Simple Synthesis of Aromatic β -C-Nucleosides via Coupling of Aryl Grignard Reagents with Sugar Fluorides

Masataka Yokoyama,* Hirofumi Toyoshima, Miyuki Shimizu, Jun Mito, Hideo Togo Department of Chemistry, Faculty of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 263, Japan Fax +81(43)2902874; E-mail: yokoyama@science.s.chiba-u.ac.jp

Received 27 May 1997; revised 22 July 1997

Abstract: The perbenzylated D-ribofuranosyl fluoride is allowed to react with Grignard reagents of aromatic heterocycles such as thiophene, pyrrole, and indole in THF to afford the corresponding β -C-nucleosides in moderate yields. The present process can be also applied to perbenzylated D-glucopyranosyl fluoride and perbenzylated 2-deoxy-D-ribofuranosyl fluoride as sugar donors.

Key words: sugar fluorides, Grignard reagents, C-nucleosides, β selectivity

Since the remarkable biological activity of naturally occurring showdomycin was recognized, the synthesis of Cnucleosides has attracted wide interest in the field of organic chemistry.¹ In our study on the use of D-ribofuranosyl fluoride as a sugar donor,² we found that aryl Grignard reagents reacted easily with perbenzylated D-ribofuranosyl fluoride without Lewis acids to give the corresponding *C*-nucleosides in a β -selective manner. Recently, Kool and co-workers reported a procedure to prepare aromatic C-nucleosides using protected D-deoxyribosyl chloride as a sugar donor.³ We wish to report here a better and practical method for the β -selective synthesis of C-nucleosides by utilizing the sugar fluorides in place of the unstable sugar chlorides (Scheme 1).

In a typical experimental procedure, a mixture of 2,3,5-tri-O-benzyl-D-ribofuranosyl fluoride (1), 2-thienylmagnesium bromide 2, and anhydrous THF was stirred at room temperature to afford the corresponding C-nucleoside 3 in 65 % yield in a β -selective manner ($\alpha/\beta = 8:92$) (Scheme 1 and Table 1).

The solvent effect of the reaction was examined by changing diethyl ether to tetrahydrofuran as the solvent. Although diethyl ether was found to be a little better than THF in β -selectivity (Entry 3), THF was employed as the solvent due to easier handling. The β -selectivity was diminished when other metal reagents of heterocycles such as zinc and cadmium were used⁴ (Entries 4-7). It is noticeable that Entry 6 shows α -selectivity (Scheme 2).

Table 1. Reaction of Sugar Fluoride 1 with Various Arylmetal Reagents 2

Ratio of α/β
8:92
0:100
6:94
18:82
12:88
58:42
32:68
0:100

^a For entries 4–7, Ar = 2-thienyl; for entry 8, Ar = *N*-methylpyrrol-2-yl.

Scheme 2

The reaction of arylmagnesium reagents with the sugar fluoride 1 was also examined. The reaction took place at room temperature to give the desired C-nucleosides with β -selectivity, while the yield of **3** increased at 50 °C together with perbenzylated D-ribofuranoid glycals 4 as byproducts (Scheme 1, Table 2). From Entries 2-5 it is clear that the electron-rich benzene derivatives afford more glycals 4. The fact that the reaction with *p*-methoxyphenylmagnesium bromide gave glycal 4 in 44 % yield without the desired C-nucleoside, and the result of Entry 6 support this result.

Table 2. Reaction of Sugar Fluoride 1 with Various Aryl Grignard Reagents (ArMgBr)

Entry	Ar	Temp (°C)	Product(s)	Yield (%)
			3 ^a	4
1	Ph	r.t.	23	0
2	Ph	50	57	29
3	$2-MeC_6H_4$	50	29	0
4	$4 - MeC_6H_4$	50	45	51
5	$3-\text{MeOC}_6H_4$	50	34	36
6	$4-ClC_6H_4$	50	70	0
7	1-naphthyl	50	54	0

^a Only β -selectivity was observed.

