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Abstract: The perbenzylated D-ribofuranosyl fluoride is allowed
to react with Grignard reagents of aromatic heterocycles such as
thiophene, pyrrole, and indole in THF to afford the corresponding
b-C-nucleosides in moderate yields. The present process can be
also applied to perbenzylated D-glucopyranosyl fluoride and per-
benzylated 2-deoxy-D-ribofuranosyl fluoride as sugar donors.

Key words: sugar fluorides, Grignard reagents, C-nucleosides, b-
selectivity

Since the remarkable biological activity of naturally oc-
curring showdomycin was recognized, the synthesis of C-
nucleosides has attracted wide interest in the field of or-
ganic chemistry.1 In our study on the use of D-ribofurano-
syl fluoride as a sugar donor,2 we found that aryl Grignard
reagents reacted easily with perbenzylated D-ribofurano-
syl fluoride without Lewis acids to give the corresponding
C-nucleosides in a b-selective manner. Recently, Kool
and co-workers reported a procedure to prepare aromatic
C-nucleosides using protected D-deoxyribosyl chloride as
a sugar donor.3 We wish to report here a better and practi-
cal method for the b-selective synthesis of C-nucleosides
by utilizing the sugar fluorides in place of the unstable
sugar chlorides (Scheme 1).

The reaction of arylmagnesium reagents with the sugar
fluoride 1 was also examined. The reaction took place at
room temperature to give the desired C-nucleosides with
b-selectivity, while the yield of 3 increased at 50°C to-
gether with perbenzylated D-ribofuranoid glycals 4 as
byproducts (Scheme 1, Table 2). From Entries 2–5 it is
clear that the electron-rich benzene derivatives afford
more glycals 4. The fact that the reaction with p-methoxy-
phenylmagnesium bromide gave glycal 4 in 44 % yield
without the desired C-nucleoside, and the result of Entry
6 support this result.
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Scheme 1

Scheme 2

In a typical experimental procedure, a mixture of 2,3,5-tri-
O-benzyl-D-ribofuranosyl fluoride (1), 2-thienylmagne-
sium bromide 2, and anhydrous THF was stirred at room
temperature to afford the corresponding C-nucleoside 3 in
65 % yield in a b-selective manner (a/b = 8:92) (Scheme
1 and Table 1).

The solvent effect of the reaction was examined by chang-
ing diethyl ether to tetrahydrofuran as the solvent. Al-
though diethyl ether was found to be a little better than
THF in b-selectivity (Entry 3), THF was employed as the
solvent due to easier handling. The b-selectivity was di-
minished when other metal reagents of heterocycles such
as zinc and cadmium were used4 (Entries 4–7). It is no-
ticeable that Entry 6 shows a-selectivity (Scheme 2).

Table 1. Reaction of Sugar Fluoride 1 with Various Arylmetal
Reagents 2

Entry Ar-Metala Solvent Temp (°C) Prod- Yield Ratio
uct (%) of a/b

l ArMgBr THF r.t. 3a 65 8:92
2 ArMgBr THF 50 3a 52 0:100
3 ArMgBr Et2O r.t. 3a 64 6:94
4 ArZnCl THF 50 3a 67 18:82
5 Ar2Zn THF 50 3a 51 12:88
6 ArCdCl THF 50 3a 53 58:42
7 Ar2Cd THF 50 3a 41 32:68
8 ArMgBr THF r.t. 3b 54 0:100

a For entries 4–7, Ar = 2-thienyl; for entry 8, Ar = N-methylpyrrol-2-yl.

Table 2. Reaction of Sugar Fluoride 1 with Various Aryl Grignard
Reagents (ArMgBr)

Entry Ar Temp (°C) Product(s) Yield (%)

3a 4

1 Ph r.t. 23 0
2 Ph 50 57 29
3 2-MeC6H4 50 29 0
4 4-MeC6H4 50 45 51
5 3-MeOC6H4 50 34 36
6 4-ClC6H4 50 70 0
7 1-naphthyl 50 54 0

a Only b-selectivity was observed.
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Furthermore, the pyrrolylation and allylation of D-glu-
copyranose were successful by using the present proce-
dure. 2,3,4,6-Tetra-O-benzyl-D-glucopyranosyl fluoride
(5)5 was allowed to react with N-methylpyrrol-2-ylmag-
nesium bromide to give the corresponding product 6a in
45 % yield as only b-epimer, and allylmagnesium bro-
mide gave the corresponding product, 6b in 77 % yield (a/
b = 35:65).

