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ABSTRACT: Herein, we disclose the Ni-catalyzed ring-opening C−O functionaliza-
tion of peri-xanthenoxanthenes using Grignard reagents that forms 8-monofunction-
alized binaphthols. 1,2-Bis(dicyclohexylphosphino)ethane was the best ligand for
alkylations and ICy for arylation. After mechanistic investigations, we assumed that the
reaction proceeds via C−O reduction and subsequent C−O functionalization. To
verify the mechanism, the intermediate after reduction was isolated. Moreover, the
asymmetric addition, using 8-octylbinaphthol after optical resolution, was studied.

Binaphthyl derivatives are widely applied as chiral ligands
and catalysts in many asymmetric transformations.1

Preferred synthetic strategies for these reagents are modifica-
tions of binaphthol (1,1′-bi-2-naphthol) using electrophilic
substitutions at 6,6′-positions2 and directed metalations at 3,3′-
positions.3 Although homocoupling reactions of 2-naphthol
derivatives are also available for the synthesis of binaphthol with
substituents in other positions,4 the synthesis of 8,8′-function-
alized binaphthols has not been fully developed because of the
steric hindrance of the 8-position of binaphthol.5

In our laboratory, we applied Cu-catalyzed ring-closing
reactions of binaphthol to produce peri-xanthenoxanthene
(PXX) derivatives (Scheme 1a), which are used as p-type
transistors for rollable displays by Kobayashi (Sony Corpo-
ration).6,7 We think the reductive ring-opening reaction of PXX
to introduce substituents could result in a novel synthetic
strategy for binaphthol derivatives (Scheme 1b).

To prove this hypothesis, we applied the Ni-catalyzed C−O
functionalization, which experienced considerable attention in
this past decade.8,9 There have been a few reports on C−Obond
activation of diaryl ethers.10 Martin reported the C−O silylation
of dibenzofuran with silylborane,10a and Yorimitsu and Osuka
disclosed the C−O arylation of dibenzofuran with ArMgBr.10b

Tobisu and Chatani developed the C−O bond alkylation of
diaryl ethers and dibenzofuran with Grignard reagents.10c

We started our investigation to achieve the Ni-catalyzed ring-
opening reaction of PXX 1a employing Tobisu’s reaction
conditions (Table 1). Surprisingly, the reaction of 1a with
Ni(cod)2 (15 mol %), 1,2-bis(dicyclohexylphosphino)ethane
(dcype) (15mol %), and n-octylmagnesium iodide (2a, 6 equiv)
in toluene for 40 h gave 8-n-octylbinaphthol (3aa) in 71% yield,
accompanied by small amounts of binaphthol 4 (∼9%, Table 1,
entry 1), not 8,8′-di(n-octyl)binaphthol.11 No reaction occurred
with the addition of other bidentate cyclohexylphosphine
ligands, such as 1,3-bis(dicyclohexylphosphino)propane
(dcypp), 1,1′-bis(dicyclohexylphosphino)ferrocene (dcypf),
bipyridine, monodentate, and carbene ligands (entries 2−8).
The reaction of 1a with PhMgBr 2A, adding Ni(cod)2 and
dcype, was unsuccessful, with no recovery of starting materials
(Table 1, entry 1). After optimization of the ligands, addition of
carbene ligand ICy effectively produced 8-phenylbinaphthol
3aA in 58% yield (entry 6).11 No reactions occurred with 2A
using other ligands listed in Table 1 (entries 2−5, 7, and 8).
Alternative ligands, nickel precursors, Grignard reagents, and
temperature variations were also studied (see Tables S1−S4).
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Scheme 1. Ring-Closing and Ring-Opening Strategy to
Functionalize Binaphthols
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We applied this reaction further using other Grignard reagents
(Scheme 2). Butylmagnesium iodide produced 3ab in high

yields. Ethylmagnesium bromide was, together with MgI2, the
most suitable reagent to obtain 3ac in low yields (38%).10c

Addition of n-dodecylmagnesium iodide 2d and isobutylmag-
nesium iodide 2e formed 3ad and 3ae also in low yields. Using
isopropylmagnesium iodide 2f, isomerization to n-propylnickel
occurred to produce 8-n-propylbinaphthol in 48% yield. Probing
the β-H elimination of alkylnickel was included in the later
reaction mechanism study.
The results using aryl Grignard reagents are shown in Scheme

3. The reaction with o-tolylmagnesium bromide produced the
corresponding product 3aB in low yields (36%), related to the
steric hindrance of the o-methyl group. Addition of m- and p-
tolylmagnesium bromide successfully formed 3aC and 3aD in
high yields. The reaction of p-tert-butylphenylmagnesium

bromide yielded 84% 3aE. The presence of electron-donating
groups in the Grignard reagent enhanced the reactivity, and 3aF
was also obtained in 84% yield. Electron-withdrawing fluoro
groups reduced the reactivity to give 3aG in 49% yield.When the
substituents on PXX were examined, the reaction with 2,8-di(t-
butyl)PXX and 2,8-di(p-t-butylphenyl)PXX produced the
corresponding products 3bD and 3cD, but the phenyl groups
at the 5- and 11-positions prevented the ring-opening reaction.
To gain further insight on the mechanism of the trans-

formation, we analyzed the products of the reaction prior to full
conversion (Scheme 4). The alkylation with 2a formed the half-

ring-opening product 5 as the main product (56% yield), with
3aa in 24% yield. Regarding the arylation, trace amounts of 5
were detected with 1HNMR in the crude products, and themain
product 3aAwas isolated in 48% yield. These results proved that
the reaction proceeds via reductive ring-opening and alkylative/
arylative binaphthol formation.
Next, we investigated the hydrogen source of the reduction.