Table 3. IR and MS Data of Compounds 3-8 Prepared

Prod- uct ^a	Molecular	IR (Neat) ν (cm ⁻¹)	HRMS (FAB/NBA), m/z		
	Formula		calc.	found	
3a ^b	C ₃₀ H ₃₀ O ₄ S	1080, 2830	509.1763	509.1763	
	(486.6)		$(M + Na^{+})$	$(M + Na^{+})$	
3b	C ₃₁ H ₃₃ NO ₄	910, 1460, 1500, 2860, 3030	484.2488	484.2501	
	(483.6)		(M + 1)	(M + 1)	
3c	$C_{32}H_{32}O_4$	700, 1460, 1500, 2940, 3020	519.1938	519.1954	
	(480.6)		$(M + K^{+})$	$(M + K^{+})$	
3d	$C_{33}H_{34}O_4$	740, 1120, 2860, 2920, 3030	533.2094	533.2111	
	(494.6)		$(M + K^{+})$	$(M + K^{+})$	
3e	$C_{33}H_{34}O_{4}$	700, 1100, 1150, 2950, 3010	533.2094	533.2106	
	(494.6)		$(M + K^{+})$	$(M + K^{+})$	
3f	$C_{33}H_{34}O_5$	1090, 1130, 1460, 2880, 3030	549.2043	549.1997	
	(510.6)		$(M + K^{+})$	$(M + K^{+})$	
3g	$_{32}H_{31}ClO_{4}$	1450, 1490, 1720, 2880, 3030	515.1989	515.1986	
0	(515.1)		(M + 1)	(M + 1)	
3h	$C_{36}H_{34}O_{4}$	1090, 1130, 1460, 2880, 3030	569.2094	569.2104	
	(530.7)		$(M + K^{+})$	$(M + K^{+})$	
6a	$C_{39}H_{41}NO_5$	700, 1060, 2910, 3030, 3450	603.3063	603.3052	
	(603.8)		(M)	(M)	
6b	$C_{37}H_{40}O_5$	1100, 2870, 2900, 3030, 3060	565.2954	565.2944	
	(564.7)		(M + 1)	(M + 1)	
8a	$C_{23}H_{24}O_{3}S$	740, 1100, 1460, 2860, 3030	419.1083	419.1079	
	(380.5)	, , ,	$(M + K^{+})$	$(M + K^{+})$	
8b	C ₂₇ H ₂₆ O ₃ S	730, 1100, 2880, 2930, 3030	430.1603	430.1602	
	(430.6)		(M)	(M)	

^a All compounds are oils, except **3e**: mp 78–79 °C; **3g**: mp 54–56 °C; **6a**: mp 109–110 °C; and **8b**: mp 56–57 °C.

^b Anal. calc. for C₃₀H₃₀O₄S (486.6): C, 74.05; H, 6.21. Found: C, 73.90; H, 6.07.

Furthermore, the pyrrolylation and allylation of D-glucopyranose were successful by using the present procedure. 2,3,4,6-Tetra-*O*-benzyl-D-glucopyranosyl fluoride (**5**)⁵ was allowed to react with *N*-methylpyrrol-2-ylmagnesium bromide to give the corresponding product **6a** in 45 % yield as only β -epimer, and allylmagnesium bromide gave the corresponding product, **6b** in 77 % yield (α / β = 35:65).

The allylation of D-glucopyranose reported before gave the corresponding product in an α -selective manner.⁶ Therefore, the sugar lactones have been employed in a two step procedure in order to obtain the corresponding β glucosides.⁷

The structure determination of aromatic *C*-nucleosides was carried out by the comparison of their spectral data with those of authentic samples.⁸ The stereochemistries of **3**, **6** and **8** were determined mainly by the result of differential NOE (1-H \Leftrightarrow 4-H) and $J_{1'2'}$ values in NMR measurements. Particularly, the structure of **6b** was determined by the following NMR data; $J_{1'2'}$ values (α : 5.6 Hz, β : 12.5 Hz) and δ values in ¹³C NMR of γ -position carbons to C-3 (α : 3'-C, δ = 82.4; 5'-C, δ = 71.2. β : 3'-C, δ = 87.3; 5' -C, δ = 79.1). The IR, Mass, and ¹H NMR spectroscopic data are summarized in Tables 3 and 4.

The reaction of 3,5-di-*O*-benzyl-2-deoxy-D-ribofuranosyl fluoride (7) with 2-thienylmagnesium bromide and 2-benzothienylmagnesium bromide afforded the corresponding products **8a** and **8b** in 37 ($\alpha/\beta = 67:33$) and 54 % ($\alpha/\beta = 55:/45$) yields, respectively (Scheme 3).

