyl ether (20 mL) to the residue produced additional yellow solid, which was collected by filtration, washed with diethyl ether (2 \times 15 mL), and dried under vacuum overnight (31 mg). Total yield: 0.35 g (78%). ¹H NMR (399.65 MHz, CDCl₃): $\delta = 1.72$ (s, 2 H, Os=CCH₂), 2.22 (s, 3 H, $C_6H_4CH_3$, 6.21 (d, $J_{H,H} = 8.0$ Hz, 2 H, C_6H_4) 6.79 (d, $J_{H,H} =$ 8.0 Hz, 2 H, C₆H₄), 7.30 (m, 18 H, PPh₃), 7.80 (m, 12 H, PPh₃) ppm. ¹³C{¹H} NMR (100.4 MHz, CD₂Cl₂): $\delta = 280.1$ (t, $J_{PC} =$ 12.0 Hz, $Os \equiv C$), 138.0-122.1 (m, C_6H_5 , PPh_3), 57.1 (s, $Os \equiv CCH_2$), 21.2 (s, C₆H₄-CH₃) ppm. ³¹P{¹H} NMR (121.5 MHz, $CDCl_3$): $\delta = -12.1$ (s) ppm. $C_{45}H_{39}Cl_3OsP_2$ (938.3): calcd. C 57.60, H 4.19; found C 57.40, H 4.34.

[OsCl₃(=CCH₂CMe₃)(PPh₃)₂] (4): HC=CCMe₃ (0.28 mL, 2.3 mmol) and HCl·OEt₂ (0.80 mL, 0.80 mmol, 1.0 M in diethyl ether solution) were added to a solution of [OsCl₂(PPh₃)₃] (0.40 g, 0.38 mmol) in benzene (15 mL). The reaction mixture was stirred at room temperature for 6 h to give a yellow microcrystalline solid, which was collected by filtration, washed with diethyl ether (2 × 20 mL) and dried under vacuum (0.20 g). The filtrate was concentrated to ca. 3 mL, and addition of diethyl ether (20 mL) to the residue produced additional yellow solid, which was collected by filtration, washed with diethyl ether (2 × 20 mL), and dried under vacuum overnight (0.08 g). Total yield: 0.28 g (82%). The spectroscopic data have been reported previously.^[22]

 $[OsCl_3(=CCH_3)(PPh_3)_2]$ (5): HC=CSiMe₃ (0.27 mL, 1.9 mmol) and HCl·OEt₂ (1.20 mL, 1.0 M in diethyl ether solution, 1.2 mmol) were added to a solution of $[OsCl_2(PPh_3)_3]$ (0.50 g, 0.48 mmol) in benzene (15 mL). The reaction mixture was stirred at room temperature for 8 h to give a yellow microcrystalline solid, which was collected by filtration, washed with diethyl ether (2 × 20 mL) and dried under vacuum (0.25 g). The filtrate was concentrated to ca. 3 mL, and addition of diethyl ether (20 mL) to the residue produced additional yellow solid, which was collected by filtration, washed with diethyl ether (2 × 15 mL), and dried under vacuum overnight (0.04 g). Total yield: 0.29 g (71%). ¹H NMR (300.13 MHz, CD₂Cl₂): $\delta = 0.04$ (t, $J_{P,H} = 2.5$ Hz, 3 H, CH_3), 7.36–7.43 (m, 18 H, PPh₃), 7.89–7.96 (m, 12 H, PPh₃) ppm. ¹³C{¹H} NMR (100.40 MHz, CD₂Cl₂): $\delta = 283.7$ (t, $J_{P,C} = 12.3$ Hz, Os=*C*), 135.1–127.9 (m, PPh₃), 36.9 (s, Os=*C*-*CH₃) ppm.* ³¹P{¹H} NMR (121.5 MHz, CD₂Cl₂): $\delta = -13.5$ (s) ppm. C₃₈H₃₃Cl₃OsP₂ (848.2): calcd. C 53.81, H 3.92; found C 53.60, H 4.18.

