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ABSTRACT:  

An environmentally friendly approach for the reduction of nitrobenzene to aniline 

promoted by carbonaceous bio-based materials was successfully achieved under subcritical 

water conditions. The proposed methodology features a metal-free process, no-hydrogen input 
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as reductor, the use of commercial bio-based carbon materials having low cost and 

availability and water as green solvent under subcritical conditions. Using optimized 

conditions, reduction of nitrobenzene in the presence of commercial NORIT GAC 12-40 or 

DACARB PC1000 was accomplished at 310 °C for 6 h and quantitatively furnished the target 

aniline. Treatment of NORIT GAC 12-40 with KOH allowed to decrease charcoal loading 

(6 g vs 40 g) and increase aniline yields (80% vs 66%).  

 

KEYWORDS:  metal-free, reduction, green chemistry, subcritical water, carbonaceous 

materials 

 

INTRODUCTION 

Aniline derivatives represent an important class of nitrogen heterocyclic compounds 

extensively employed in the chemical industry as dyes, antioxidants, pharmaceuticals and 

agricultural chemicals.1 Aniline is used for the production of rigid polyurethane (PU) foams 

via methylene diisocyanate (MDI) formation. Aniline is also employed as building block for 

the synthesis of a number of molecules of interest present in rubber products, consumer 

goods, agriculture, transportation, adhesives/sealants, textile, packaging, manufacturing, 

coatings, photography, electronics, pulp and care, and pharmaceuticals.2  

Aromatic amines are generally produced from their corresponding nitroarenes by catalytic 

hydrogenation using molecular hydrogen3 or reducing agents such as hydrazine hydrate,4 

silanes,5 sodium hydrosulphite,6 formates,7 decaborane,8 glucose9 and NaBH4
10 as hydrogen 

sources. It is interesting to note that hydrogen can also be generated from water by laser 

irradiation starting from carbon powder.11 Although this process has not been used for 

chemical organic reactions, hydrogen production from carbonaceous materials and water is 

very interesting for different reasons. Carbon and water are among most abundant materials 
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on earth and their direct use as efficient and low cost reagents is an attractive topic and meets 

the requirements of green and sustainable chemistry. Next to catalytic hydrogenations, 

catalytic transfer hydrogenation (CTH) is also used in presence of alcohols, hydrocarbons, 

hydrazines, organic acids and their salts in protocols generally emplying metals.12  

In parallel with academic and industrial applications, organic chemists have a growing 

interest for green chemistry and try to contribute partially or totally to the development of 

alternative technologies including catalysis and metal-free conditions in safer solvents. In this 

regard, simple, inexpensive and facile scale-up production of aromatic amines from 

nitroarenes using D-glucose as hydrogen donor under catalyst-free aqueous conditions was 

previously reported.9 In order to provide a more general protocol for a more sustainable 

synthesis of anilines, herein we disclose a novel reduction of nitrobenzene into aniline using 

metal-free conditions without added hydrogen in the presence of carbonaceous materials 

under sub-critical water.  

 

RESULTS AND DISCUSSION 

The commercial charcoals NORIT GAC 12-40, DACARB PC1000 and UNTRETED 4-8 

MESH were characterized using scanning electron microscopy (SEM), energy dispersive X-

ray diffraction (EDX), X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption 

measurements. The morphology of NORIT GAC 12-40 and DACARB PC1000 was 

determined by SEM and no significant difference could be observed between these materials 

(Fig S1). On the other hand, UNTREATED 4-8 MESH exhibited a different morphology 

(more organized) with a honeycomb-like structure (Fig S1). The surface elemental 

composition of the materials was confirmed by EDX spectra (Fig S3) and XPS analysis 

(Table S1 and Fig S5-S12). NORIT GAC 12-40 and DACARB PC1000 possess carbon and 

oxygen as well as aluminum and potassium, respectively. UNTREATED 4-8 MESH has 
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almost exclusively carbon. BET analysis showed that NORIT GAC 12-40 and DACARB 

PC1000 have a total surface area and pore volume over 900 m2 g-1 and 0.5 cm3 g-1, whereas a 

negligible one (30 m2 g-1 and 0.01 cm3 g-1) was measured for UNTREATED 4-8 MESH 

(Table S2). The content of surface oxygen functional groups was determined by the Boehm 

method. The three carbonaceous materials have got mainly basic functional groups (Table 4).  