The β-H elimination of alkylnickel intermediates was observed

Table 1. LigandOptimizations of Ni-Catalyzed RingOpening
of PXX

entry ligand (y mol %) 3aa (%)a 3aA (%)a

1 dcype (15) 71b,c 0
2 dcypp (15) 0 0
3 dcypfd (15) trace 0
4 dppe (15) 0 0
5 PCy3 (30) 0 0
6 Icy·HCl (30) 0 58
7 I(1-Ad)·HBF4 (30) 0 0
8 bipyridine (15) 0 0

a1H NMR yield. bIsolated yield. cBinaphthol (R = H) 4 was obtained
(9%). d1,1′-Bis(dicyclohexylphosphino)ferrocene.

Scheme 2. Ni-Catalyzed Alkylative Ring Opening of PXX

aEtMgBr (6 equiv) and MgI2 (2.2 equiv) were added. biPrMgI was
used.

Scheme 3. Ni-Catalyzed Arylative Ring Opening of PXX

a120 °C.

Scheme 4. Half-Time Reactions to Capture Intermediates
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during the reaction with isopropylmagnesium iodide (3f).
Therefore, we subjected Grignard reagents with no hydrogen in
the β-position, such as methylmagnesium iodide and trime-
thylsilylmethylmagnesium iodide, to ring-opening conditions to
recover the starting materials (Scheme 5).12

To identify the hydrogen source, the reaction was quenched
with D2O (Scheme 6). The addition of D2O to 1a and 2a did not

result in incorporation of deuterium (D) into 3aa. Adding D2O
to the mixture of 1a and 2A also did not produce 3aA with D
atoms included. Furthermore, the reaction of 1a and 2A
performed in toluene-d8 afforded 3aA without D atoms. The D-
incorporated Grignard reagent (2A-d5) was subjected to the
reaction to result in 0% D at the 8-position. Mechanism of the
reaction with aryl magnesium bromide did not include β-
hydride elimination.
A possible reaction mechanism is shown in Scheme 7. The

oxidative addition of a Ni catalyst into the C−O bond, using the
Grignard reaction, is followed by the transmetalation with
Grignard reagents to produce complex II. Oxidative addition of
Ni(0) species was well examined on Ni-catalyzed reduction of
diphenyl ether. Oxidative addition proceeded via the η6-benzene
complex.13 Ni(0) complex might be slightly sterically accessible
to the benzene structure, including a Cα−O atom to form the η6-
complex. The inhibition of free rotation of the axial bond caused
steric congestion and was strict with the reductive elimination,
and β-H elimination is preferred, forming a nickel hydride

complex. Reductive elimination yields half-ring-opening prod-
uct 5 (cycle I).14 The oxidative addition of Ni to another C−O
bond, followed by transmetalation and reductive elimination,
results in the products shown in cycle II. In the case of aryl
Grignard reagents, 5 is produced similarly to that with alkyl
Grignard reagents, following a cross-coupling sequence to
obtain the corresponding products; however, the hydrogen
source could not be determined.
Finally, to ensure the suitability of the 8-alkyl substituent for

asymmetric reactions, the enantioselective alkylation of carbonyl
compounds with a zinc reagent was used as a model reaction
(Scheme 8).15 The enantiomerically pure binaphthol 3aa was

resolved using camphor sulfonyl ester column chromatography
(Scheme S2). The reaction of α-naphthaldehyde and diethyl
zinc in the presence of Ti(OiPr)4 and (R)-3aa produced 1-(α-
naphthyl)-1-propanol 6 in 74% yield and 98% ee. The control
experiment using (R)-binaphthol instead of (R)-3aa yielded the
product in 81% yield and 78% ee (ref 15 reports products
obtained in 94% yield and 85% ee). These results show that the
8-substituted binaphthol can control asymmetric reactions.
In conclusion, we achieved the Ni-catalyzed C−O bond

activation of PXX to afford 8-substituted binaphthol derivatives
in high yields. The reaction proceeds through the reductive half-
ring-opening of PXX. Hydride is derived from β-H elimination
of alkyl nickel intermediates. Cross-coupling with alkylation or
arylation provides the 8-substituted binaphthol derivatives. The
suitability of the products as ligands in asymmetric reactions was

Scheme 5. Reaction with Grignard Reagent without β-
Hydrides

Scheme 6. Deuterium-Labeled Experiments

Scheme 7. Possible Mechanisms of Ni-Catalyzed Ring
Opening with Alkyl Grignard Reagent

Scheme 8. Enantioselective Alkylation of 1-Naphthaldehydes
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examined using (R)-8-n-octylbinaphthol. Studies to determine
the hydrogen source in the case of arylations and apply the 8-
substituted binaphthol in other asymmetric reactions are
ongoing.
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