 $[OsCl_2(=C=CHPh)(PPh_3)_2]$ (6): NEt₃ (0.43 mL, 3.1 mmol) was added to a CH₂Cl₂ (40 mL) solution of $[OsCl_3(\equiv CCH_2Ph)(PPh_3)_2]$ (0.57 g, 0.62 mmol). The reaction mixture rapidly changed color from yellow to blue. After stirring for 1 h, the solvent was removed completely under vacuum and the resulting blue solid was extracted with benzene (30 mL). The extract was filtered through Celite to remove the insoluble Et₃N·HCl. The filtrate was concentrated to ca. 1 mL and diethyl ether was slowly added to give a blue solid, which was collected by filtration, washed with diethyl ether (2 \times 10 mL) and dried under vacuum overnight. Yield: 0.47 g (85%). ¹H NMR (300.13 MHz, freshly distilled CD₂Cl₂): $\delta = 2.56$ (t, $J_{PH} =$ 3.3 Hz, 1 H, Os=C=CH), 6.48 (d, $J_{H,H}$ = 7.4 Hz, 2 H, o-C₆H₅), 6.71 (t, $J_{H,H} = 7.4$ Hz, 1 H, p-C₆H₅), 7.02 (t, $J_{H,H} = 7.4$ Hz, 2 H, m-C₆H₅), 7.25-7.41 (m, 18 H, PPh₃), 7.57-7.64 (m, 12 H, PPh₃) ppm. ¹³C{¹H} NMR (100.4 MHz, freshly distilled CD₂Cl₂): δ = 280.8 (br., Os = C), 135.0–124.3 (m, C_6H_5 , PPh₃), 112.1 (t, $J_{P,C} =$ 4.8 Hz, Os=C=CH) ppm. ³¹P{¹H} NMR (121.5 MHz, freshly distilled CD₂Cl₂): $\delta = 9.6$ (s) ppm. C₄₄H₃₆Cl₂OsP₂ (887.8): calcd. C 59.53, H 4.09; found C 59.54, H 4.01.

 $[OsCl_2 = C = CH(p-tolyl)](PPh_3)_2$ (7): NEt₃ (0.44 mL, 3.2 mmol) was added to a CH_2Cl_2 (40 mL) solution of $[OsCl_3] \equiv CCH_2(p-1)$ tolyl){(PPh₃)₂] (0.50 g, 0.53 mmol). The reaction mixture rapidly changed color from yellow to blue. After stirring for 1 h, the solvent was removed completely under vacuum and the resulting blue solid was extracted with benzene (30 mL). The extract was filtered through Celite to remove the insoluble Et₃N·HCl. The filtrate was concentrated to ca. 1 mL and diethyl ether was slowly added to give a blue solid, which was collected by filtration, washed with diethyl ether $(2 \times 10 \text{ mL})$ and dried under vacuum overnight. Yield: 0.42 g (88%). ¹H NMR (300.13 MHz, CD₂Cl₂): $\delta = 2.39$ (s, 3 H, C₆H₄CH₃), 2.46 (t, $J_{P,H}$ = 3.4 Hz, 1 H, Os=C=CH), 6.40 (d, $J_{\rm H,H} = 8.0 \text{ Hz}, 2 \text{ H}, C_6 H_4), 6.87 \text{ (d}, J_{\rm H,H} = 8.0 \text{ Hz}, 2 \text{ H}, C_6 H_4),$ 7.33-7.41 (m, 18 H, PPh₃), 7.59-7.62 (m, 12 H, PPh₃) ppm. ¹³C{¹H} NMR (100.4 MHz, freshly distilled CD₂Cl₂): $\delta = 281.0$ (br., Os = C), 135.0–124.9 (m, C_6H_4 , PPh₃), 112.0 (t, $J_{P,C} = 4.5$ Hz, Os=C=CH), 20.9 (s, $C_6H_4-CH_3$) ppm. ³¹P{¹H} NMR (121.5 MHz, freshly distilled CD_2Cl_2): $\delta = 9.2$ (s) ppm. C45H38Cl2OsP2 (901.8): calcd. C 59.93, H 4.25; found C 59.76, H 4.26.