Initital catalytic studies were performed for nitrobenzene conversion (10 mmol) using NORIT 

GAC 12-40 (6 g) in water at 300 °C under 90 bar as model reaction. At this temperature 

(higher than 100°C and lower than 374°C) and pressure (higher than 0.1 Mpa and lower than 

22.1 mPa), the reduction of the nitroarene takes place in subcritical water conditions. This 

state of water has particular physicochemical properties with (i) a density equivalent to that of 

the liquid; (ii) a low viscosity approaching that of the gas; (iii) a diffusion coefficient at least 

ten times higher as compared to the liquid; (iv) a very important transfer coefficient and (v) a 

low dielectric constant which is close to that of organic solvents. The altered physical 

properties of subcritical water result in different solvent behavior. Under preliminary 

investigated conditions, aniline was obtained in 62% after 6 hours (Figure 1). Nitrobenzene 

loadings varying from 5 to 25 mmol were then investigated to find that nitrobenzene 

concentration can significantly influence aniline yields, with optimum results observed using 

10 mmol starting material.  
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Figure 1. Effect of nitrobenzene loading on reduction of nitrobenzene to aniline. aReaction 

conditions: nitrobenzene (5 mmol – 25 mmol), NORIT GAC 12-40 (6 g), water (55 mL), 

300 °C, 90 bar, 6 h.  

 

With the aim of determining the most favorable reaction temperature, variations from 

275 °C to 320 °C for 6 h were investigated under batch conditions (Figure 2). Lower reaction 

temperatures (275 °C) seemed to be insufficient for the conversion of nitrobenzene to aniline 

after 6 hours. An increase in reaction temperature (310 ºC) benefits aniline production, with 

yields reaching a maximum value of 65% at complete nitrobenzene conversion. However, 

aniline yields remarkably decreased to 53% when the reaction temperature increased to 

320 °C, probably related to product degradation.  
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Figure 2. Effect of temperature on reduction of nitrobenzene to aniline. aReaction conditions: 

nitrobenzene (10 mmol), NORIT GAC 12-40 (6 g), water (55 mL), 6 h. 

 

Kinetics studies of the reaction were aimed to optimize reaction times for the reduction of 

nitrobenzene in presence of NORIT GAC 12-40 (310 °C, 6 h, Figure 3). Aniline yields 

increased with reaction time and reached complete conversion and maximum aniline yield 

(66%). It is interesting to note that aniline yields severely decreased to 46% when the reaction 

time was prolonged to 7 hours. This may be due to ongoing side-reactions such as various 

decomposition pathways.  
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Figure 3. Effect of reaction time on reduction of nitrobenzene to aniline. aReaction 

conditions: nitrobenzene (10 mmol), NORIT GAC 12-40 (6 g), water (55 mL), 310 °C, 90 

bar, 6 h. 

 

The nature of the solvent and the concentration of the reagents have a remarkable influence 

in reaction yields especially near the critical point. At 310 °C, the volume of water has also a 

great influence on aniline yields. For volumes over 65 mL, the extremely high generated 

pressure (> 200 bar) prevented the reaction to progress. On the other hand, aniline yields did 

not exceed 53% with volumes under 30 mL, for which 55 mL water was selected as 

compromise for subsequent reactions. In this process, hydrogen is generated via consumption 

of carbonaceous bio-based materials and water (Scheme 1). Therefore, an increase in the 

volume of water generates more H2 and thus facilitates the reduction of nitrobenzene to 

aniline. In order to substitute water, several protonated solvents (water, methanol, ethanol, 

propan-1-ol, butan-1-ol and propan-2-ol) were also tested (Figure 4). In function of the 

properties of the alcohols, the temperature and generated pressure were modified to be under 

subcritical temperature and pressure conditions (Table 1). All experiments resulted in an 

aniline yields < 25% excepted for butan-1-ol (Figure 4, d), which gave aniline in 57% yield 
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(at 91% conversion). However, this result is inferior to that obtained with water under 

otherwise identical reaction conditions, supporting the use of subcritical water as green 

solvent for the rest of the optimization experiments.  