The allylation of D-glucopyranose reported before gave
the corresponding product in an a-selective manner.6

Therefore, the sugar lactones have been employed in a
two step procedure in order to obtain the corresponding b-
glucosides.7

The structure determination of aromatic C-nucleosides
was carried out by the comparison of their spectral data
with those of authentic samples.8 The stereochemistries of
3, 6 and 8 were determined mainly by the result of differ-
ential NOE (1-H « 4-H) and J1¢ 2¢ values in NMR mea-
surements. Particularly, the structure of 6b was
determined by the following NMR data; J1¢ 2¢ values (a:
5.6 Hz, b: 12.5 Hz) and d values in 13C NMR of g-position
carbons to C-3 (a: 3¢-C, d = 82.4; 5¢-C, d = 71.2. b: 3¢-C,
d = 87.3 ; 5¢ -C, d = 79.1). The IR, Mass, and 1H NMR
spectroscopic data are summarized in Tables 3 and 4.

The reaction of 3,5-di-O-benzyl-2-deoxy-D-ribofuranosyl
fluoride (7) with 2-thienylmagnesium bromide and 2-ben-
zothienylmagnesium bromide afforded the corresponding
products 8a and 8b in 37 (a/b = 67:33) and 54 % (a/b =
55:/45) yields, respectively (Scheme 3).

The reaction is considered to proceed via an oxocarbeni-
um ion, and show b-selectivity because of the steric hin-
drance of 2-alkoxy group. These are explained by the
following facts:

(1) The a-epimer of 1 gave the same result as its b-
epimer; (2) 2,3,5-tri-O-benzylribofuranose was observed
in the first stage of the reaction by TLC monitoring; and
(3) the use of 2,3,5-tri-O-methyl-D-ribofuranosyl fluoride
in place of 1 gave the corresponding thiophenyl C-nucle-
oside in 49% yield with higher a-selectivity (a/b = 41:59)
than that of 1; (4) the use of 7 gave the corresponding
product with a-selectivity.

The decrease of b-selectivity with softer zinc and cadmi-
um reagents than a magnesium reagent9 may be explained
by the bulkiness of the nucleophilic species solvated
strongly by THF even if the ionic adius of magnesium is
smaller (Entries 1–7 in Table 1).10
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Table 3. IR and MS Data of Compounds 3–8 Prepared

Prod- Molecular IR (Neat) HRMS (FAB/NBA), m/z
ucta Formula n (cm–1)

calc. found

3ab C30H30O4S 1080, 2830 509.1763 509.1763
(486.6) (M + Na+) (M + Na+)

3b C31H33NO4 910, 1460, 1500, 2860, 3030 484.2488 484.2501
(483.6) (M + 1) (M + 1)

3c C32H32O4 700, 1460, 1500, 2940, 3020 519.1938 519.1954
(480.6) (M + K+) (M + K+)

3d C33H34O4 740, 1120, 2860, 2920, 3030 533.2094 533.2111
(494.6) (M + K+) (M + K+)

3e C33H34O4 700, 1100, 1150, 2950, 3010 533.2094 533.2106
(494.6) (M + K+) (M + K+)

3f C33H34O5 1090, 1130, 1460, 2880, 3030 549.2043 549.1997
(510.6) (M + K+) (M + K+)

3g 32H31ClO4 1450, 1490, 1720, 2880, 3030 515.1989 515.1986
(515.1) (M + 1) (M + 1)

3h C36H34O4 1090, 1130, 1460, 2880, 3030 569.2094 569.2104
(530.7) (M + K+) (M + K+)

6a C39H41NO5 700, 1060, 2910, 3030, 3450 603.3063 603.3052
(603.8) (M) (M)

6b C37H40O5 1100, 2870, 2900, 3030, 3060 565.2954 565.2944
(564.7) (M + 1) (M + 1)

8a C23H24O3S 740, 1100, 1460, 2860, 3030 419.1083 419.1079
(380.5) (M + K+) (M + K+)

8b C27H26O3S 730, 1100, 2880, 2930, 3030 430.1603 430.1602
(430.6) (M) (M)

a All compounds are oils, except 3e: mp 78–79°C; 3g: mp 54–56°C; 6a: mp 109–110°C; and 8b: mp 56–57°C.
b Anal. calc. for C30H30O4S (486.6): C, 74.05; H, 6.21. Found: C, 73.90; H, 6.07.