[OsCl₂(=C=CHCMe₃)(PPh₃)₂] (8): NEt₃ (0.31 mL, 1.7 mmol) was added with stirring to a solution of $[OsCl_3(=CCH_2CMe_3)(PPh_3)_2]$ (0.50 g, 0.55 mmol) in CH₂Cl₂ (50 mL). The reaction solution changed color from orange to brown immediately. The reaction mixture was stirred at room temperature for 1 h and the solvent was removed completely under vacuum. The brown solid was extracted with benzene (15 mL) and the extract filtered through Celite to remove the insoluble Et₃N·HCl. The volume of the brown filtrate was reduced to ca. 1 mL. Addition of diethyl ether (20 mL) to the residue produced a purple solid, which was collected by filtration, washed with diethyl ether (2 × 10 mL) and hexane (20 mL) and dried under vacuum overnight. Yield: 0.29 g (61%). ¹H NMR (300.13 MHz, freshly distilled CD₂Cl₂): $\delta = 0.54$ [s, 9 H, C(CH₃)₃], 1.20 (t, $J_{P,H} = 3.6$ Hz, 1 H, Os=C=CH), 7.42–7.51 (m, 18 H,

PPh₃), 7.66–7.71 (m, 12 H, PPh₃) ppm. The signal of H₂O appears at room temp. at δ = 1.73 ppm and at 211 K at δ = 1.86 ppm with an integral of 2:1 relative to that of the vinylidene signal. ¹³C{¹H} NMR (100.40 MHz, freshly distilled CD₂Cl₂): δ = 274.1 (t, *J*_{P,C} = 12.5 Hz, Os=*C*), 134.9–128.4 (m, PPh₃), 120.5 (t, *J*_{P,C} = 5.5 Hz, Os=*C*=*C*H), 32.60 [s, C(*C*H₃)₃], 27.47 [s, *C*(*C*H₃)₃] ppm. ³¹P{¹H} NMR (121.5 MHz, freshly distilled CD₂Cl₂): δ = 3.4 (s) ppm. FAB-MS (NBA): *m*/*z* = 868 [M⁺]. C₄₂H₄₀Cl₂OsP₂ (867.8): calcd. C 58.13, H 4.65; found C 58.49, H 4.53.

 $[OsCl_2(H_2O)(=C=CHPh)(PPh_3)_2]$ (9): Water (0.2 mL) was added to a blue solution of $[OsCl_2(=C=CHPh)(PPh_3)_2]$ (0.15 g, 0.17 mmol) in CH₂Cl₂ (10 mL). The solution turned orange immediately. After stirring for 20 min, the solvent was pumped off to give an orange paste. Diethyl ether (10 mL) was added to the residue to give an orange solid, which was collected by filtration, washed with diethyl ether $(2 \times 5 \text{ mL})$ and dried under vacuum for 30 min. Yield: 0.14 g (91%). ¹H NMR (300.13 MHz, CD_2Cl_2): $\delta =$ 2.48 (t, $J_{P,H} = 3.3$ Hz, 1 H, Os=C=CH), 6.70 (d, $J_{H,H} = 7.2$ Hz, 2 H, o-C₆H₅), 6.76 (t, $J_{H,H}$ = 7.4 Hz, 1 H, p-C₆H₅), 7.08 (t, $J_{H,H}$ = 7.4 Hz, 2 H, m-C₆H₅), 7.28-7.40 (m, 18 H, PPh₃), 7.70-7.76 (m, 12 H, PPh₃) ppm. The signal of H₂O appears at room temp. at $\delta =$ 1.77 ppm and at 211 K at $\delta = 1.95$ ppm with an integral of 2:1 relative to that of the vinylidene =CH signal. ${}^{13}C{}^{1}H$ NMR $(100.4 \text{ MHz}, \text{ CD}_2\text{Cl}_2): \delta = 289.1 \text{ (t, } J_{P,C} = 11.4 \text{ Hz}, \text{ Os}=C),$ 134.7–123.8 (m, C₆H₅, PPh₃), 112.3 (t, $J_{P,C} = 4.4$ Hz, Os=C=CH) ppm. ³¹P{¹H} NMR (121.5 MHz, CD₂Cl₂ in the presence of a drop of water): $\delta = -3.6$ (s) ppm. C₄₄H₃₈Cl₂OOsP₂ (905.8): calcd. C 58.34, H 4.23; found C 58.54, H 4.42.

