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Photosensitized Oxidation of Furans; V'. An Efficient
General Method for the Synthesis of 2-Aroylenol Esters

M. L. GRAZIANO, M. R. 1ESCE, B. CARLI, R. SCARPATI*

Istituto di Chimica Organica ¢ Biologica dell’Universita, Via Mezzo-
cannone 16, 1-80134 Napoli, ltaly

2-Aroylenol esters 3 are interesting multifunctional com-
pounds very susceptible to hydrolysis®. They are obtained by
the reaction of f-diketones with acyl halides in pyridine® and,
together with triacylmethanes, from reactions of metal che-
lates of f-diketones with acyl halides*. These procedures ne-
cessitate an inconvenient aqueous workup, therefore it was
desirable to develop another synthetic method which, in addi-
tion, allows the preparation of 2-aroylenol esters containing
an electron-withdrawing substituent at position 1; compounds
which were never prepared, to our knowledge, by the afore-
mentioned methods.
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SYNTHESIS

Recently, we reported that thermal conversion in carbon te-
trachloride at 4°C of the 1,4-diphenyl-2,3,7-trioxabicy-
clof2.2.1]hept-5-enes 2a, 2d, and 2g, obtained in quantitative
yields by photosensitized oxidation of the 2,5-diphenylfurans
1a, 1d, 1g, leads to the parent furans (27-43%) and dibenzoyl-
epoxides (32-34%) as major products, and enol esters (9-16%)
and dibenzoylethylenes (3-20%) as minor products'. The con-
version of endo-peroxides 2 into the parent furans and molec-
ular oxygen, by comparison with similar retro-[4 +2]-cycload-
ditions, can be considered both as a concerted fragmentation
or as a decomposition via an initial diradical intermediate’.
On the other hand, it has been suggested that furan endo-per-
oxides, like 2, rearrange into enol esters 3 via dipolar inter-
mediates®. As it is well known that a more polar environment
enhances the rate of the reactions which involve such interme-
diates, an increase in solvent polarity should increase the
yields in enol ester, the rearrangement overcoming the com-
peting molecular oxygen elimination.
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Accordingly, the yields of the enol esters 3a, 3d, 3g are re-
markably improved when the conversion has been carried out
in nitromethane. It is worthy of note that in nitromethane the
yields in enol esters 3 are generally higher than expected on
the basis of aforementioned remarks. It is evident that in this
solvent the rearrangement partly prevails also over the form-
ing of the epoxides. As shown in Table 1, the conversion of
furans 1 into 2-aroyl enol esters 3 via endo-peroxides 2 has a
wide range of applicability and the rearrangement occurs ste-
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reospecifically in that only the cis-enol esters 3 are formed.
Furthermore, the new synthetic method can be accomplished
by thermal rearrangement without isolation of the endo-per-
oxide precursors.

When R!'=R?2, the endo-peroxides 2b, 2c, 2d, 2e, which have
R*#%R* could lead to two isomeric esters. [In carbon tetra-
chloride both enol esters 3d and ethyl 2-benzoyl-3-benzoyl-
oxyacrylate in approximately equal amounts were formed'.
Under the above conditions, only a trace amonnt of the latter
product was detected.] However, these peroxides 2 rearrange
into 3b, 3¢, 3d, 3e independent of the electron-attracting or -
donating character of the substituent.

In this connection, further investigation is needed to show whether a
change in mechanism occurs, e.g. involving the cyclic zwitterion 4
with an electron-donating substituent and an acyclic zwitterion 5 with
an electron-withdrawing substituent.
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We also examined the behaviour of 2h and 2i which have R'+R? and
R’4R*. Both give enol acetate 3h and 3i showing that a preferential
oxygen-benzyl carbon breakdown is operating in these cases; however
the yields in 3h are very low as 2h in preference polymerizes.

Table 1. cis-2-Aroylenol Esters 3a-i (R'=C.Hs) -
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At present, the aforementioned method seems to be limited
for the synthesis of 2-aroylenol esters; in fact 14-dimethyl
derivatives of 2 rearrange into diepoxides or polymeric mate-
rial"* also in dipolar aprotic solvents.

cis-2-Aroylenol Esters 3a-3h; General Procedure:

A 2% solution of the furan 1 (1 mmol) and methylene blue (8 x 10~*
mmol) in dry nitromethane is irradiated with a halogen-superphot
lamp (Osram 650 W). During the irradiation, dry oxygen is bubbled
through the solution which is cooled at — 15 °C. Periodically, samples
are syringed into a 'H-N.M.R. tube and monitored for furan 1 disap-
pearance and endo-peroxide 2 appearance. After completion of sin-
glet oxygenation, the solution is warmed to the temperature recorded
in Table 1 and kept until complete disappearance of 2 ('H-N.M.R.).
Removal of the nitromethane in vacuo gives the crude 3a-3h, which
are purified by column chromatography over silica gel using light pe-
troleum/ether (4:1 v/v) as eluent. Enol ester 3g needs successive
cleaning according to the procedure previousiy described'.