Scheme 3
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Table 4. 1H NMR Data of Compounds 3-8 Prepared

Product 1H NMR (CDCl3/TMS)h

d, J (Hz)

3a a-form 3.59–3.77 (m, 2 H, 5¢-Ha, 5¢-Hh), 4.03 (dd, 1 H, 2¢-H, J1¢,2¢ = 3.3, J2¢.3¢ = 3.7), 4.24–4.28 (m, 2 H, 3¢-H, 4¢-H),
4.34–4.60 (m, 6 H, benzyl-H), 5.33 (d, 1 H, 1¢-H, J1¢.2¢ = 3.3), 6,96–7.08 (m, 1 H, thiophene 4-H), 7.16 (d, 1 H,
thiophene 3-H, J3¢,4¢ = 2.2), 7.18–7.20 (m, 1 H, thiophene 5-H), 7.22–7.33 (m, 15 H, benzyl Ph-H)

b-form 3.60 (m, 2 H, 5¢-Ha, 5¢-Hb), 3.91 (dd, 1 H, 2¢-H, J1¢,2¢ = 6.6, J2¢,3¢ = 5.0), 4.01 (dd, 1 H, 3¢-H, J2¢,3¢ = 5.0,
J3¢,4¢ = 3.8), 4.31 (dd, 1 H, 4¢-H, J3¢,4¢ = 3.8, J4¢,5¢ = 4.4), 4.49–4.63 (m, 6 H, benzyl-H), 5.26 (d, 1 H, 1¢-H, J1¢,2¢ = 6.6),
6.95 (m, 1 H, thiophene 4-H), 7.05 (m, 1 H, thiophene 3-H), 7.21–7.34 (m, 16 H, thiophene 5-H, benzyl Ph-H)

3b b-form 3.52 (d, 2 H, 5¢-Ha, 5¢-Hb, J4¢,5¢ = 4.4), 3.58 (brs, 3 H, pyrrole NCH3), 4.02 (dd, 1 H, 3¢-H, J2¢,3¢ = 5.6),
4. 12 (dd, 1 H, 2¢-H, J1¢.2¢ = 7.1, J2¢,3¢ = 5.6), 4.25–4.28 (m, 1 H, 4¢-H), 4.46–4.66 (m, 6 H, benzyl-H), 5.02 (d, 1 H, 1¢-H,
J1¢,2¢ = 7.1), 6.02–6.05 (m, 2 H, pyrrole 3-H, 4-H), 6.57–6.58 (m, 1H, pyrrole 5-H), 7.22–7.34 (m, 15 H, benzyl Ph-H)

3c b-form 3.61–3.69 (m, 2 H, 5¢-Ha, 5¢-Hb), 3.81 (dd, 1 H, 2¢-H, J1¢,2¢ = 6.6, J2¢,3¢ = 5.4), 4.01 (dd, 1 H, 3¢-H, J2¢,3¢ = 5.4,
J3¢,4¢ = 4.6), 4.33–4.37 (m, 1 H, 4¢-H), 4.44–4.63 (m, 6 H, benzyl-H), 5.02 (d, 1 H, 1¢-H, J1¢,2¢ = 6.6), 7.17–7.40 (m, 20 H,
benzene 2-H, 3-H, 4-H, 5-H, 6-H, benzyl Ph-H)

3d b-form 2.37 (s, 3 H, Ar-CH3), 3.65 (dd, 1 H, 5¢-Ha, J4¢,5¢ = 3.9, Jgem = 10.5), 3.73 (dd, 1 H, 5¢-Hb, J4¢,5¢= 3.9, Jgem = 10.5),
3.88 (dd, 1 H, 2¢-H, J1¢,2¢ = 6.1, J2¢,3¢ = 5.6), 4.07 (t, 1 H, 3¢-H, J2¢,3¢ = 5.6), 4.34 (q, 1 H, 4¢-H, J4¢,5¢ = 3.9),
4.43–4.69 (m, 6 H, benzyl-H), 5.28 (d, 1 H, 1¢-H, J1¢,2¢ = 6.1), 7.09–7.36 (m, 17 H, benzyl Ph-H, toluene-H),
7.50 (d, 2 H, toluene-H, J = 3.3)