 $[OsCl_2(H_2O) \{= C = CH(p-tolyl)\}(PPh_3)_2]$ (10): Water (0.2 mL) was added to a blue solution of $[OsCl_2{=C=CH(p-tolyl)}(PPh_3)_2]$ (0.15 g, 0.17 mmol) in CH₂Cl₂ (10 mL). The solution turned orange immediately. After stirring for 20 min, the solvent was pumped off to give an orange paste. Diethyl ether (10 mL) was added to the residue to give an orange solid, which was collected by filtration, washed with diethyl ether $(2 \times 5 \text{ mL})$ and dried under vacuum for 30 min. Yield: 0.14 g (89%). ¹H NMR (300.13 MHz, CD₂Cl₂): $\delta =$ 2.38 (s, 3 H, $C_6H_4CH_3$), 2.42 (t, $J_{PH} = 3.5$ Hz, 1 H, Os=C=CH), 6.62 (d, $J_{H,H} = 8.0$ Hz, 2 H, C₆ H_4), 6.92 (d, $J_{H,H} = 8.0$ Hz, 2 H, C₆H₄), 7.30-7.37 (m, 18 H, PPh₃), 7.70-7.73 (m, 12 H, PPh₃) ppm. The signal of H₂O appears at room temp. at $\delta = 1.73$ ppm and at 190 K at $\delta = 1.86$ ppm with an integral of 2:1 relative to that of the vinylidene =CH signal. ${}^{13}C{}^{1}H$ NMR (100.4 MHz, CD₂Cl₂): $\delta = 293.7$ (t, $J_{P,C} = 14.1$ Hz, Os=C), 135.1–125.4 (m, C_6H_4 , PPh₃), 112.5 (t, $J_{P,C} = 4.5$ Hz, Os=C=CH), 20.8 (s, C_6H_4 -*C*H₃) ppm. ³¹P{¹H} NMR (121.5 MHz, CD₂Cl₂): $\delta = -3.8$ (s) ppm. C₄₅H₄₀Cl₂P₂OOs (919.9): calcd. C 58.76, H 4.38; found C 58.63, H 4.12.

Observation of 11: Owing to the instability and incomplete conversion of **8** to **11**, **11** could not be isolated but could be detected when a solution of **8** in commercially available CD_2Cl_2 was monitored by variable-temperature ${}^{31}P{}^{1}H$ and ${}^{1}H$ NMR experiments. Characterization data of **11:** ${}^{1}H$ NMR (300.13 MHz, CD_2Cl_2 , 188 K): $\delta = 0.91$ (br. s, 1 H, Os=C=CH), 2.38 (br., 2 H, H_2O) ppm. ${}^{31}P{}^{1}H$ NMR (121.5 MHz, CD_2Cl_2 , 188 K): $\delta = -10.2$ (br. s) ppm.

Crystal-Structure Analyses: Crystals suitable for X-ray diffraction were grown by layering hexane on CH₂Cl₂ solutions of **2**, **5** and **8**, or cooling a warm solution of **9** in benzene. Data collection was performed with a Bruker Apex CCD Area Detector for **2** and **8** and with a Bruker SMART CCD Area Detector for **5** and **9**, using graphite-monochromated Mo- K_a radiation ($\lambda = 0.71073$ Å) in all

