Contents lists available at ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech

Short communication

Synthesis, structures, and urease inhibitory activities of three copper(II) and zinc(II) complexes with 2-{[2-(2-hydroxyethylamino)ethylimino] methyl}-4-nitrophenol

Zhong-Lu You^{a,*}, Li-Li Ni^a, Da-Hua Shi^b, Shun Bai^b

^a Department of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850, Dalian 116029, PR China ^b School of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, PR China

ARTICLE INFO

Article history: Received 8 May 2009 Received in revised form 4 March 2010 Accepted 10 March 2010 Available online 16 March 2010

Keywords: Schiff base Complex Crystal structure Urease inhibition

ABSTRACT

In order to explore novel urease inhibitors, three new mononuclear complexes of Cu(II) and Zn(II) with Schiff base 2-{[2-(2-hydroxyethylamino)ethylimino]methyl}-4-nitrophenol have been prepared and structurally characterized by X-ray crystallography. Among the three complexes, two Cu(II) complexes show strong urease inhibitory activities with the IC₅₀ values being much lower than that of the acetohydroxamic acid, while the Zn(II) complex shows no activity at the concentration of 100 μ M.

© 2010 Elsevier Masson SAS. All rights reserved.

175

1. Introduction

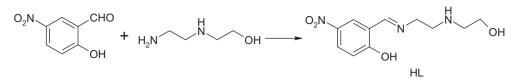
Urease (urea amidohydrolase; E.C.3.5.1.5) is a nickel-containing metalloenzyme that catalyzes the hydrolysis of urea to form ammonia and carbamate [1,2]. The resulting carbamate spontaneously decomposes to yield a second molecule of ammonia and carbon dioxide. High concentrations of ammonia arising from these reactions, as well as the accompanying pH elevation, have important negative implications in medicine and agriculture [3-6]. Control of the activity of urease through the use of inhibitors could counteract these negative effects. In recent years, urease inhibitors play an important role in the treatment of the infections caused by urease producing bacteria [7]. Inhibitors of urease can be broadly classified into two fields: (1) organic compounds, such as acetohydroxamic acid, humic acid, and 1,4-benzoquinone [8–10]; (2) heavy metal ions, such as Cu^{2+} , Zn^{2+} , Pd^{2+} , and Cd^{2+} [11,12]. The metal complexes as urease inhibitors have seldom been reported, which indicates that the metal complexes of organotin(IV), vanadium(IV), bismuth(III), copper(II), and cadmium(II) bearing interesting urease inhibitory activities [13–17]. In this paper, three copper(II) and zinc(II) complexes, [CuLNO₃] (1), [CuClL] (2), and [Zn $(CH_3COO)L$] (3) (HL = 2-{[2-(2-hydroxyethylamino)ethylimino]

methyl}-4-nitrophenol) were synthesized and structurally characterized. The urease inhibitory activities of the complexes were investigated.

2. Results and discussion

2.1. Chemistry

HL was synthesized by the reaction of equimolar quantities of 5-nitrosalicylaldehyde with N-(2-hydroxyethyl)ethylenediamine in a methanol solution (Scheme 1). All the complexes were synthesized by the reaction of the methanol solutions of HL with the corresponding metal salts (copper nitrate for 1, copper chloride for 2, and zinc acetate for 3; Scheme 2). The compounds have been characterized by elemental analysis and IR spectra. Structures of the complexes were further confirmed by X-ray crystallography (CCDC - 730 768 for 1, 730 769 for 2, and 730 770 for 3).

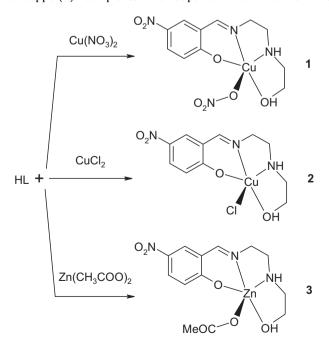

2.2. Structure description of the complexes

X-ray crystallography reveals that the structures of the three complexes are similar mononuclear compounds. In each complex, the metal atom is in a square-pyramidal geometry, coordinated by the four donor atoms of L at the basal plane, and with the apical position occupied by the anion comes from the corresponding

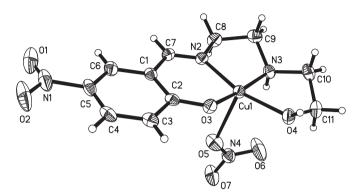
Corresponding author. Tel.: +86 411 84216387. E-mail address: youzhonglu@yahoo.com.cn (Z.-L. You).