3e b-form 2.34 (s, 3 H, Ar-CH3), 3.61–3.68 (m, 2 H, 5¢-Ha, 5¢-Hb), 3.80 (dd, 1 H, 2¢-H, J1¢,2¢ = 6.6, J2¢,3¢ = 5.4), 4.00 (dd, 1H, 3¢-H,
J2¢,3¢ = 5.4, J3¢,4¢ = 4.6), 4.33 (dd, 1 H, 4¢-H, J3¢,4¢ = 4.6, J4¢,5¢ = 4.0), 4.47–4.62 (m, 6 H, benzyl-H), 5.00 (d, 1 H, 1¢-H,
J1¢.2¢ = 6.6), 7.09–7.34 (m, 19 H, toluene 2-H, 3-H, 5-H, 6-H, benzyl Ph-H)

3f b-form 3.61–3.68 (m, 5 H, 5¢-Ha, 5¢-Hb, Ar–OCH3), 3.80–3.84 (m, 1 H, 2¢-H, J1¢,2¢ = 6.3), 4.02 (t, 1 H, 3¢-H), 4.33–4.36
(m, 1 H, 4¢-H), 4.50–4.64 (m, 6 H, benzyl-H), 5.01 (d, 1 H, l¢-H, J1¢,2¢ = 6.3), 6.79–6.82 (m, 1 H, anisole-H),
6.93–6.99 (m, 1 H, anisole-H), 7.19–7.66 (m, 17 H, benzyl Ph-H, anisole-H)

3g b-form 3.60 (dd, 1 H, 5¢-Ha, J4¢,5¢ = 3.8 Hz, Jgem = 10.3), 3.66 (dd, 1 H, 5¢-Hb, J4¢,5¢ = 3.8, Jgem = 10.3), 3.74 (dd, 1 H, 2¢-H,
J1¢,2¢ = 7.=, J2¢,3¢ = 5.3), 3.99 (dd, 1 H, 3¢-H, J2¢,3¢ = 5.3, J3¢,4¢ = 3.8), 4.34 (dd, 1 H, 4¢-H, J3¢,4¢ = 3.8, J4¢,5¢ = 3.8), 4.38–4.69
(m, 6 H, benzyl-H), 4.97 (d, 1 H, 1¢-H, J1¢,2¢ = 7.0), 6.98–7.37 (m, 19 H, chlorobenzene 2-H, 3-H, 5-H, 6-H, benzyl Ph-H),

3h b-form 3.74 (dd, 1 H, 5¢-Ha, J4¢,5¢ = 3.8 Hz, Jgem = 10.7), 3.86 (dd, 1 H, 5¢-Hb, J4¢,5¢ = 3.4, Hz, Jgem = 10.7), 4.08
(t, 1 H, 2¢-H, J1¢,2¢ = 4.8), 4.13–4.15 (m, 1 H, 3¢-H), 4.43–4.68 (m, 7 H, 4¢-H, benzyl-H), 5.78–5.79 (d, 1 H, 1¢-H, J1¢.2¢ = 4.8),
7.19–7.42 (m, 18 H, naphthalene-H, benzyl Ph-H), 7.47 (dd, 1 H, naphthalene-H, J = 6.7, 7.0), 7.77 (dd, 1 H, naphthalene-H,
J = 6.3, 6.8), 7.85 (d, 1 H, naphthalene-H, J = 8.7), 8.12 (d, 1 H, naphthalene-H, J = 8.5)

6a b-form 3.55–3.58 (m, 1 H, 5¢-H), 3.61 (s, 3 H, pyrrole NCH3), 3.67–3.74 (m, 2 H, 2¢-H, 4¢-H), 3.75–3.79 (m, 3 H, 3¢-H, 6¢-H), 3.99
(d, 1 H, benzyl-H), 4.34 (d, 1 H, 1¢-H, J1¢.2¢ = 9.5), 4.44–4.64 (m, 4 H, benzyl-H), 4.85–4.98 (m, 3 H, benzyl-H), 6.12–6.13
(m, 1 H, pyrrole 4-H), 6.24–6.26 (m, 1 H, pyrrole 3-H), 6.59–6.60 (m, 1 H, pyrrole 5-H), 7.01–7.36 (m, 20 H, benzyl Ph-H)