 

  

a: methanol 

b: ethanol 

c: propan-1-ol 

d: butan-1-ol 

e: propan-2-ol 

Figure 4. Effect of the nature of the solvent and temperature on reduction of nitrobenzene to 

aniline. aReaction conditions: nitrobenzene (10 mmol), NORIT GAC 12-40 (6 g), protonated 

solvent (55 mL), 200-265 °C, 60-80 bar, 6 h. 

 

Table 1. Critical temperature and pressure of the tested protonated solvents 

 critical temperature 

(°C) 

critical pressure 

(bar) 

methanol 239 80 

ethanol 240 61 

propan-1-ol 263.6 51 

butan-1-ol 289.8 44 

propan-2-ol 235 53 
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With our first optimized reaction conditions in hand, a range of carbonaceous materials 

such as activated charcoals and graphites were subsequently screened (Figure 5). Among 

them, NORIT GAC 12-40, NORIT SA2, NORIT A supra, DACARB PC 1000 and 

OXBOW 1 furnished aniline in yields >60% and therefore were further utilized for 

optimization purposes. As expected, graphite provided a low aniline yield (36 %), probably 

due to the absence of surface functionalities (it is interesting to note that untreated carbon 

gave aniline in 27% yield). Therefore, this carbonaceous material has been chosen as a point 

of comparison in order to understand structure-activity relationships.  

 

 

Figure 5. Effect of the nature of the carbonaceous materials on reduction of nitrobenzene to 

aniline. aReaction conditions: nitrobenzene (10 mmol), carbonaceous material (6 g), water (55 

mL), 310 °C, 90 bar, 6 h. NORIT GAC 12-40 (A), MONARCH 1300 (B), ELFTEX 125 (C), 

GRAPHITE (D), BPL4X10 (E), NC35 1.25-1.35 (F), AC 40 (G), NORIT CN1 (H), NORIT 

SA2 (I), NORIT A SUPRA (J), UNTREATED (K), NORIT TPK 1-3 (L), DARCA 12.20 

(M), DACARB PC1000 (N), DACARB PBC1 (S), DACARB PBB (T), OXBOW 1 (U), 

OXBOW 2 (V), DACARB PCC1200 (W), DACARB PM300 (X).  
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Among selected carbonaceous materials (NORIT GAC 12-40, NORIT SA2, NORIT A 

supra, DACARB PC 1000 and OXBOW 1), the loading influence was subsequently studied 

(Figure 6).  A pseudo-linear increase in aniline yields could be observed at increased carbon 

loadings. Gratifyingly, aniline was selectively produced in quantitative yields using 

DACARB PC 1000 (16 g), for which this carbonaceous material was employed in subsequent 

reactions.  

 

 

Figure 6. Effect of the charcoal loading on reduction of nitrobenzene to aniline. aReaction 

conditions: nitrobenzene (10 mmol), carbonaceous material (3 - 40 g), water (55 mL), 310 °C, 

90 bar, 6 h. NORIT GAC 12-40 (A), NORIT SA2 (I), NORIT A SUPRA (J), DACARB 

PC1000 (N), OXBOW 1 (U).  

 

Using DACARB PC1000 (20 g), kinetic time-dependent studies from 2h to 9h at 310 °C 

were then conducted (Table 2). As expected, aniline yields were found to increase with 

reaction time, reaching quantitative yields (>99%) after 6 h reaction. Aniline yields severely 

decreased to 80% at longer reaction times (7-9 h). This phenomenon is likely to be related to 

the presence of side reactions (e.g. chemical decomposition) at prolonged reaction times. 
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Interestingly, the optimized reaction time (6 h) was found to be identical for both NORIT 

GAC 12-40 and DACARB PC 1000. 

 

 

Table 2.  Effect of reaction at 310 °C time with DACARB PC1000 a 

entry time (h) yield (%) conversion (%) 

1 2 91 100 

2 4 95 100 

3 6 100 100 

4 7 81 100 

5 8 80 100 

6 9 80 100 

aReaction conditions: nitrobenzene (10 mmol), DACARB PC1000 (20 

g), water (55 mL), 310 °C, 90 bar. 