^{0223-5234/\$ -} see front matter © 2010 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.ejmech.2010.03.012

Scheme 1. Synthesis of HL.


metal salts, viz. nitrate for **1** (Fig. 1), chloride for **2** (Fig. 2), and acetate for **3** (Fig. 3). The metal atoms deviate by 0.160(2) Å in **1**, 0.296(2) Å in **2**, and 0.642(2) Å in **3**, respectively, from the least-squares plane defined by the four basal donor atoms. Close examination of the structures reveal that the Cu–O and Cu–N bond lengths in **1** and **2** are comparable to each other, while the Zn–O and Zn–N bond lengths in **3** are a little longer than the corresponding values in **1** and **2**. All the coordinate bond lengths can be considered as normal by comparison with those reported in the literatures. The crystals of the complexes are stabilized by hydrogen bonds (Table 1).

2.3. Pharmacology


The measurement of jack bean urease inhibitory activity was carried out for three parallel times according to the literature phenol-red method [18]. The results are summarized in Table 2. Complexes **1** and **2** show strong urease inhibitory activity with the IC_{50} values being much lower than that of the acetohydroxamic acid coassayed as a standard urease inhibitor [7], while complex **3** shows no activity. The results in this paper are accordance with those reported previously, that the zinc(II) complexes have much weak urease inhibitory activities [19].

3. Conclusion

The present study reports the synthesis, structures and urease inhibitory activities of three mononuclear copper(II) and zinc(II) complexes with Schiff base HL. The urease inhibitory activities of the copper(II) complexes are superior than that of the

Scheme 2. Synthesis of the complexes.

Fig. 1. A perspective view of the molecular structure of **1** with the atom labeling scheme. The thermal ellipsoids are drawn at the 30% probability level.

acetohydroxamic acid. Considering the copper(II) complexes have interesting biological activities and have been widely used in medicine [20–22], the two copper(II) complexes in this paper may be used in the treatment of infections caused by urease producing bacteria.

4. Experimental protocols

Starting materials, reagents and solvents were purchased from commercial suppliers and purified before use. Elemental analyses were performed on a Perkin–Elmer 240C elemental analyzer. The IR spectra were recorded on a Jasco FT/IR-4000 spectrometer as KBr pellets in the 4000–200 cm⁻¹ region. X-ray diffraction was carried out at a Bruker SMART 1000 CCD area diffractometer equipped with MoK α radiation, and the structures were solved by direct methods using SHELXTL 97 software [23]. The crystallographic data for the complexes are summarized in Table 3. Selected bond lengths and angles are given in Table 4.

4.1. Synthesis of HL

To the methanol solution (50 mL) of 5-nitrosalicylaldehyde (1.0 mmol, 0.167 g) was added a methanol solution (30 mL) of

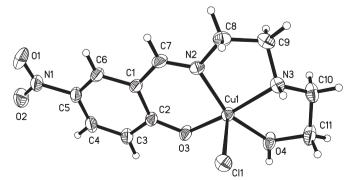


Fig. 2. A perspective view of the molecular structure of 2 with the atom labeling scheme. The thermal ellipsoids are drawn at the 30% probability level.

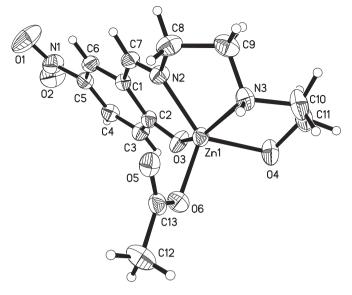


Fig. 3. A perspective view of the molecular structure of 3 with the atom labeling scheme. The thermal ellipsoids are drawn at the 30% probability level.

Table 1

Hydrogen bond distances (Å) and bond angles (°) for the complexes.