The reaction is considered to proceed via an oxocarbenium ion, and show β -selectivity because of the steric hindrance of 2-alkoxy group. These are explained by the following facts:

(1) The α -epimer of **1** gave the same result as its β -epimer; (2) 2,3,5-tri-*O*-benzylribofuranose was observed in the first stage of the reaction by TLC monitoring; and (3) the use of 2,3,5-tri-*O*-methyl-D-ribofuranosyl fluoride in place of **1** gave the corresponding thiophenyl *C*-nucleoside in 49% yield with higher α -selectivity ($\alpha/\beta = 41:59$) than that of **1**; (4) the use of **7** gave the corresponding product with α -selectivity.

The decrease of β -selectivity with softer zinc and cadmium reagents than a magnesium reagent⁹ may be explained by the bulkiness of the nucleophilic species solvated strongly by THF even if the ionic adius of magnesium is smaller (Entries 1–7 in Table 1).¹⁰

Table 4. ¹H NMR Data of Compounds 3-8 Prepared

Produc	t	¹ H NMR $(CDCl_3/TMS)^h$ δ , J (Hz)
3a	α-form	3.59–3.77 (m, 2 H, 5'-H _a , 5'-H _h), 4.03 (dd, 1 H, 2'-H, $J_{1',2'}$ = 3.3, $J_{2',3'}$ = 3.7), 4.24–4.28 (m, 2 H, 3'-H, 4'-H), 4.34–4.60 (m, 6 H, benzyl-H), 5.33 (d, 1 H, 1'-H, $J_{1',2'}$ = 3.3), 6,96–7.08 (m, 1 H, thiophene 4-H), 7.16 (d, 1 H, thiophene 3-H, $J_{3',4'}$ = 2.2), 7.18–7.20 (m, 1 H, thiophene 5-H), 7.22–7.33 (m, 15 H, benzyl Ph-H)
	β –form	3.60 (m, 2 H, 5'-H _a , 5'-H _b), 3.91 (dd, 1 H, 2'-H, $J_{1',2'} = 6.6$, $J_{2',3'} = 5.0$), 4.01 (dd, 1 H, 3'-H, $J_{2',3'} = 5.0$, $J_{3',4'} = 3.8$), 4.31 (dd, 1 H, 4'-H, $J_{3',4'} = 3.8$, $J_{4',5'} = 4.4$), 4.49–4.63 (m, 6 H, benzyl-H), 5.26 (d, 1 H, 1'-H, $J_{1',2'} = 6.6$), 6.95 (m, 1 H, thiophene 4-H), 7.05 (m, 1 H, thiophene 3-H), 7.21–7.34 (m, 16 H, thiophene 5-H, benzyl Ph-H)
3b	β -form	3.52 (d, 2 H, 5'-H _a , 5'-H _b , $J_{4',5'}$ = 4.4), 3.58 (brs, 3 H, pyrrole NCH ₃), 4.02 (dd, 1 H, 3'-H, $J_{2',3'}$ = 5.6), 4. 12 (dd, 1 H, 2'-H, $J_{1',2'}$ = 7.1, $J_{2',3'}$ = 5.6), 4.25–4.28 (m, 1 H, 4'-H), 4.46–4.66 (m, 6 H, benzyl-H), 5.02 (d, 1 H, 1'-H, $J_{1',2'}$ = 7.1), 6.02–6.05 (m, 2 H, pyrrole 3-H, 4-H), 6.57–6.58 (m, 1H, pyrrole 5-H), 7.22–7.34 (m, 15 H, benzyl Ph-H)