Compound	2 •1.5C ₆ H ₆	5·CH ₂ Cl ₂	8	9 •C ₆ H ₆
Empirical formula	$C_{44}H_{37}Cl_{3}OsP_{2}\cdot 1.5C_{6}H_{6}$	C ₃₈ H ₃₃ Cl ₃ OsP ₂ ·CH ₂ Cl ₂	$C_{42}H_{40}Cl_2OsP_2$	C ₄₄ H ₃₈ Cl ₂ OOs P ₂ ·C ₆ H ₆
Formula mass	1041.39	933.06	867.78	983.89
Temperature [K]	100(2)	293(2)	180(2)	293(2)
Radiation (Mo- K_{α}) [Å]	0.71073	0.71073	0.71073	0.71073
Crystal system	triclinic	triclinic	monoclinic	monoclinic
Space group	<i>P</i> 1 (no. 2)	<i>P</i> 1 (no. 2)	$P2_1/c$	$P2_1/n$
a [Å]	9.9952(7)	10.6256(9)	22.2749(10)	16.106(2)
<i>b</i> [Å]	13.9065(10)	12.9185(12)	9.5252(4)	12.3804(14)
c [Å]	17.7242(12)	14.0763(12)	18.7580(8)	21.477(3)
a [°]	110.6600(10)	78.341(2)	90	90
β[°]	97.6520(10)	89.708(2)	113.2070(10)	96.382(3)
γ [°]	98.292(2)	81.302(2)	90°	90
$V[\tilde{A}^3]$	2235.6(3)	1869.9(3)	3657.9(3)	4255.9(9)
Z	2	2	4	4
$d_{\text{calcd.}} [\text{g·cm}^{-3}]$	1.547	1.657	1.576	1.536
Abs. coeff. $[mm^{-1}]$	3.139	3.880	3.749	3.234
F(000)	1042	920	1728	1968
Crystal size [mm]	$0.36 \times 0.10 \times 0.08$	$0.36 \times 0.32 \times 0.25$	$0.32 \times 0.25 \times 0.25$	$0.32 \times 0.32 \times 0.10$
θ range [°]	1.60 to 27.88	1.94 to 27.53	2.36 to 28.31°	1.90 to 27.57
No. of reflns. collected	19208	12564	21881	27413
No. of indep. reflns.	$10057 \ (R_{\rm int} = 0.0318)$	8431 ($R_{\rm int} = 0.0353$)	$8561 \ (R_{\rm int} = 0.0260)$	9785 ($R_{\rm int} = 0.0849$)
No. of obsd. reflns. $[I > 2\sigma(I)]$	8921	7060	7617	4759
Absorption correction	SADABS	SADABS	SADABS	SADABS
Data/restraints/params	10057/0/532	8431/3/434	8561/0/428	9785/0/506
Goodness-of-fit on F^2	0.992	0.989	1.037	0.764
Final $R_{\text{int}} [I > 2\sigma(I)]$	$R_1 = 0.0303,$	$R_1 = 0.0428,$	$R_1 = 0.0261,$	$R_1 = 0.0425,$
	$wR_2 = 0.0696$	$wR_2 = 0.1021$	$wR_2 = 0.0583$	$wR_2 = 0.0637$
Largest peak/hole (e·Å ⁻³)	1.798/-0.974	2.236/-0.950	1.639/-0.519	1.312/-0.799

Table 5. Crystallographic details for $[OsCl_3(\equiv CCH_2Ph)(PPh_3)_2] \cdot 1.5C_6H_6$ (2 $\cdot 1.5C_6H_6$), $[OsCl_3(\equiv CCH_3)(PPh_3)_2] \cdot CH_2Cl_2$ (5 $\cdot CH_2Cl_2$), $[OsCl_2(=C=CHCMe_3)(PPh_3)_2]$ (8) and $[OsCl_2(H_2O)(=C=CHPh)(PPh_3)_2] \cdot C_6H_6$ (9 $\cdot C_6H_6$)

cases. Empirical absorption corrections (SADABS)^[48] were applied. All structures were solved by direct methods, expanded by difference Fourier syntheses and refined by full-matrix least-squares on F^2 using the Bruker SHELXTL (Version 5.10)^[49] program package. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were introduced at their geometric positions and refined as riding atoms. Further details on crystal data, data collection and refinements are summarized in Table 5. CCDC-227451 ($2 \cdot 1.5C_6H_6$), -227452 ($5 \cdot CH_2Cl_2$), -227453 (8) and -227454 ($9 \cdot C_6H_6$) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/ conts/retrieving.html [or from the Cambridge CB2 1EZ, UK; Fax: + 44-1223-336033; E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgments

The authors acknowledge financial support from the Hong Kong Research Grants Council.

Synlett 2003, 314-320. ^[2e] J. Louie, R. H. Grubbs, Angew. Chem. Int. Ed. 2001, 40, 247-249.

