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ABSTRACT: Illisimonin A was isolated from Illicium
simonsii and has a previously unreported tricyclic carbon
framework. It displayed neuroprotective effects against
oxygen-glucose deprivation-induced cell injury in SH-
SY5Y cells. It incorporates a highly strained trans-
pentalene ring system. We report the first synthesis of
(±)-illisimonin A. Notable steps in the route include a
1,3-dioxa-2-silacyclohexene templated Diels−Alder cyclo-
addition and type-3 semipinacol rearrangement to
generate the trans-pentalene. The final step is an iron-
catalyzed C−H oxidation. The synthetic route is robust,
with 94 mg of racemic material prepared in a single pass.
Resolving an intermediate enabled the synthesis of natural
(−)-illisimonin A. The absolute configuration of (−)-il-
lisimonin A was revised to 1S,4S,5S,6S,7R,9R,10R based
on the X-ray structure of a heavy-atom analogue.

The ornate structures of the Illicium sesquiterpenes have
challenged chemists’ creativity for decades. Isolated from

roughly 40 species of plants, these molecules can be classified
on the basis of their carbon skeleton.1 Members of the allo-
cedrane,2 seco-prezizaane,3 and anislactone4 families have
succumbed to total synthesis. Illisimonin A (1) was recently
isolated from Illicium simonsii and is the first example of a
sesquiterpenoid with a tricyclo[5.2.1.01,6]decane carbon frame-
work (Figure 1).5 The absolute configuration was assigned by
matching a calculated electronic circular dichroism (ECD)
spectrum with the experimental CD data.6 It has already

inspired methods development from other groups.7 Herein, we
report the first total synthesis of this strained molecule.8

A historically important member of the Illicium sesquiterpe-
noids is the seco-prezizaane, anisatin.9 Anisatin and several
other related molecules can cause convulsions, acting as
noncompetitive antagonists for GABAA channels. However,
seemingly similar molecules such as jiadefenolide,10 merrilac-
tone,11 and O-debenzoyltashironin12 are known to be neuro-
trophic. That is, they can promote the survival or growth of
neural cells. This interesting phenotypic observation is of great
interest, but interrogation of the biochemical basis for this
activity has been hampered, in part, by the limited supply of
these precious natural products. Recently, Shenvi and co-
workers have reported elegant syntheses of jiadefenolide13 and
O-debenzoyltashironin.2c The material obtained from these
syntheses has been leveraged to characterize several differences
between the actions of “neurotrophic” and “convulsant”
sesquiterpenoids.14 Access to other, distinct Illicium sesqui-
terpenoids would be valuable to understanding more clearly
how these molecules work.
Illisimonin A displayed neuroprotective effects against

oxygen-glucose deprivation-induced cell injury in SH-SY5Y
cells. Given that only 4 mg of 1 was isolated from 96 kg of the
fruits of Illicium simonsii, further studies were constrained by
material availability. Motivated by the promising bioactivity of
1 as well as the unprecedented structure, we developed a
laboratory synthesis capable of delivering over 100 mg of this
scarce molecule.
Illisimonin A’s 5−5−5−5−5 pentacyclic scaffold contains

several challenges which we considered when designing our
route, Figure 2. There are seven contiguous fully substituted
stereocenters, five of which are on the central cyclopentane
ring, and two of which are vicinal and quaternary. Additionally
there is a trans-pentalene ring system. The instability of trans
5−5 systems relative to their cis counterparts is well
documented.15 Illisimonin A is only the fourth natural product
with an embedded trans-pentalene subunit to be synthesized.16

Thus, the strain embedded in the molecule, stereochemical
complexity, and steric congestion led us to the following
retrosynthesis.
A retrosynthetic plan is outlined in Figure 2. Excision of the

bridging lactone via a White acid-directed C−H oxidation17

had close precedent in Maimone’s pseudoanisatin synthesis,18

and gives 2 after some functional group manipulations. The
semipinacol rearrangement has been used in numerous
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Figure 1. Illisimonin A and other Illicium natural products. The four
unique carbon skeletons are outlined in blue.
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syntheses to construct strained ring systems and congested
bonds.19 Disconnection of the C5−C6 bond via a semipinacol
rearrangement leads to tricycle 3 after the application of
additional routine transforms. We imagined that two of the
rings within 3 or a similar structure could be constructed by
the Diels−Alder reaction. Finally, 5 could be traced back to 6
and 7 via an aldol reaction.
Intermediate 2 has the all-carbon framework of 1, and is