Methyl cis-2-Acetoxy-4-0xo-4-phenylbutenoate (3i):

The endo-peroxide 2i owing to the high hydrolytic reactivity, is pre-
pared as previously described” and dissolved in dry nitromethane (2%
solution). The solution is worked-up as reported in the general proce-
dure.

2,3,7-Trioxabicyclo[2.2.1]hept-5-enes 2:

The previously unreported compounds 2, except for 2b which in ni-
tromethane is very unstable, after completion of singlet oxidation and
removal of the nitromethane at — 15 °C in vacuo can be isolated in
quantitative yields according to the procedure used for 2i°. Endo-per-
oxide 2b can be prepared according to the procedure used for 2a'.
Spectral data are summarized in Table 2.

Product Irradiation Conversion Yield

m.p. Molecular 'H-N.M.R. LR. (CHCl,)*

No. R? R? R* time temp. %] [°C] formula® (CDCl;/TMS)* viem™']
at —15°C  and time or Lit. m.p. & [ppm]

3a. CH; H H 200 min 18-22°C/ 70 oil oil’ — -
30 min

3b CHs CH, H 240 min® —15C 90 oil oil* — 1745, 1694,

1682, 1678
3¢ C¢Hs COOCH; H 90 min 4°C/40h 72 72 CisHi4Os  3.86 (s, 3H); 7.54, 7.4-8.2 (s+m, 1740, 1681,
-74¢  (310.3) 11H) 1628

3d CHs COOC,H; H 90 min 4°C/40h 70 oil oil’ —

3e CiH; CO—CH; H 150 min 18-22°C/ 54 oil CiyHs0,  2.42(s,3H); 7.40,7.35-8.2 (s+m, 1742, 1708,
2h (294.3) 11H) 1668, 1620

3f  C,Hs CH, COOC,Hs 120 min  18-22°C/ 76 oil  CuH,s0s 110 (t, 3H, J=7 Hz); 2.62 (s, 1738, 1720,
48 h (338.3) 3H); 4.14 (q, 2H, J=7 Hz); 7.3~ 1678, 1603

3g CHs COOCH; COOCH; 60 min 18-22°C/ 30

48 h

3h CH; H COOC;H; 150 min 18-22°C/ IS
10 d

3i CH; COOCH; H — 4°C/30h 63

8.05 (m, 10H)
oil  oil —
1.20 (t, 3H, J=7 Hz); 2.06 (s,
oil CuH14,0s  3H);4.21(q,2H,J=7 Hz):7.35- 1790, 1720,

(262.3) 8.05 (m, S H); 8.56 (s, 1 H) 1680, 1655
oil  oil’ — —

* Yield of pure, isolated product.

" Satisfactory microanalyses obtained: C £0.25, H +0.12.
° Perkin-Elmer R 12 A spectrometer.

* Perkin-Elmer 399 spectrophotometer.

© 2b cannot be detected due to its instability in nitromethane at
—15°C; when the photooxidation of 1b is complete only 3b is de-
tectable by '"H-N.M.R. in the reaction mixture.
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Table 2. 2,3,7-Trioxabicyclo[2.2. 1]hept-5-enes 2 (R'=CyHs)

Prod- m.p.  Molecular 'H-N.M.R. LR
uet!  [°C]  formula®  (CDCl/TMS)* (CHCL,)*

S [ppm] viem™'}
2b oil —~ 1.28 (s, 3H); 577 (5, —

1H): 7.2-7.7 (m, 10H)°

2 oil CisH4Os  3.65 (s, 3H); 7.58, 7.35- 1732, 1615

(310.3) 7.85 (s+m, 11H)

2e 68° CisHi,0,  2.21 (s, 3H); 7.39, 7.35- 1690, 1605

(dec) (294.3) 7.75 (s+m, 11 H)

2f oil CxHis0s 100 (t, 3H, J=7 Hz); 1715, 1655

(338.3) 2.10 (s, 3H); 3.93, 3.97
(2q, 2H, J=7 Hz); 74-
7.85 (m, 10H)

2h oil CiH,05 105 (t, 3H, J=7 Hz); 1720, 1620

(262.3) 1.88 (s, 3H); 4.05 (g, 2 H,
J=7 Hz); 7.07 (s, 1H);
7.25-7.75 (m, SH)

a
b
¢
d

[

For R, R?, R?, see Table 1.

Satisfactory microanalyses obtained: O, 0.30.
Perkin-Elmer R 12 A spectrometer.
Perkin-Elmer 399 spectrophotometer.

In CCl, solution.
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