3c	β -form	3.61–3.69 (m, 2 H, 5'-H _a , 5'-H _b), 3.81 (dd, 1 H, 2'-H, $J_{1',2'} = 6.6$, $J_{2',3'} = 5.4$), 4.01 (dd, 1 H, 3'-H, $J_{2',3'} = 5.4$, $J_{3',4'} = 4.6$), 4.33–4.37 (m, 1 H, 4'-H), 4.44–4.63 (m, 6 H, benzyl-H), 5.02 (d, 1 H, 1'-H, $J_{1',2'} = 6.6$), 7.17–7.40 (m, 20 H, benzene 2-H, 3-H, 4-H, 5-H, 6-H, benzyl Ph-H)
3d	β -form	2.37 (s, 3 H, Ar-CH ₃), 3.65 (dd, 1 H, 5'-H _a , $J_{4',5'} = 3.9$, $J_{gem} = 10.5$), 3.73 (dd, 1 H, 5'-H _b , $J_{4',5'} = 3.9$, $J_{gem} = 10.5$), 3.88 (dd, 1 H, 2'-H, $J_{1',2'} = 6.1$, $J_{2',3'} = 5.6$), 4.07 (t, 1 H, 3'-H, $J_{2',3'} = 5.6$), 4.34 (q, 1 H, 4'-H, $J_{4',5'} = 3.9$), 4.43–4.69 (m, 6 H, benzyl-H), 5.28 (d, 1 H, 1'-H, $J_{1',2'} = 6.1$), 7.09–7.36 (m, 17 H, benzyl Ph-H, toluene-H), 7.50 (d, 2 H, toluene-H, $J = 3.3$)
3e	β -form	2.34 (s, 3 H, Ar-CH ₃), 3.61–3.68 (m, 2 H, 5'-H _a , 5'-H _b), 3.80 (dd, 1 H, 2'-H, $J_{1',2'} = 6.6$, $J_{2',3'} = 5.4$), 4.00 (dd, 1H, 3'-H, $J_{2',3'} = 5.4$, $J_{3',4'} = 4.6$), 4.33 (dd, 1 H, 4'-H, $J_{3',4'} = 4.6$, $J_{4',5'} = 4.0$), 4.47–4.62 (m, 6 H, benzyl-H), 5.00 (d, 1 H, 1'-H, $J_{1',2'} = 6.6$), 7.09–7.34 (m, 19 H, toluene 2-H, 3-H, 5-H, 6-H, benzyl Ph-H)
3f	β -form	3.61–3.68 (m, 5 H, 5'-H _a , 5'-H _b , Ar–OCH ₃), 3.80–3.84 (m, 1 H, 2'-H, $J_{1',2'} = 6.3$), 4.02 (t, 1 H, 3'-H), 4.33–4.36 (m, 1 H, 4'-H), 4.50–4.64 (m, 6 H, benzyl-H), 5.01 (d, 1 H, 1'-H, $J_{1',2'} = 6.3$), 6.79–6.82 (m, 1 H, anisole-H), 6.93–6.99 (m, 1 H, anisole-H), 7.19–7.66 (m, 17 H, benzyl Ph-H, anisole-H)
3g	β -form	3.60 (dd, 1 H, 5'-H _a , $J_{4',5'} = 3.8$ Hz, $J_{gem} = 10.3$), 3.66 (dd, 1 H, 5'-H _b , $J_{4',5'} = 3.8$, $J_{gem} = 10.3$), 3.74 (dd, 1 H, 2'-H, $J_{1',2'} = 7.=$, $J_{2',3'} = 5.3$), 3.99 (dd, 1 H, 3'-H, $J_{2',3'} = 5.3$, $J_{3',4'} = 3.8$), 4.34 (dd, 1 H, 4'-H, $J_{3',4'} = 3.8$, $J_{4',5'} = 3.8$), 4.38–4.69 (m, 6 H, benzyl-H), 4.97 (d, 1 H, 1'-H, $J_{1',2'} = 7.0$), 6.98–7.37 (m, 19 H, chlorobenzene 2-H, 3-H, 5-H, 6-H, benzyl Ph-H),