- ^[3] ^[3a] Y. Wakatsuki, H. Yamazaki, N. Kumegawa, T. Satoh, J. Y. Satoh, J. Am. Chem. Soc. **1991**, 113, 9604–9610. ^[3b] Y. Wakatsuki, N. Koga, H. Yamazaki, K. Morokuma, J. Am. Chem. Soc. **1994**, 116, 8105–8111.
- ^[4] Reactions of [RuCl₂(PPh₃)₃] with HC≡CC(OH)Ar₂ can also lead to related allenylidene complexes: ^[4a] D. Touchard, S. Guesmi, M. Bouchaib, P. Haquette, A. Daridor, P. H. Dixneuf, *Organometallics* 1996, *15*, 2579–2581. ^[4b] K. J. Harlow, A. F. Hill, J. D. E. T. Wilton-Ely, *J. Chem. Soc., Dalton Trans.* 1999, 285–291. ^[4c] H. J. Schanz, L. Jafarpour, E. D. Stevens, S. P. Nolan, *Organometallics* 1999, *18*, 5187–5190. ^[4d] A. Fürstner, O. Guth, A. Düffels, G. Seidel, M. Liebl, B. Gabor, R. Mynott, *Chem. Eur. J.* 2001, *7*, 4811–4820.
- ^[5] [^{5a]} C. Grünwald, O. Gevert, J. Wolf, P. González-Herrero, H. Werner, Organometallics 1996, 15, 1960–1962. [^{5b]} J. Wolf, W. Stüer, C. Grünwald, O. Gevert, M. Laubender, H. Werner, Eur. J. Inorg. Chem. 1998, 1827–1834. [^{5c]} J. Wolf, W. Stüer, C. Grünwald, H. Werner, P. Schwab, M. Schulz, Angew. Chem. Int. Ed. 1998, 37, 1124–1126.
- ^[6] H. Katayama, F. Ozawa, Organometallics 1998, 17, 5190-5196.
- [7] M. Saoud, A. Romerosa, M. Peruzzini, *Organometallics* 2000, 19, 4005–4007.
- [8] P. Barrio, M. A. Esteruelas, E. Oñate, *Organometallics* 2003, 22, 2472-2485.
- [9] J. Gimeno, M. Gonzalez-Cueva, E. Lastra, E. Perez-Carreño, S. García-Granda, *Inorg. Chim. Acta* 2003, 347, 99–106.
- ^[10] P. Barrio, M. A. Esteruelas, E. Oñate, *Organometallics* 2002, 21, 2491–2503.
- ^[11] D. G. Gusev, T. Maxwell, F. M. Dolgushin, M. Lyssenko, A. J. Lough, *Organometallics* 2002, 21, 1095–1100.

 ^[1] For reviews on vinylidene complexes, see for example: ^[1a] M. I. Bruce, *Chem. Rev.* 1991, 91, 197-257. ^[1b] M. I. Bruce, A. G. Swincer, *Adv. Organomet. Chem.* 1983, 22, 59-128. ^[1c] C. Bruneau, P. H. Dixneuf, *Acc. Chem. Res.* 1999, 32, 311-323. ^[1d] M. C. Puerta, P. Valerga, *Coord. Chem. Rev.* 1999, 193-195, 977-1025.

 ^[2] ^[2a] P. Schwab, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1996, 118, 100–110.
 ^[2b] H. Katayama, F. Ozawa, Chem. Lett. 1998, 67–68.
 ^[2c] H. Katayama, H. Urushima, F. Ozawa, J. Organomet. Chem. 2000, 606, 16–25.
 ^[2d] T. Opstal, F. Verpoort,

