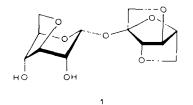
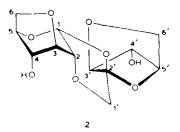
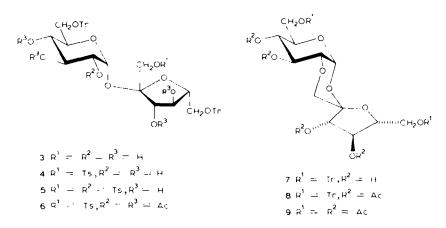
Preliminary communication

The formation of a 2,1'-anhydro linkage in sucrose

MUKUND K. GURJAR, LESLIE HOUGH, and ANTHONY C. RICHARDSON*


Department of Chemistry, Queen Elizabeth College (University of London), London W8 7AH (Great Britain)


(Received September 7th, 1979; accepted for publication, October 8th, 1979)


Interest in the 2.1'-anhydride derived from sucrose arose from the observation¹ that a crude tritosylate of sucrose, thought to be mainly the 6,1',6'-triester, gave the 2,1':3,6:3',6'-trianhydride 2 in low yield after treatment with sodium ethoxide. The structure of 2 was established by degradative means. However, later studies by Isaacs et al.² and by Khan³ revealed that 6,1',6'-tri-O-tosylsucrose and its pentabenzoate, which had both been prepared by unequivocal routes, each afforded a high yield of the 3,6:1',4':3',6'-trianhydride 1, the structure of which was established beyond doubt by X-ray crystallography². Several other anhydro derivatives of sucrose have since been prepared⁴⁻⁷, but in no case has the 2,1'-anhydro linkage been formed. Thus, 1',6'-di-Omesylsucrose afforded the 1',4':3',6'-dianhydride in high yield with no trace of the 2,1':3',6'-dianhydride⁴. Since the 1'-tosyloxy group has a greatly diminished reactivity in nucleophilic displacement reactions⁸, the formation of the 3',6'-anhydro ring would be expected to precede formation of the 1'4'-anhydro ring. Molecular models of sucrose reveal that C-1' and HO-4' are brought into close proximity by the formation of a 3',6'anhydro ring, thereby greatly facilitating subsequent formation of a 1',4'-anhydro ring in preference to the 2,1'-anhydro ring. Thus, the formation of a 2,1'-anhydro ring might be favoured in the absence of a 3',6' anhydro ring. For this reason, we have studied the action of base on a 1'-O-tosyl derivative of sucrose.

Selective tosylation of 6,6'-di-O-tritylsucrose¹⁰ (3) with 3 molar equivalents of tosyl chloride** afforded the 1'-tosylate 4 in 24% yield {m.p. $117-119^{\circ}$, $[\alpha]_{\rm D} + 17^{\circ}$ (chloroform)} together with 21% of the 2,1'-ditosylate 5. Treatment of the penta-acetate (6) of 4 with sodium methoxide afforded a single, crystalline anhydride (7) in 77% yield {m.p. 128° , $[\alpha]_{\rm D} + 24^{\circ}$ (chloroform)}, which was subjected, in sequence, to acetylation, detritylation (HBr/HOAc), and acetylation, to give the hexa-O-acetyl-anhydride 9 {m.p. 141° , $[\alpha]_{\rm D} + 79^{\circ}$ (chloroform)}. The absence of fragments at m/e 331 (Ac₄ Glcp⁺) and 221 (Ac₂ anhydro-Fruf⁺) in the mass spectrum of 9 indicated that the anhydro ring spanned the two monosaccharide moieties. The 220-MHz, ¹H-n.m.r. spectrum of 9 and the tetra-acetate of the ditrityl derivative 8 were amenable to first-order analysis (Table I) and clearly indicated the presence of a 2,1'-anhydro linkage. For example, in

^{**}Tosylation of 3 was extremely slow, and in order to achieve a reasonable yield of the monotosylate it was necessary to use substantially more than one molar equivalent.

the spectra of both 9 and 8, the resonances due to H-1, H-3, H-4, H-3', and H-4' were observed to low field of δ 5.0, indicating the presence of acetyl groups at O-3, O-4, O-3', and O-4'. The resonance for H-2 was located at higher field (δ 3.84 and 3.60 in 8 and 9, respectively) revealing that O-2 was involved in the anhydro ring. In addition, the resonances for H-1'a and H-1'b were widely separated (0.5 and 0.7 p.p.m. in 8 and 9, respectively), suggesting that C-1' was part of a ring and that H-1'a, being at lower field, was equatorial. Furthermore, the observed coupling constants (Table I) indicated that there had been no conformational perturbation of the pyranosyl ring, in agreement with a strainless, *cis*-decalin-type, fused-ring system, as in 9.