3h	β -form	3.74 (dd, 1 H, 5'-H _a , $J_{4',5'} = 3.8$ Hz, $J_{gem} = 10.7$), 3.86 (dd, 1 H, 5'-H _b , $J_{4',5'} = 3.4$, Hz, $J_{gem} = 10.7$), 4.08 (t, 1 H, 2'-H, $J_{1',2'} = 4.8$), 4.13–4.15 (m, 1 H, 3'-H), 4.43–4.68 (m, 7 H, 4'-H, benzyl-H), 5.78–5.79 (d, 1 H, 1'-H, $J_{1',2'} = 4.8$), 7.19–7.42 (m, 18 H, naphthalene-H, benzyl Ph-H), 7.47 (dd, 1 H, naphthalene-H, $J = 6.7$, 7.0), 7.77 (dd, 1 H, naphthalene-H, $J = 6.3$, 6.8), 7.85 (d, 1 H, naphthalene-H, $J = 8.7$), 8.12 (d, 1 H, naphthalene-H, $J = 8.5$)
6a	β -form	3.55–3.58 (m, 1 H, 5'-H), 3.61 (s, 3 H, pyrrole NCH ₃), 3.67–3.74 (m, 2 H, 2'-H, 4'-H), 3.75–3.79 (m, 3 H, 3'-H, 6'-H), 3.99 (d, 1 H, benzyl-H), 4.34 (d, 1 H, 1'-H, $J_{1',2'}$ = 9.5), 4.44–4.64 (m, 4 H, benzyl-H), 4.85–4.98 (m, 3 H, benzyl-H), 6.12–6.13 (m, 1 H, pyrrole 4-H), 6.24–6.26 (m, 1 H, pyrrole 3-H), 6.59–6.60 (m, 1 H, pyrrole 5-H), 7.01–7.36 (m, 20 H, benzyl Ph-H)
6b	α-form ^b	2.42–2.54 (m, 2 H, 3-H), 3.59–3.66 (m, 3 H, 4'-H, 5'-H, 6'-Ha), 3.70 (dd, 1 H, 6'-H _b , $J_{5',6'}$ = 3.5, J_{gem} = 10.5), 3.75 (dd, 1 H, 2'-H, $J_{1',2'}$ = 5.6, $J_{2',3'}$ = 9.5), 3.79 (dd, 1 H, 3'-H, $J_{2',3'}$ =9.5, $J_{3',4'}$ = 8.1), 4.14 (ddd, 1 H, 1'-H, $J_{1',2'}$ = 5.6, $J_{1',3a}$ = 11.0, $J_{1',3h}$ = 4.6), 4.46–4.94 (m, 8H, benzyl-H), 5.07 (dd, 1 H, $J_{1,2}$ = 10.8, J_{gem} = 1.5), 5.15 (dd, 1 H, 1-H _b , $J_{1b,2}$ = 17.1, J_{gem} = 1.5), 5.81 (dddd, 1 H, 2-H, $J_{1a,2}$ = 10.8, $J_{1b,2}$ = 17.1, $J_{2,3a}$ = 6.4, $J_{2,3b}$ = 7.3), 7.11–7.37 (m, 20 H, benzyl Ph-H)
	β-form ^c	2.32 (ddd, 1 H, 3-Ha, $J_{2,3a} = 7.1$ Hz, $J_{gem} = 14.6$, $J_{1',3a} = 7.3$), 2.60 (ddd, 1 H, 3-Ha, $J_{2,3b} = 6.4$, $J_{gem} = 14.6$, $J_{1',3b} = 3.2$), 3.33 (dd, 1 H, 2'-H, $J_{1',2'} = 12.5$, $J_{2',3'} = 8.3$), 3.34 (ddd, 1 H, 1'-H, $J_{1',2'} = 12.5$, $J_{1',3a} = 7.3$, $J_{1',3b} = 3.2$), 3.41 (ddd, 1 H, 5'-H, $J_{4',5'} = 9.6$, $J_{5',6'a} = 4.5$, $J_{5',6'b} = 2.0$), 3.60 (dd, 1 H, 4'-H, $J_{3',4'} = 9.2$, $J_{4',5'} = 9.6$), 3.68 (dd, 1 H, 6'-Ha, $J_{5',6'a} = 4.5$, $J_{gem} = 10.6$), 3.70 (dd, 1 H, 3'-H, $J_{2',3'} = 8.3$, $J_{3',4'} = 9.2$), 3.73 (dd, 1 H, 6'-Hb, $J_{5',6'b} = 2.0$, $J_{gem} = 10.6$), 4.55–4.90 (m, 8 H, benzyl-H), 5.07 (dd, 1 H, 1-Ha, $J_{1a,2} = 10.3$, $J_{gem} = 1.0$), 5.10 (dd, 1 H, 1-Hb, $J_{1b,2} = 7.2$, $J_{gem} = 1.0$), 5.93 (dddd, 1 H, 2-H, $J_{1a,2} = 10.3$, $J_{1b,2} = 17.2$, $J_{2,3a} = 6.4$, $J_{2,3b} = 7.1$), 7.20–7.30 (m, 20 H, benzyl Ph-H)