FULL PAPER

- T. B. Wen, W. Y. Hung, Z. Y. Zhou, M. F. Lo, I. D. Williams, G. Jia
- [12] M. Baya, P. Crochet, M. A. Esteruelas, A. M. López, J. Modrego, E. Oñate, *Organometallics* **2001**, *20*, 4291–4294.
- ^[13] R. Castarlenas, M. A. Esteruelas, E. Gutiérrez-Puebla, E. Oñate, *Organometallics* **2001**, *20*, 1545–1554.
- ^[14] R. Castarlenas, M. A. Esteruelas, E. Oñate, *Organometallics* 2000, 19, 5454–5463.
- ^[15] T. B. Wen, Y. Y. Cheung, J. Z. Yao, W. T. Wong, Z. Y. Zhou, G. Jia, *Organometallics* **2000**, *19*, 3803–3809.
- ^[16] M. A. Esteruelas, M. Oliván, E. Oñate, N. Ruiz, M. A. Tajada, *Organometallics* **1999**, *18*, 2953–2960.
- [^{17]} M. Baya, M. A. Esteruelas, Organometallics 2002, 21, 2332–2335.
- [18] R. Castarlenas, M. A. Esteruelas, E. Oñate, *Organometallics* 2001, 20, 3283–3295.
- ^[19] G. Ferrando, H. Gérard, G. J. Spivak, J. N. Coalter III, J. C. Huffman, O. Eisenstein, K. G. Caulton, *Inorg. Chem.* 2001, 40, 6610-6621.
- [^{20]} For additional examples of recent work on (vinylidene)Os complexes, see for example: ^[20a] M. Baya, M. A. Esteruelas, E. Oñate, Organometallics 2001, 20, 4875–4886. ^[20b] A. V. Marchenko, H. Gérard, O. Eisenstein, K. G. Caulton, New. J. Chem. 2001, 25, 1244–1255. ^[20c] M. L. Buil, M. A. Esteruelas, C. García-Yebra, E. Gutiérrez-Puebla, M. Oliván, Organometallics 2000, 19, 2184–2193. ^[20d] M. A. Esteruelas, C. García-Yebra, M. Oliván, E. Oñate, M. A. Tajada, Organometallics 2000, 19, 5098–5106. ^[20e] M. Baya, P. Crochet, M. A. Esteruelas, E. Gutiérrez-Puebla, A. M. López, J. Modrego, E. Oñate, N. Vela, Organometallics 2000, 19, 2585–2596. ^[20r] M. L. Buil, M. A. Esteruelas, Organometallics 1999, 18, 1798–1800. ^[20g] C. Bohanna, M. L. Buil, M. A. Esteruelas, E. Oñate, C. Valero, Organometallics 1999, 18, 5176–5179.
- ^[21] M. L. Buil, O. Eisenstein, M. A. Esteruelas, C. García-Yebra, E. Gutiérrez-Puebla, M. Oliván, E. Oñate, N. Ruiz, M. A. Tajada, *Organometallics* **1999**, *18*, 4949–4959.
- [22] T. B. Wen, S. Y. Yang, Z. Y. Zhou, Z. Lin, C. P. Lau, G. Jia, Organometallics 2000, 19, 3757–3761.
- ^[23] T. B. Wen, Z. Y. Zhou, G. Jia, Angew. Chem. Int. Ed. 2001, 40, 1951–1954.
- ^[24] H. Werner, S. Jung, B. Weberndörfer, J. Wolf, *Eur. J. Inorg. Chem.* **1999**, 951–957.
- ^[25] J. Espuelas, M. A. Esteruelas, F. J. Lahoz, L. A. Oro, N. Ruiz, J. Am. Chem. Soc. **1993**, 115, 4683–4869.
- ^[26] See for example: ^[26a] C. Bianchini, A. Marchi, L. Marvelli, M. Peruzzini, A. Romerosa, R. Rossi, *Organometallics* **1996**, *15*, 3804–3816. ^[26b] Y. Kawata, M. Sato, *Organometallics* **1997**, *16*, 1093–1096.
- ^[27] H. Werner, R. W. Lass, L. O. Gevert, J. Wolf, *Organometallics* 1997, 16, 4077–4088.
- ^[28] M. A. Esteruelas, A. I. González, A. M. López, E. Oñate, Organometallics 2003, 22, 414–425.
- ^[29] P. Crochet, M. A. Esteruelas, A. M. López, M. P. Martínez, M. Oliván, E. Oñate, N. Ruiz, *Organometallics* **1998**, *17*, 4500–4509.
- ^[30] L. J. Baker, G. R. Clark, C. E. F. Rickard, W. R. Roper, S. D. Woodgate, L. J. Wright, *J. Organomet. Chem.* **1998**, 551, 247–259.