6b a-formb 2.42–2.54 (m, 2 H, 3-H), 3.59–3.66 (m, 3 H, 4¢-H, 5¢-H, 6¢-Ha), 3.70 (dd, 1 H, 6¢-Hb, J5¢,6¢= 3.5, Jgem = 10.5), 3.75 (dd,
1 H, 2¢-H, J1¢,2¢ = 5.6, J2¢,3¢ = 9.5), 3.79 (dd, 1 H, 3¢-H, J2¢,3¢ =9.5, J3¢,4¢ = 8.1), 4.14 (ddd, 1 H, 1¢-H, J1¢,2¢ = 5.6, J1¢,3a = 11.0,
J1¢,3h = 4.6), 4.46–4.94 (m, 8H, benzyl-H), 5.07 (dd, 1 H, J1,2 = 10.8, Jgem = 1.5), 5.15 (dd, 1 H, 1-Hb, J1b,2= 17.1,
Jgem = 1.5), 5.81 (dddd, 1 H, 2-H, J1a,2 = 10.8, J1b,2 = 17.1, J2,3a = 6.4, J2,3b = 7.3), 7.11–7.37 (m, 20 H, benzyl Ph-H)

b-formc 2.32 (ddd, 1 H, 3-Ha, J2,3a = 7.1 Hz, Jgem = 14.6, J1¢,3a = 7.3), 2.60 (ddd, 1 H, 3-Ha, J2,3b= 6.4, Jgem = 14.6,
J1¢,3b = 3.2), 3.33 (dd, 1 H, 2¢-H, J1¢,2¢ = 12.5, J2¢,3¢ = 8.3), 3.34 (ddd, 1 H, 1¢-H, J1¢,2¢ = 12.5, J1¢,3a = 7.3, J1¢,3b = 3.2),
3.41 (ddd, 1 H, 5¢-H, J4¢,5¢ = 9.6, J5¢,6¢a = 4.5, J5¢,6¢b = 2.0), 3.60 (dd, 1 H, 4¢-H, J3¢,4¢ = 9.2, J4¢,5¢ = 9.6), 3.68 (dd,
1 H, 6¢-Ha, J5¢,6¢a = 4.5, Jgem = 10.6), 3.70 (dd, 1 H, 3¢-H, J2¢,3¢ = 8.3, J3¢,4¢ = 9.2), 3.73 (dd, 1 H, 6¢-Hb, J5¢,6¢b= 2.0,
Jgem = 10.6), 4.55–4.90 (m, 8 H, benzyl-H), 5.07 (dd, 1 H, 1-Ha, J1a,2= 10.3, Jgem = 1.0), 5.10 (dd, 1 H, 1-Hb, J1b,2= 7.2,
Jgem = 1.0), 5.93 (dddd, 1 H, 2-H, J1a,2 = 10.3, J1b,2 = 17.2, J2,3a = 6.4, J2,3b = 7. 1), 7.20–7.30 (m, 20 H, benzyl Ph-H)

8a a-form 2.04–2.11 (m, 1 H, 2¢-Ha, J1¢,2¢= 5.2), 2.41–2.44 (m, 1 H, 1-Hb, J1¢,2¢= 5.2), 3.53 (dd, 1 H, 5¢-Ha, Jgem = 5.6, J4¢.5¢ = 4.6),
3.65 (dd, 1 H, 5¢-Hb, Jgem =5.6, J4¢,5¢ = 4.6), 4.17–4.19 (m, 1 H, 3¢-H), 4.26–4.30 (m, 1 H, 4¢-H), 4.52–4.62 (m, 4 H,
benzyl-H), 5.39 (dd, 1 H, l¢-H, J1¢,2¢ = 5.2), 6.94–7.01 (m, 3 H, thiophene 3-H, 4-H, 5-H)
7.23–7.36 (m, 10 H, benzyl Ph-H)

b-form 2.17–2.26 (m, 1 H, 2¢-Ha, J1¢,2¢= 6.7), 2.63–2.69 (m, 1 H, 2¢-Hb, J1¢,2¢= 6.7), 3.59–3.67 (m, 2 H, 5¢-Ha, 5¢-Hb), 4.24–4.33
(m, 2 H, 3¢-H, 4¢-H), 4.47–4.62 (m, 4 H, benzyl-H), 5.34 (t, 1 H, 1¢-H, J1¢,2¢ = 6.7), 6.94–7.02 (m, 3 H, thiophene
3-H, 4-H, 5-H), 7.24–7.37 (m, 10 H, benzyl Ph-H)