8a	α-form	2.04–2.11 (m, 1 H, 2'-H _a , $J_{1',2'}$ = 5.2), 2.41–2.44 (m, 1 H, 1-H _b , $J_{1',2'}$ = 5.2), 3.53 (dd, 1 H, 5'-H _a , J_{gem} = 5.6, $J_{4',5'}$ = 4.6), 3.65 (dd, 1 H, 5'-H _b , J_{gem} = 5.6, $J_{4',5'}$ = 4.6), 4.17–4.19 (m, 1 H, 3'-H), 4.26–4.30 (m, 1 H, 4'-H), 4.52–4.62 (m, 4 H, benzyl-H), 5.39 (dd, 1 H, l'-H, $J_{1',2'}$ = 5.2), 6.94–7.01 (m, 3 H, thiophene 3-H, 4-H, 5-H) 7.23–7.36 (m, 10 H, benzyl Ph-H)
	β -form	2.17–2.26 (m, 1 H, 2'-H _a , $J_{1',2'}$ = 6.7), 2.63–2.69 (m, 1 H, 2'-H _b , $J_{1',2'}$ = 6.7), 3.59–3.67 (m, 2 H, 5'-H _a , 5'-H _b), 4.24–4.33 (m, 2 H, 3'-H, 4'-H), 4.47–4.62 (m, 4 H, benzyl-H), 5.34 (t, 1 H, 1'-H, $J_{1',2'}$ = 6.7), 6.94–7.02 (m, 3 H, thiophene 3-H, 4-H, 5-H), 7.24–7.37 (m, 10 H, benzyl Ph-H)
8b	α-form	$\begin{array}{l} 2.27-2.33\ (\mathrm{m,\ 1\ H,\ 2'-H_{a},\ J_{1',2'}=6.7),\ 2.65-2.72\ (\mathrm{m,\ 1\ H,\ 2'-H_{b},\ J_{1',2'}=6.7),\ 3.59-3.67\ (\mathrm{m,\ 2\ H,\ 5'-H_{a},\ 5'-H_{b}),\ 4.28\ (\mathrm{q,\ 1\ H,\ J_{3',4'}=4.2,\ 3'-H),\ 4.37\ (\mathrm{q,\ 1\ H,\ J_{3',4'}=4.2,\ J_{4',5'}=8.4,\ 4'-H),\ 4.46-4.63\ (\mathrm{m,\ 4\ H,\ benzyl-H),\ 5.43\ (\mathrm{t,\ 1\ H,\ 1'-H,\ J_{1',2'}=6.7),\ 7.21-7.37\ (\mathrm{m,\ 13\ H,\ benzyl-H),\ 7.79\ (\mathrm{d,\ 1\ H,\ J=7.5,\ benzothiophene-H)} \end{array}$
	β –form	2.11–2.18 (m, 1 H, 2'-H _a , $J_{1',2'}$ = 5.3), 2.44–2.49 (m, 1 H, 2'-H _b , $J_{1',2'}$ = 5.3), 3.54–3.58 (dd, 1 H, 5'-H _a , $J_{4',5'}$ = 5.5, J_{gem} = 10.0), 3.68 (dd, 1 H, 5'-H _b , $J_{4',5'}$ = 4.6, J_{gem} = 10.0), 4.20–4.22 (m, 1 H, 3'-H), 4.32–4.35 (m, 1 H, 4'-H, $J_{4',5'}$ = 5.5, 4.6), 4.54–4.65 (m, 4 HJ, benzyl-H), 5.45–5.49 (dd, 1 H, 1'-H, $J_{1',2'}$ – 5.3), 7.21–7.47 (m, 13 H, benzothiophene-H, benzyl Ph-H) 7.68–7.70 (dd, 1 H <i>J</i> = 7.4, benzothiophene-H), 7.79 (d, 1 H, <i>J</i> = 7.7, benzothiophene-H)