- [^{31]} M. A. Esteruelas, A. M. López, N. Ruiz, J. I. Tolosa, Organometallics 1997, 16, 4657–4667.
- [^{32]} A. M. LaPointe, R. R. Schrock, W. M. Davis, J. Am. Chem. Soc. 1995, 117, 4802–4813.
- ^[33] L. M. Hodges, M. Sabat, W. D. Harmon, *Inorg. Chem.* **1993**, *32*, 371–372.
- ^[34] B. Weber, P. Steinert, B. Windmüller, J. Wolf, H. Werner, J. Chem. Soc., Chem. Commun. 1994, 2595–2596.
- ^[35] [^{35a]} G. R. Clark, N. R. Edmonds, R. A. Pauptit, W. R. Roper, J. M. Waters, A. H. Wright, *J. Organomet. Chem.* **1983**, 244, C57–C60. [^{35b]} M. A. Gallop, W. R. Roper, *Adv. Organomet. Chem.* **1986**, 25, 121–198.
- ^[36] G. J. Spivak, J. N. Coalter, M. Oliván, O. Eisenstein, K. G. Caulton, *Organometallics* 1998, 17, 999-1001.
- ^[37] M. Bourgault, A. Castillo, M. A. Esteruelas, E. Oñate, N. A. Ruiz, Organometallics 1998, 17, 636–645.
- ^[38] For additional examples of recent work on (carbyne)Os complexes, see: ^[38a] M. Baya, M. A. Esteruelas, E. Oñate, *Organometallics* 2002, 21, 5681–5684. ^[38b] H. Chen, R. Liu, W. H. Myers, W. D. Harman, J. Am. Chem. Soc. 1998, 120, 509–520. ^[38c] G. J. Spivak, K. G. Caulton, *Organometallics* 1998, 17, 5260–5266. ^[38d] M. L. Spera, H. Chen, M. W. Moody, M. M. Hill, W. D. Harman, J. Am. Chem. Soc. 1997, 119, 12772–12778.
- ^[39] C. Kelly, L. A. Mercando, M. R. Terry, N. Lugan, G. L. Geoffroy, Z. Xu, A. L. Rheingold, *Angew. Chem. Int. Ed. Engl.* **1992**, *31*, 1053–1054.
- ^[40] S. Y. Yang, T. B. Wen, G. Jia, Z. Lin, Organometallics 2000, 19, 5477-5483.
- [41] A. F. Hill, A. G. Hulkes, A. J. P. White, D. J. Williams, Organometallics 2000, 17, 371–373.
- ^[42] ^[42a] M. Oliván, E. Clot, O. Eisenstein, K. G. Caulton, *Organometallics* 1998, 17, 3091–3100. ^[42b] M. Oliván, E. Clot, O. Eisenstein, K. G. Caulton, *Organometallics* 1998, 17, 897–901.
 ^[42c] M. Oliván, O. Eisenstein, K. G. Caulton, *Organometallics* 1997, 16, 2227–2229.
- ^[43] D. Huang, M. Oliván, J. C. Huffman, O. Eisenstein, K. G. Caulton, *Organometallics* 1998, 17, 4700-4706.
- ^[44] ^[44a] H. Werner, W. Stüer, J. Wolf, M. Laubender, B. Weberndörfer, R. Herbst-Irmer, C. Lehmann, *Eur. J. Inorg. Chem.* **1999**, 1889–1897. ^[44b] G. Bellachioma, G. Cardaci, A. Macchioni, F. Valentini, C. Zuccaccia, E. Foresti, P. Sabatino, *Organometallics* **2000**, *19*, 4320–4326. ^[44c] H. D. Mui, J. L. Brumaghim, C. J. Cross, G. S. Girolami, *Organometallics* **1999**, *18*, 3264–3272.
- ^[45] T. B. Wen, Z. Y. Zhou, M. F. Lo, I. D. Williams, G. Jia, Organometallics 2003, 22, 5217–5225.
- [46] P. J. Hore, Nuclear Magnetic Resonance, Oxford University Press Inc., New York, 1995, pp. 44-55.
- [47] P. R. Hoffmann, K. G. Caulton, J. Am. Chem. Soc. 1975, 97, 4221–4228.
- [48] G. M. Sheldrick, SADABS, Empirical Absorption Correction Program, University of Göttingen, Germany, 1996.
- [49] Bruker, SHELXTLTM Reference Manual (Version 5.1), Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, USA, 1997.

Received January 2, 2004 Early View Article Published Online May 13, 2004