 

 

Variation of nitrobenzene and carbonaceous material loadings using NORIT GAC 12-40 

and DACARB PC1000 separately pointed to two optimized processes: nitrobenzene (15 

mmol) and NORIT GAC 12-40 (40 g) as method A (Table 3, entry 3) and nitrobenzene (10 

mmol) and DACARB PC1000 (20 g) as method B (Table 3, entry 5). For the same 

conversion and aniline yield, method A allows a higher volumetric productivity while method 

B uses less carbonaceous material.  
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Table 3.  Effect of substrate loading with various amounts of activated carbon a 

Entry nitrobenzene 

(mmol) 

charcoal 

 

charcoal 

(g) 

yield 

(%) 

conversion 

(%) 

1 10 A 6 62 100 

2 10 A 40 91 100 

3 15 A 40 99 100 

4 20 A 40 61 100 

5 10 N 20 100 100 

6 20 N 20 76 100 

aReaction conditions: nitrobenzene (10 - 20 mmol), carbonaceous material A or N (6 - 40 g), 

water (55 mL), 310 °C, 90 bar. 

 

Recycling performance is a significant index to evaluate the performance of our selected 

carbonaceous material which is mainly a carbon source for the formation of hydrogen. In our 

case, five cycles of experiments were studied under optimized conditions to estimate the 

properties of recovered material (Figure 7). As expected, after each cycle yield decreases due 

to the consumption of the surface and the efficiency reached a level of 63% of the initial value 

after four cycles. The characterization of the carbonaceous materials was conducted using the 

same methods employed for the materials before reaction (Fig S2, S4, S13-S15 and Tables 

S3, S4). The main differences between before and after reaction are the morphology of 

carbonaceous materials and the total surface area and pore volume. The surface of NORIT 

GAC 12-40 is damaged probably by temperature and the total surface area and pore volume 

of DACARB PC1000 and NORIT GAC 12-40 are reduced after reaction. Another difference 

is the absence of potassium on the surface for DACARB PC1000 and the decrease of 

aluminium and carbon on the surface of NORIT GAC 12-40.  
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Figure 7. Reusability of DACARB PC1000. aReaction conditions: nitrobenzene (10 mmol), 

DACARB PC1000 (20 g), water (55 mL), 310 °C, 90 bar, 6 h.  

 

The acid-base properties of the two selected carbonaceous materials: NORIT GAC 12-40 

and DACARB PC1000 were subsequently evaluated and compared to those of UNTREATED 

4-8 MESH (Table 4). Both activated carbons NORIT GAC 12-40 and DACARB PC 1000 

exhibited basic surfaces of pH ranging from 9.2 to 10.1. These values are related to the 

content of basic functional groups on the surface of the carbonaceous materials which varies 

from 3.2 to 3.5 mmol g-1. In contrast with NORIT GAC 12-40, DACARB PC1000 also have 

small amounts of acidic groups which did not seem to have any influence of the pH. Both 

charcoals NORIT GAC 12-40 and DACARB PC1000 showed a good activity for the 

reduction of nitrobenzene and these results might be explained by a combination of large 

surface areas, mesoporous volumes and the basic properties. 
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Table 4. Acid-base properties of the activated carbons obtained 

entry material pH acidic groups 

(mmol/g) 

basic groups 

(mmol/g) 

total content of 

surface oxides 

(mmol/g) 

1 NORIT AGC 12-40  9.2 0 3.2 3.2 

2 DACARB PC1000 10.1 0.25 3.5 3.75 

3 Untreated 8.6 0 2.5 2.5 

 

The addition of a base (KOH) and an acid (H3PO4) was subsequently attempted in the 

optimized systems (NORIT GAC 12-40) and conditions to rule out the potential involvement 

on basic/acid sites in promoting the reaction under subcritical water conditions (Figure 8). As 

expected no conversion of nitrobenzene was observed in the presence of H3PO4. However, 

aniline yield increases proportionally with the amount of KOH added until an optimum of 

80% for 0.5 g KOH, clearly indicating the involvement of basicity in promoting aniline 

production from nitrobenzene. Additionally, the reduction of nitrobenzene was less efficient 

when the ratio KOH - NORIT GAC 12-40 was higher than 1:6 (wt/wt). This result pointed out 

that a mixture of KOH and NORIT GAC 12-40 allowed a yield increase from 66% to 80%. 