 $[\]frac{1}{a^{1}\text{H NMR spectra were recorded at 400 MHz for$ **3b-h, 6a, 8a, b**and at 500 MHz for**3a, 6b.** $}{b^{13}\text{C NMR (CDCl}_{3}/\text{TMS}): \delta = 29.8 (3-C), 69.0 (6'-C), 71.52 (5'-C), 73.7 (1'-C), 78.2 (4'-C), 80. 1 (2'-C), 82.4 (3'-C), 116.8 (1-C), 134.8 (2-C) c^{-13}\text{C NMR (CDCl}_{3}/\text{TMS}): \delta = 36.0 (3-C), 69.1 (6'-C), 78.70 (4'-C), 78.74 (1'-C), 79.1 (5'-C), 81.6 (2'-C), 87.3 (3'-C), 117.0 (1-C), 134.8 (2-C).}$

In conclusion, the present method is very useful for the preparation of β -C-nucleosides, because sugar fluorides are very stable sugar donors and their glycosylation proceeds by simple operation and, furthermore, with β -selectivity.

2-(2,3,5-Tri-*O*-benzyl-D-ribofuranosyl)thiophene (3a); Typical Procedure:

A mixture of 2,3,5-tri-*O*-benzyl-D-ribofuranosyl fluoride (1; 85 mg, 0.2 mmol), 2-thienylmagnesium bromide (**2a**; 1.0 M THF solution, 2 mL, 2 mmol), and anhyd THF (2 mL) was stirred at r.t. for 3 h. The resulting mixture was quenched with H₂O, neutralized with aq NH₄Cl solution and extracted with CHCl₃ (4 × 10 mL). The organic phase was dried (Na₂SO₄) and concentrated under reduced pressure to give a yellow oil, which was purified by preparative TLC on silica gel (eluent: hexane/EtOAc, 4:1) to afford the corresponding *C*-nucleoside **3a** in 65 % yield ($\alpha/\beta = 8:/92$). When 5 equiv of **2a** was used, the yield of **3a** decreased to 45 %. Thus 10 equiv of Grignard reagent was used in the reaction of **2a** and **2b**. In the cases of **2c–h**, the reaction was carried out with 5 equiv of the metal reagents.

Financial supportfrom a Grant-in-Aid (No. 07554085) for Scientific Research from Ministry of Education, Science, and Culture of Japan is gratefully acknowledged.

 Watanabe, K. A. In *Chemistry ofNucleosides and Nucleotides*; Townsend, L. B., Ed.; Plenum Press: New York, **1994**; Vol. 3; pp 421-535.

- (2) Yokoyama, M.; Nomura, M.; Tanabe, T.; Togo, H. *Heteroatom Chem.* **1995**, *6*, 189.
 Yokoyama, M.; Nomura, M.; Togo, H.; Seki, H. J. Chem. Soc., Perkin Trans. 1 **1996**, 2145.
- (3) Schweitzer, B. A.; Kool, E. T. J. Org. Chem. **1994**, *59*, 7238. Chaudhuri, N. C.; Kool, E. T. *Tetrahedron Lett.* **1995**, *36*, 1795.
- (4) This reagent was prepared by the same method as that of diphenylzinc or -cadmium according to the literature.³
- (5) Posner, G. H.; Haines, S. R. Tetrahedron Lett. 1985, 26, 5.
- (6) Nicolaou, K. C.; Dolle, R. E.; Chucholowski, A.; Randall, J. L. J. Chem. Soc., Chem. Comm. 1984, 1153.
- (7) Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 4976.
 Lancelin, J.-M.; Zollo, P. H. A.; Sinay, P. Tetrahedron Lett. 1983, 24, 4833.
 Kraus, G. A.; Molina, M. T. J. Org. Chem. 1988, 53, 752.
 Czernecki, S.; Ville, G. J. Org. Chem. 1989, 54, 610.
 Krohn, K.; Heins, H.; Wielckens, K. J. Med. Chem. 1992, 35, 511.
- (8) Yokoyama, M.; Tanabe, T.; Toyoshima, A.; Togo, H. Synthesis 1993, 517.
 Yokoyama, M.; Toyoshima, H.; Shimizy, M.; Togo, H. J.

Yokoyama, M.; Toyoshima, H.; Shimizu, M.; Togo, H. J. Chem. Soc., Perkin Trans. 1 1997, 29.

- (9) Fleming, I. Frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons: New York, 1976; pp 34-40.
- (10) msley J. *The Elements*, 2nd Ed.; Clarendon Press: Oxford, **1991**, pp 38, 110, and 218 (Ionic radius of atom: Mg²⁺, 0.78 A; Zn²⁺, 0.83 Å; Cd²⁺, 1.03 Å).