expected to carry significant ring strain. We estimated the
relative ring strain of 2 and its proposed precursor 3 by MP2
calculations on the hydrocarbons 9 and 8.20 Hydrocarbon 8 is
favored by ca. 7.0 kcal/mol, which suggests that 3 is much less

strained than 2. The difference can be attributed to the
embedded strained trans 5−5 ring system in 2 (and 1). We
planned to take advantage of this stability difference by first
synthesizing 4, with a cis 5−5 ring system, in an intramolecular
Diels−Alder (IMDA) reaction. The required exo preference
should be enforced by the much higher energy expected in the
trans 5−5 endo product. Transition state calculations
supported this hypothesis, with calculated structure 10 being
7.3 kcal/mol more stable than corresponding endo transition
state.21 High selectivity in the exo IMDA reaction would
introduce four stereogenic centers, and the more strained ring
system would arise in a semipinacol reaction leading to
compound 2. Ring strain preferences enhance the stereo-
selectivity in the central IMDA reaction.
The synthesis is outlined in Scheme 1. To begin, 2-methyl-

cyclopenta-1,3-dione (6) was captured in its enol form as the
benzyloxymethyl ether in good yield. Next, an aldol reaction
united vinylogous ester with known ketone 7 (available in 3 or
5 steps from commercial material),22 to afford tertiary alcohol
11 as a mixture of diastereomers. At this stage, we drew
inspiration from the Beĺanger lab’s work targeting the core ring
structure of calyciphylline B type alkaloids.23 They trap an
aldehyde aldol as the 1,3-dioxa-2-silacyclohexene, and use this
motif to template a Vilsmeier−Haack cyclization. A similar
silacycle should template our proposed IMDA reaction. Silyl
triflates were initially explored, but dimethyldichlorosilane was
superior in practice. The silacycle 12 was formed in situ from
the mixture of diastereomers; it was warmed to 40 °C for 15 h.
Desilylation and purification gave the desired Diels−Alder
adduct, racemic 13, in good yield as a single diastereomer.
Presumably, silylation of the tertiary alcohol leads to
intramolecular activation of the cyclopentenone, which is
trapped as the silyl-enol ether upon deprotonation. The
resultant cyclopentadiene24 then engages the dienophile in a
Diels−Alder cyclization, whose diastereofacial selectivity is
templated by the silacycle. The IMDA sequence introduces five
additional stereocenters and two rings in a single step. To our

Figure 2. Retrosynthetic analysis and calculations of ring strain
energies

Scheme 1. Synthesis of (±)-Illisimonin A
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knowledge, there are only four other examples of generating a
1,3-dioxa-2-silacyclohexene from an aldol, and none in a
completed total synthesis.25 We are eager to explore this as a
method to generate other ring systems in the future.
Having served its role as an electron accepting group in the

Diels−Alder reaction, the methyl ester in 13 needed to be
reduced to a primary alcohol. The transformation was most
easily accomplished by global lithium aluminum hydride
(LAH) reduction, tert-butyldimethylsilyl ether (TBS) protec-
tion of the newly formed primary alcohol, and reoxidation of
the C10 ketone to deliver 14 in good overall yield. At this
point the semipinacol rearrangement was attempted. Depro-
tection of 14 and bromination of the resulting ketone
proceeded as expected to give bromide 19, Scheme 2. Upon

treatment with silver(I), the anticipated lactol product was not
observed. Instead, ε-lactone 21 was isolated. Apparently, the
semipinacol shift of C5 from C7 to C6 took place to generate
the desired trans 5,5-ring system (20), but the resulting lactol
spontaneously underwent a retro-Claisen fragmentation. The
inferred formation of 20 was very promising, but the sequence
was not viable for the synthesis of illisimonin A. In order to
avoid this reactivity, we chose to install the C11 carbon first
prior to the semipinacol shift.
After many failed attempts to add a carbon atom to the C10

ketone via methylenation,26 Corey−Chaykovsky epoxidation,27
triflation and palladium catalyzed carboxy-methylation,28 and
even intramolecular alkoxyacyl radical addition to the ketone,29

a solution was found. Vinyl iodide 15 was formed using
Barton’s method.30 Bouvealt aldehyde synthesis31 and in situ
reduction32 delivered the crude allylic alcohol, which was
oxidized with m-CPBA to give epoxide 16 in good overall
yield.33