D−H…A	d(D-H)	$d(H{\cdots}A)$	$d(D{\cdots}A)$	Angle (D $-H$ ···A)
1				
$N_3 - H_3 A \cdots O_7^i$	0.90(2)	2.64(4)	3.118(4)	114(3)
$N_3 - H_3 A \cdots O_6^i$	0.90(2)	2.61(2)	3.393(4)	146(3)
O ₄ −H ₄ A…N ⁱⁱ ₄	0.85(2)	2.65(2)	3.442(4)	156(4)
$O_4 - H_4 A \cdots O_7^{ii}$	0.85(2)	1.82(2)	2.632(3)	158(4)
2				
N3−H3A…Cl1 ⁱⁱⁱ	0.90(2)	2.68(2)	3.365(2)	134(2)
O4−H4A…Cl1 ^{iv}	0.85(2)	2.22(2)	3.061(2)	173(3)
3				
N3–H3A…O6 ^v	0.90(2)	2.54(3)	3.237(3)	136(3)
04–H4A…05 ^{vi}	0.85(2)	1.783(5)	2.595(3)	159(4)

Symmetry codes: (i) 1 - x, 2 - y, -z; (ii) x, 3/2 - y, 1/2 + z; (iii) 1 - x, -y, 1 - z; (iv) 1 x, 1/2 - y, -1/2 + z; (v) 2 - x, -1/2 + y, 1/2 - z; (vi) 2 - x, 1/2 + y, 1/2 - z.

N-(2-hydroxyethyl)ethylenediamine (1.0 mmol, 0.104 g) with stirring. The mixture was stirred for 30 min at room temperature to give a yellow solution. The solvent was evaporated to give yellow powder, which was washed with cold methanol and dried in air. Yield: 91%. Characteristic IR data (cm⁻¹): 3351 (m), 3233 (w), 1635 (s), 1356 (s), 1513 (s). Anal. calcd. for $C_{11}H_{15}N_3O_4$: C, 52.2; H, 6.0; N, 16.6; Found C, 51.8; H 6.1; N 16.8%.

4.2. Synthesis of the complexes

A methanol solution (10 mL) of HL (0.1 mmol, 25.3 mg) was added with stirring to a methanol solution (10 mL) of the corresponding metal salt (0.1 mmol), viz. copper nitrate for **1**, copper chloride for **2**, and zinc acetate for **3**. The mixtures were stirred at room temperature

Table 2

Inhibition of urease by the tested materials.

Tested materials	IC ₅₀ (μM)
1	22.40 ± 0.08
2	24.25 ± 0.05
3	>100
HL	>100
Acetohydroxamic acid	45.32 ± 0.27

Table	3

Crystallographic and experimental data for the complexes.

Complex	1	2	3		
Formula	C ₁₁ H ₁₄ CuN ₄ O ₇	C ₁₁ H ₁₄ ClCuN ₃ O ₄	C ₁₃ H ₁₇ N ₃ O ₆ Zn		
Mr	377.8	351.2	376.7		
T (K)	298(2)	298(2)	298(2)		
Crystal shape/color	block/blue	block/blue	block/colorless		
Crystal size (mm ³)	$\begin{array}{c} 0.27 \times 0.25 \\ \times \ 0.25 \end{array}$	$0.34 \times 0.32 \times 0.32$	$0.32\times0.32\times0.27$		
Crystal system	Monoclinic	Monoclinic	Monoclinic		
Space group	P21/c	P21/c	P21/c		
a (Å)	8.256(1)	11.834(2)	11.875(3)		
b (Å)	13.040(1)	10.779(2)	9.900(2)		
c (Å)	13.409(1)	11.011(2)	14.309(5)		
β(°)	99.267(3)	96.75(1)	114.397(12)		
V (Å ³)	1424.7(2)	1394.7(3)	1532.0(8)		
Ζ	4	4	4		
$D_{c} (g cm^{-3})$	1.761	1.673	1.633		
μ (Mo-K α) (mm ⁻¹)	1.578	1.773	1.638		
F(000)	772	716	776		
Data collected	3073	3017	3441		
Unique data $(I > 2\sigma(I))$	2215	2517	2741		
Min. and max.	0.675 and	0.584 and 0.601	0.622 and 0.666		
transmission	0.694				
Parameters	214	187	215		
Restraints	2	2	2		
Goodness-of-fit on F ²	1.030	1.025	1.046		
R_1 , w $R_2 [I \ge 2\sigma(I)]^a$	0.0368, 0.0941	0.0302, 0.0816	0.0359, 0.0913		
R_1 , w R_2 (all data) ^a	0.0584, 0.1090	0.0380, 0.0871	0.0478, 0.0977		
Large diff. peak	0.603 and	0.642 and -0.537	0.516 and -0.376		
and hole (e $Å^{-3}$)	-0.304	2.2]1/2			

^a $R_1 = F_0 - F_c/F_0$, $wR_2 = \left[\sum w(F_0^2 - Fc^2) / \sum w(F_0^2)^2\right]^{1/2}$

for 30 min to give clear solutions. X-ray quality single crystals were formed by slow evaporation of the solutions in air for a few days.