Our results show that, in the absence of a 3',6'-anhydro ring, the 2,1'-anhydro ring is formed in preference to a 1',4'-anhydride. It therefore seems reasonable to suggest that the trianhydride 2 described by Lemieux and Barrette may have originated from a minor tritosylate component in the crude reaction product. The 2,6,6'-tritosylate has been isolated from the crude mixture of tritosylates⁹, and could theoretically account for the formation of the 2,1':3,6:3',6'-trianhydride 2 (either 2,6,6'-tritosylate \rightarrow 2,3-epoxide \rightarrow 2,1'-anhydride \rightarrow 2, or tritosylate \rightarrow 2-O-tosyl-3,6:3',6'-dianhydride \rightarrow 2). However, Ball *et al.*⁹ concluded that the 2,6,6'-tritosylate could not be the precursor of 2, because it gave a complex mixture of products on treatment with base. The same authors also established that the 3,6;1',4';3',6'-trianhydride 1 could exist in two crystalline forms, the lower melting of which (m.p. 158–162°) corresponded to that of the anhydride of Lemieux and Barrette (m.p. 163–164.5°), which led to the suggestion that the two TABLE I

	6 ^{<i>a</i>}	8 ^b	9 ^{<i>a</i>}		6 ^{<i>a</i>}	8^b	9 ^a	
H-1	5.82d	5.42d	5.63d	J _{1 2}	3.5	3.5	3.5	
H-2	5.10dd	3.84dd	3.60dd	$J_{2,2}^{1,2}$	10.0	9.5	10.0	
H-3	5.5-5.6 m	5.54t	5.97t	$J_{3,4}^{2,3}$		9.5	9.5	
H-4 ¹	5.5-5.0 m	5.27t	5.26t	1		10.0	10.0	
H-5	4.31m	3.92m	4.08m	4,5 J5.60	1.5	1.5		
H-6a	3.59dd	3.32dd	∫ 4.45-4.24m	5,6a 5,6b	5.0	3.5		
II-6b	3.45dd	3.00dd	{ 4.40 -4.24)II	1	10.0	11.0		
H-1'a	4.47d	3.98d	4.24d	$J_{1}^{6a,6b}$	11.5	12.5	12.5	
Н-1′Ъ	4.38d	3.48d	3.47d	J'a,1'b J'3',4'	5.0	5.5	7.0	
H-3′	5.78d	5.03d	5.23d	$J_{A', 5'}^{3', 4}$	5.0	4.5	6.0	
H-4′	5.65t	5.50t	5.69t	$J_{5'.6'a}^{4,5}$	5.0	6.0	-	
H-5'	4.27dt	4.10q	4.08m	∫ ⁵ ,6 a ,5',6'b	5.0	6.0	_	
H-6'a	3.51dd	3.46dd	6446 494	J ⁵ ,60 J _{6'a,6'b}	11.0	12.0	-	
H-6'b	3.15dd	3.36dd	{ 4.45∼4.24m	0 2,0 0				

¹ H-N.M.R. PARAMETERS (δ, Hz) AT 220 MHz

 $a \operatorname{In} C_6 D_6$. $b \operatorname{In} CDCl_3$.

were identical. However, this postulate has not been tested by a direct comparison and also ignores the substantial chemical studies carried out¹ on 2, which would not be explicable in terms of 1. Our present studies show that formation of the 2,1'-anhydro linkage is feasible, provided its formation precedes 3',6'-anhydride formation. An unambiguous synthesis of the 2,1':3,6:3',6'-trianhydride 2 is planned.

ACKNOWLEDGMENTS

We thank Tate and Lyle Ltd. for financial support, and P. C. M. U. (Harwell) for the 220-MHz, ¹H-n.m.r. spectra.

REFERENCES

- R. U. Lemieux and J. P. Barrette, Can. J. Chem., 38 (1960) 656-662; 37 (1959) 1964 (1969);
 J. Am. Chem. Soc., 80 (1958) 2243-2246.
- 2 N. W. Isaacs, C. H. L. Kennard, G. W. O'Donnell, and G. N. Richards, Chem. Commun., (1970) 360.
- 3 R. Khan, Carbohydr. Res., 22 (1972) 441-445.
- 4 J. G. Buchanan and D. A. Cummerson, Carbohydr. Res., 21 (1972) 293-296.
- 5 C. H. Bolton, L. Hough, and R. Khan, Carbohydr. Res., 21 (1972) 133-143.
- 6 J. G. Buchanan, D. A. Cummerson, and D. M. Turner, Carbohydr. Res., 21 (1972) 283 292.
- 7 R. Khan, M. R. Jenner, and K. S. Mufti, Carbohydr. Res., 39 (1975) 253-262.
- 8 A. C. Richardson, Carbohydr. Res., 10 (1969) 395-402.
- 9 D. H. Ball, F. H. Bissett, and R. C. Chalk, Carbohydr. Res., 55 (1977) 149 -163.
- 10 L. Hough, K. S. Mufti, and R. Khan, Carbohydr. Res., 21 (1972) 144-147.