To our delight, a type-3 semipinacol proceeded in
chloroform in the presence of a substoichiometric amount of
trifluoroacetic acid (TFA), and the rearrangement was
successful on a multigram scale. Competing hydride migration
from the primary alcohol was a concern, but only small
amounts of an aldehyde were seen in the crude nuclear
magnetic resonance (NMR). Evidently, the rigid conformation
of the molecule facilitates selective migration of the σC5−C7
bond over the σC11−H. Having established the two vicinal
quaternary centers and trans-pentalene contained within
illisimonin A, three oxidations separated us from our target.
Sequential oxidation of the C11 carbon to the aldehyde then

carboxylic acid was accomplished using standard chemistry.34

When attempting to purify α-hydroxy aldehyde 22 by column

chromatography, rearrangement to α-hydroxyl ketone 23
occurred, Scheme 2. The rearrangement could be avoided by
taking the material forward directly without chromatographic
purification. While the transformation can be rationalized as a
retro-aldol/aldol sequence, it is likely due to an α-ketol
rearrangement, as rearrangements of strained α-hydroxy
aldehydes and ketones catalyzed by silica have been reported
in the literature.35 The facile isomerization to the more stable
[2.2.2]-bicycle highlights the strain contained within illisimo-
nin’s ring system. It is interesting to note that the isolation
team proposed that the illisimonane skeleton could arise from
a carbocation shift of the allo-cedrane skeleton.5 The
conversion of 22 to 23, which bears the allo-cedrane skeleton,
is the synthetic reverse of the proposed biosynthetic step.
After deprotection of the primary alcohol with methanolic

HCl, only the C−H oxidation remained to complete the
synthesis. As the C4 methine was doubly neopentylic, extreme
steric hindrance could block oxidation. However, Snyder
recently described an acid-directed White oxidation of a
comparably congested C−H bond in his scaparvin B-D
syntheses.36 Our gamble was rewarded when acid 18 was
oxidized to lactone 1 using White’s FePDP catalyst with
hydrogen peroxide as the stoichiometric oxidant. Some points
about this reaction warrant further discussion. Hexafluoroiso-
propanol (HFIP) was included to improve the solubility of 18,
and may also play a role in suppressing the undesired oxidation
of the C14 methylene by electronically deactivating the
position through hydrogen bond donation.37 The rigid
conformation of 18 likely aids in the high reactivity for the
C4 methine. We speculate that strain release in the transition
state may also enhance the reactivity at this position.38 The
reaction proved to be effective after minimal optimization. We
were pleased to obtain 94 mg of natural product 1 from 196
mg of acid 18 in our largest reaction.
The assigned absolute configuration of illisimonin A was

unexpected because related illicium natural products had the
opposite configuration at C1.39 The racemic synthesis
described above did not inform the discussion, but it was a
starting point to revisit it. After several other methods were
explored, intermediate allylic alcohol (±)-24 was resolved by
derivatizing with (S)-1-(1-naphthyl)ethyl isocyanate and
separating the diasteriomers by silica gel chromatography
(Scheme 3).40 The lower Rf diastereomer 26 was deprotected,
converted to the epoxide (−)-16 and further derivatized.
Esterification of the C11 alcohol with ferrocenecarboxylic acid
(28) added a heavy atom. X-ray analysis of crystalline ester 29
allowed the absolute configuration of 26 to be assigned to the
1R series.41 The higher Rf diastereomer 27, inferred to have
the 1S configuration, was deprotected and taken on to
(−)-illisimonin A using the previously developed sequence.
The CD of this synthetic material matched that reported for
the natural product.5 Thus, the absolute configuration of the
natural product, (−)-ill isimonin A, is revised to
1S,4S,5S,6S,7R,9R,10R.
We report the first synthesis of (±)-illisimonin A. The NMR

data for synthetic illisimonin A matched that reported for the
natural product, confirming its relative configuration. An
enantioselective synthesis of (−)-illisimonin A, combined
with an X-ray structure, led to a revision of the absolute
configuration of the natural product. Notable steps in the
synthetic route include a 1,3-dioxa-2-silacyclohexene templated
Diels−Alder cycloaddition and type-3 semipinacol rearrange-
ment. The final step is a White acid-directed C−H oxidation.

Scheme 2. Rearrangements and Fragmentations
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The route is effective, and has enabled the preparation of 165
mg of (±)-Illisimonin A. This material will be valuable in
exploring its neurotrophic bioactivity.
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