8b a-form 2.27–2.33 (m, 1 H, 2¢-Ha, J1¢,2¢= 6.7), 2.65–2.72 (m, 1 H, 2¢-Hb, J1¢,2¢ = 6.7), 3.59–3.67 (m, 2 H, 5¢-Ha, 5¢-Hb), 4.28 (q, 1 H,
J3¢,4¢ = 4.2, 3¢-H), 4.37 (q, 1 H, J3¢,4¢ = 4.2, J4¢,5¢ = 8.4, 4¢-H), 4.46–4.63 (m, 4 H, benzyl-H), 5.43 (t, 1 H, 1¢-H, J1¢,2¢ = 6.7), 7.21–
7.37 (m, 13 H, benzothiophene-H, benzyl Ph-H), 7.69 (d, 1 H, J=8.2, benzothiophene-H), 7.79 (d, 1 H, J=7.5, benzothiophene-H)

b-form 2.11–2.18 (m, 1 H, 2¢-Ha, J1¢,2¢= 5.3), 2.44–2.49 (m, 1 H, 2¢-Hb, J1¢,2¢= 5.3), 3.54–3.58 (dd, 1 H, 5¢-Ha, J4¢,5¢= 5.5,
Jgem = 10.0), 3.68 (dd, 1 H, 5¢-Hb, J4¢,5¢= 4.6, Jgem = 10.0), 4.20–4.22 (m, 1 H, 3¢-H), 4.32–4.35 (m, 1 H, 4¢-H, J4¢,5¢ = 5.5,
4.6), 4.54–4.65 (m, 4 HJ, benzyl-H), 5.45–5.49 (dd, 1 H, 1¢-H, J1¢,2¢ – 5.3), 7.21–7.47 (m, 13 H, benzothiophene-H,
benzyl Ph-H) 7.68–7.70 (dd, 1 H J = 7.4, benzothiophene-H), 7.79 (d, 1 H, J = 7.7, benzothiophene-H)

a 1H NMR spectra were recorded at 400 MHz for 3b-h, 6a, 8a, b and at 500 MHz for 3a, 6b.
b 13C NMR (CDCl3/TMS): d = 29.8 (3-C), 69.0 (6¢-C), 71.52 (5¢-C), 73.7 (1¢-C), 78.2 (4¢-C), 80. 1 (2¢-C), 82.4 (3¢-C), 116.8 (1-C), 134.8 (2-C)
c 13C NMR (CDCl3/TMS): d = 36.0 (3-C), 69.1 (6¢-C), 78.70 (4¢-C), 78.74 (1¢-C), 79.1 (5¢-C), 81.6 (2¢-C), 87.3 (3¢-C), 117.0 (1-C), 134.8 (2 C).
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In conclusion, the present method is very useful for the
preparation of b-C-nucleosides, because sugar fluorides
are very stable sugar donors and their glycosylation pro-
ceeds by simple operation and, furthermore, with b-selec-
tivity.

2-(2,3,5-Tri-O-benzyl-D-ribofuranosyl)thiophene (3a); Typical
Procedure:
A mixture of 2,3,5-tri-O-benzyl-D-ribofuranosyl fluoride (1; 85 mg,
0.2 mmol), 2-thienylmagnesium bromide (2a; 1.0 M THF solution,
2 mL, 2 mmol), and anhyd THF (2 mL) was stirred at r.t. for 3 h. The
resulting mixture was quenched with H2O, neutralized with aq NH4Cl
solution and extracted with CHCl3 (4 ´ 10 mL). The organic phase
was dried (Na2SO4) and concentrated under reduced pressure to give
a yellow oil, which was purified by preparative TLC on silica gel (elu-
ent: hexane/EtOAc, 4:1) to afford the corresponding C-nucleoside 3a
in 65 % yield (a/b = 8:/92). When 5 equiv of 2a was used, the yield
of 3a decreased to 45 %. Thus 10 equiv of Grignard reagent was used
in the reaction of 2a and 2b. In the cases of 2c–h, the reaction was
carried out with 5 equiv of the metal reagents.
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