Interestingly, the use of a KOH and NORIT GAC 12-40 mixture (2:12, wt/wt) and (3:18, 

wt/wt) gave aniline in 89% and 92%, respectively at quantitative conversion, keeping a 1:6 

ratio charcoal-base using just larger quantities for the reaction. These results showed clearly 

that for a mixture of designed carbonaceous material such as KOH and NORIT GAC 12-40 in 

a ratio 1:6 (wt/wt), the higher the charcoal and KOH loads, the higher the aniline yield. 

Different bases including NaOH, K2CO3, NH4OH were tested with the optimized conditions 

but the best result was obtained with KOH. The influence of KOH could be explained by the 

thermodynamic limitation of the production of hydrogen from water and CO known as Water-
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Gas Shift Reaction (WGSR) (Scheme 1). In our process, carbonaceous materials and water 

generated hydrogen and CO (in the first step), then CO2 and more hydrogen in a second 

reaction. The last step never proceeds toward completion therefore hydrogen concentration 

does not exceed a certain limit. On the other hand, KOH reacted with CO2 to generate KHCO3 

and shifted the equilibrium towards completion with maximised hydrogen production. In 

subcritical water (310 °C and 90 bar), the reduction of nitrobenzene into aniline proceeds 

using metal-free conditions via conventional mechanism after formation of nitrosobenzene, 

phenylhydroxylamine and aniline, successively.  

  

Figure 8. Effect of KOH and H3PO4 on reduction of nitrobenzene to aniline. aReaction 

conditions: nitrobenzene (10 mmol), NORIT GAC 12-40 (6 g), KOH (0.02 – 4 g) or H3PO4 

(0.5-1 g), water (55 mL), 310 °C, 90 bar, 6 h.  

 

With our optimized reaction conditions in hand, a range of nitroarene derivatives having 

different electronic and steric demands was evaluated. Conversions are quantitative (> 99%) 

but only traces of pure aniline could be observed regardless of the ring substituents (F, I, Cl, 

COOH, NHCOCH3, CHO, COOCH3) and their position (ortho, meta and para). No other 
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product was detected due to efficient degradation (mineralization). The reported successful 

process is exclusive for nitrobenzene.   

 

Scheme 1. Plausible mechanism on the reduction of nitrobenzene to aniline via hydrogen 

production from water and carbonaceous materials.  

 

CONCLUSIONS  

A simple, green protocol has been optimized for the reduction of nitrobenzene to aniline 

under subcritical water conditions. The proposed methodology features a metal-free process 

without added hydrogen in presence of commercial basic carbonaceous materials. Two high 

yielding conditions could be obtained affording the target aniline in quantitative yields: the 

first one in presence of NORIT GAC 12-40 having a better volumetric productivity as 

compared to a second one in presence of DACARB PC1000. A basic treatment of NORIT 

GAC 12-40 with KOH allowed a reduction in the amount of carbonaceous material (6 g vs 40 

g) as well as a slight increase aniline yields (80% vs 66%). The scope of the proposed 

environmentally friendly reduction of nitrobenzene will be subsequently translated to 
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different nitroarene derivatives in batch reactors as well as in continuous flow, to be reported 

in due course.  

 

EXPERIMENTAL SECTION 

Materials. Substrates and solvents were purchased from Acros 

(Nitrobenzene ≥ 99%, aniline 99%, xylan from p-Xylene ≥ 90%, 

methanol, ethanol, propan-1-ol, acetone, butan-1-ol, and propan-

2-ol). All materials were used without further purification. The 

water used in all experiments had a Millipore Milli-Q grade. 

Charcoals were purchased from Acros (NORIT GAC 12-40, NORIT SA2, NORIT 

A SUPRA, NORIT CN1), DACARB (DACARB PC1000, DACARB PBC1), Carbot 

(MONARCH 1300, ELFTEX125), Chemviro BPL4X10, CECA (NC35 1.25-3.15, AC40 

3mm), Sigma-Aldrich (UNTRETED 4-8 MESH, DARCO 12.20, NORIT TPK 1-3). 

 

Materials characterization. Elemental analysis was performed using a model kratos Axis 

Ultra DLD.  