4.2.1. 2-{[2-(2-Hydroxyethylamino)ethylimino]methyl}-4nitrophenolatonitratocopper(II) (**1**)

Blue single crystals. Yield: 73%. Characteristic IR data (cm⁻¹): 3434 (w), 3231 (w), 1653 (s), 1605 (s), 1550 (s), 1376 (s), 1308 (s),

Table 4 Selected bond lengths (Å) and angles (°) for the complexes.

1			
$Cu_1 - O_3$	1.888(2)	Cu ₁ -O ₄	2.005(2)
$Cu_1 - O_5$	2.424(2)	Cu ₁ -N ₂	1.929(2)
Cu ₁ -N ₃	1.986(2)		
$O_3 - Cu_1 - N_2$	94.09(9)	O ₃ -Cu ₁ -N ₃	171.5(1)
N ₂ -Cu ₁ -N ₃	85.1(1)	$O_3 - Cu_1 - O_4$	95.7(1)
$N_2 - Cu_1 - O_4$	165.2(1)	$N_3-Cu_1-O_4$	83.6(1)
$O_3 - Cu_1 - O_5$	90.9(1)	$N_2 - Cu_1 - O_5$	93.3(1)
$N_3 - Cu_1 - O_5$	97.6(1)	$O_4 - Cu_1 - O_5$	97.6(1)
2			
$Cu_1 - O_3$	1.913(2)	Cu1-O ₄	2.014(2)
Cu ₁ -N ₂	1.935(2)	Cu1-N ₃	2.013(2)
$Cu_1 - Cl_1$	2.574(1)		
$O_3 - Cu_1 - N_2$	93.8(1)	O ₃ -Cu ₁ -N ₃	167.3(1)
$N_2 - Cu_1 - N_3$	84.8(1)	$O_3 - Cu_1 - O_4$	94.7(1)
$N_2 - Cu_1 - O_4$	155.4(1)	N ₃ -Cu ₁ -O ₄	82.0(1)
$O_3 - Cu_1 - Cl_1$	102.6(1)	$N_2 - Cu_1 - Cl_1$	98.4(1)
$N_3 - Cu_1 - Cl_1$	90.1(1)	O_4 - Cu_1 - Cl_1	102.2(1)
3			
Zn ₁ -O ₃	2.003(2)	Zn ₁ -O ₄	2.082(2)
Zn ₁ -O ₆	1.950(2)	Zn ₁ -N ₂	2.051(2)
Zn_1-N_3	2.161(2)		
$O_6 - Zn_1 - O_3$	98.0(1)	$O_6 - Zn_1 - N_2$	122.8(1)
$O_3 - Zn_1 - N_2$	88.3(1)	$O_6 - Zn_1 - O_4$	101.3(1)
$O_3 - Zn_1 - O_4$	90.6(1)	N ₂ -Zn ₁ -O ₄	135.6(1)
$O_6 - Zn_1 - N_3$	110.7(1)	O ₃ -Zn ₁ -N ₃	150.7(1)
$N_2 - Zn_1 - N_3$	81.4(1)	$O_4 - Zn_1 - N_3$	78.4(1)

1098 (m). Anal. calcd. for C₁₁H₁₄CuN₄O₇: C, 35.0; H, 3.7; N, 14.8; Found C, 35.6; H 3.9; N 14.5%.

4.2.2. Chlorido-2-{[2-(2-hydroxyethylamino)ethylimino]methyl}-4nitrophenolatocopper(II) (2)

Blue single crystals. Yield: 71%. Characteristic IR data (cm^{-1}) : 3446 (w), 3220 (w), 1660 (s), 1601 (s), 1551 (m), 1397 (m), 1312 (vs), 1102 (m). Anal. calcd. for C₁₁H₁₄ClCuN₃O₄: C, 37.6; H, 4.0; N, 12.0; Found C, 37.1; H 4.3; N 11.7%.

4.2.3. Acetato-2-{[2-(2-hydroxyethylamino)ethylimino]methyl}-4nitrophenolatozinc(II) (3)

Colorless single crystals. Yield: 90%. Characteristic IR data (cm⁻¹): 3436 (w), 3316 (w), 1653 (s), 1604 (s), 1550 (m), 1492 (m), 1390 (m), 1313 (vs), 1103 (m). Anal. calcd. for C₁₃H₁₇N₃O₆Zn: C, 41.5; H, 4.5; N, 11.2; Found C, 42.1; H 4.8; N 10.9%.

Acknowledgements

This work was financially supported by the National Science Foundation of China (Project No. 20901036).

References

- [1] P.A. Karplus, M.A. Pearson, R.P. Hausinger, Acc. Chem. Res. 30 (1997) 330-337.
- [2] J.B. Sumner, J. Biol. Chem. 69 (1926) 435-441.
- [3] L.E. Zonia, N.E. Stebbins, J.C. Polacco, Plant Physiol 107 (1995) 1097-1103.

- [4] C.M. Collins, S.E.F. DÓrazio, Mol. Microbiol. 9 (1993) 907-913.
- [5] C. Montecucco, R. Rappuoli, Nat. Rev. Mol. Cell Biol. 2 (2001) 457-466.
- [6] W. Zhengping, O. Van Cleemput, P. Demeyer, L. Baert, Biol. Fertil. Soils 11 (1991) 41-47.
- [7] B. Krajewska, J. Mol. Catal. B. Enzym. 59 (2009) 9–21.
- [8] Z. Amtul, Atta-ur-Rahman, R.A. Siddiqui, M.I. Choudhary, Curr. Med. Chem. 9 (2002) 1323-1348.
- W. Zaborska, M. Kot, K. Superata, J. Enzym. Inhib. Med. Chem. 17 (2002) [9] 247-253.
- [10] M.A. Pearson, L.O. Michel, R.P. Hausinger, P.A. Karplus, Biochemistry 36 (1997) 8164-8172.
- [11] W. Zaborska, B. Krajewska, Z. Olech, J. Enzym. Inhib. Med. Chem. 19 (2004) 65-69.
- [12] W. Zaborska, B. Krajewska, M. Leszko, Z. Olech, J. Mol. Catal. B: Enzym 13 (2001) 103-108.
- [13] E. Asato, K. Kamamuta, Y. Akamine, T. Fukami, R. Nukada, M. Mikuriya, S. Deguchi, Y. Yokota, Bull. Chem. Soc. Jpn 70 (1997) 639–648.
- [14] M.I. Khan, M.K. Baloch, M. Ashfaq, J. Enzym. Inhib. Med. Chem. 22 (2007) 343-350
- [15] R. Ara, U. Ashiq, M. Mahroof-Tahir, Z.T. Maqsood, K.M. Khan, M.A. Lodhi, M. I. Choudhary, Chem. Biodivers 4 (2007) 58-71.
- [16] P. Hou, Z.-L. You, L. Zhang, X.-L. Ma, L.-L. Ni, Transit. Met. Chem. 33 (2008) 1013-1017.
- Z.-L. You, X. Han, G.-N. Zhang, Z. Anorg, Allg. Chem. 634 (2008) 142-146. [17]
- T. Tanaka, M. Kawase, S. Tani, Life Sci. 73 (2003) 2985–2990.
 K. Cheng, Z.-L. You, H.-L. Zhu, Aust. J. Chem. 60 (2007) 375–379.
- [20] S. Majumder, G.S. Panda, S.K. Choudhuri, Eur. J. Med. Chem. 38 (2003) 893-898
- [21] E.K. Efthimiadou, Y. Sanakis, C.P. Raptopoulou, A. Karaliota, N. Katsaros, G. Psomas, Bioorg. Med. Chem. Lett. 16 (2006) 3864-3867.
- [22] R.A. Di Silvestro, J.K. Greenson, Z. Liao, Proc. Soc. Exp. Biol. Med. 201 (1992) 94 - 97
- [23] G.M. Sheldrick, SHELXTL V5.1 Software Reference Manual. Bruker AXS, Inc., Madison, Wisconsin, USA, 1997.