SEM (Scanning Electron Microscopy)-EDX (Energy Dispersive X-ray Diffraction) 

analysis of charcoal was performed on a Quanta FEG 250 (FEI) equipped with a 

microanalysis detector for EDX (Brucker). SEM micrographs acquired in secondary electron 

mode were obtained at low vacuum, 15 kV of accelerating voltage with a 10 mm working 

distance. EDX spectra were collected at 30° angle, 15 kV accelerating voltage and 10 mm 

working distance. 

Surface area and pore size of samples were measured using Micromeritics Surface 

Analyzer ASAP 2010 surface area analyzer by nitrogen adsorption-desorption method. The 

samples were degassed at 350 °C for 6 h before adsorption isotherm were generated by N2 at -
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196 °C. The surface area (SBET) was calculated with the BET equation, the total pore volume 

(VT) was obtained from the adsorption isotherm at P/P0 =0.95 %. the micropore area (Smic) 

and volume (Vmic) were obtained using the t-plot method. The average pore size (r) was 

estimated by the following equation:  

r= 4 VT/ SBET 

XPS measurements were performed in an ultrahigh vacuum (UHV) multipurpose surface 

analysis system (SpecsTM model, Germany) operating at pressures of <10−10 mbar using a 

conventional X-ray source (XR-50, Specs, Mg K, 1253.6 eV) in a “stop-and-go” mode to 

reduce potential damage due to sample irradiation. The survey and detailed Fe and Cu high- 

resolution spectra (pass energy 25 and 10 eV, step size 1 and 0.1 eV, respectively) were 

recorded at room temperature with a Phoibos 150-MCD energy analyzer. Powdered samples 

were deposited on a sample holder using double-sided adhesive tape and subsequently 

evacuated under vacuum (<10−6 Torr) overnight. Eventually, the sample holder containing 

the degassed sample was transferred to the analysis chamber for XPS studies. Survey spectra 

were first recorded, after which detailed element XPS (typically C, O, and S) were recorded. 

Data were processed using the program Casa XPS. 

 

General procedure for the synthesis of aniline in subcritical water. In a typical 

experiment, a batch reactor (100 mL) charged with water (55 mL), nitrobenzene (1.23 g, 10 

mmol), charcoal (6 - 40 g). Autoclave was sealed, placed in the heating collar and heated to 

the desired temperature for the desired time. Temperature in the autoclave was measured by 

probe. At the end of the reaction, autoclave was cooled down to 40°C. The aqueous phase was 

diluted with ethyl acetate (100 mL) under magnetic stirring (500 rpm). The organic phase was 

filtered prior to analysis through a syringe filter (PTFE, 0.45 µm, VWR). All experiments 

were repeated at least three times, and the deviation was lower than 5%.  
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Regeneration of DACARB PC1000. After completion of the reaction DACARB 

PC1000  was separated from the products by filtration and immersed in absolute methanol for 

90 minutes. The carbonaceous material was then dried at 110 °C for 12 hours. Then the 

activated charcoal was used again, and the cycle was repeated five times and the yield 

calculated each time. 

 

Product analysis. Each sample of the reaction mixture was analyzed separately by means 

of a GC with a FID detector. The mobile phase was N2. The column oven was set at 40 °C. 

Nitrobenzene conversion (X) (eq 1) and aniline yield (Yi) (eq 2) were calculated using 

standard equations.   

 

𝑋 =
(ூ௧ ௧௭ ௨௧ ()ିி  ௨௧ ())

ூ௧ ௧௭ ௨௧ ()
 𝑥 100  (1) 

 

𝑌𝑖 =
ி  ௨௧ ()

ூ௧ ௧௭ ௨௧ ()
 𝑥 100  (2) 

 

ASSOCIATED CONTENT 

Supported Information 

Morphology and surface properties of carbonaceous material NORIT GAC 12-40, DACARB 

PC 1000, UNTREATED, SEM; elemental composition of carbonaceous material NORIT 

GAC 12-40, DACARB PC 1000, UNTREATED, EDX; determination of material surface 

atoms and elemental analysis, XPS; surface area and pore size of charcoal, nitrogen 

adsorption-desorption method. The experimental conditions to evaluate the surface oxygen 

atom and surface pH of charcoal are provide.  
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