

Available online at www.sciencedirect.com

European Journal of Medicinal Chemistry 41 (2006) 1478-1493

http://www.elsevier.com/locate/ejmech

Short communication

Design, synthesis and activity against *Toxoplasma gondii*, *Plasmodium* spp., and *Mycobacterium tuberculosis* of new 6-fluoroquinolones

Guillaume Anquetin^a, Jacques Greiner^a, Nassira Mahmoudi^{b,c}, Maud Santillana-Hayat^b, Rafael Gozalbes^{b,1}, Khemais Farhati^c, Francis Derouin^b, Alexandra Aubry^d, Emmanuelle Cambau^e, Pierre Vierling^{a,*}

^a Laboratoire de Chimie Bioorganique UMR-CNRS 6001, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France ^b Laboratoire de Parasitologie et Mycologie, Université Paris 7, Assistance Publique-Hôpitaux de Paris,

15 rue de l'Ecole de Médecine, 75006 Paris, France

^c INSERM 511, Immunobiologie Cellulaire et Moléculaire des Infections Parasitaires, CHU Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris, France

^d Laboratoire de Recherche sur les Antibiotiques, INSERM 0004, Université Pierre et Marie Curie, Paris, France ^c Laboratoire de Bactériologie-Virologie-Hygiène, CHU Henri Mondor, Faculté de Médecine de Créteil, Université Paris 12, 51 Avenue Maréchal de Lattre de Tassigny, 94010 Créteil Cedex, France

> Received 28 February 2006; received in revised form 28 June 2006; accepted 3 July 2006 Available online 25 September 2006

Abstract

This paper reports on the rational design of a series of new 6-fluoroquinolones by QSAR analysis against *Toxoplasma* (*T.*) gondii, their synthesis, their biological evaluation against *T. gondii* and *Plasmodium* (*P.*) spp., and their effect on *Mycobacterium* (*M.*) tuberculosis DNA gyrase and growth inhibition. Of the 12 computer-designed 8-ethyl(or methoxy)- and 5-ethyl-8-methoxy-6-fluoroquinolones predicted to be active against *T. gondii*, we succeeded in the synthesis of four 6-fluoro-8-methoxy-quinolones. The four 6-fluoro-8-methoxy-quinolones are active on *T. gondii* but only one is as active as predicted. One of these four compounds appears to be an antiparasitical drug of great potential with inhibitory activities comparable to or higher than that of trovafloxacin, gatifloxacin, and moxifloxacin. They also inhibit DNA supercoiling by *M. tuberculosis* gyrase with an efficiency comparable to that of the most active quinolones but are poor inhibitors of *M. tuberculosis* growth. © 2006 Elsevier Masson SAS. All rights reserved.

Keywords: Fluoroquinolone; 6-Fluoro-8-methoxy-quinolone; Toxoplasma gondii; Plasmodium spp.; Mycobacterium tuberculosis; Antiparasitical; Antibacterial; Malaria; Toxoplasmosis; QSAR

1. Introduction

Owing to the emergence and alarming spread of bacterial, parasitical and viral strains that are resistant against the drugs used at present in clinics, the discovery of new therapeutical targets and the development of new antibacterial, antiparasitical and antiviral drugs are urgently needed. According to the World Health Organization, one third of human population is infected by *Mycobacterium (M.) tuberculosis* and around two million people die from tuberculosis every year. The treatment of tuberculosis (isoniazid and rifampicin) [1] is long and observance is therefore a problem. Tuberculosis associated with AIDS (due to HIV infection) forms a fatal combination. Tuberculosis is currently responsible for 13% of the number of deaths due to HIV infection [2]. Toxoplasmosis, as well, is an opportunistic disease frequently associated with AIDS [3]. *Toxoplasma (T.) gondii* is the parasite responsible for toxoplasmosis [4]. Almost half of the human population is infected by this parasite, and even if most seropositive people do

^{*} Corresponding author. Tel.: +33 4 92 07 61 43; fax: +33 4 92 07 61 51. *E-mail address:* vierling@unice.fr (P. Vierling).

¹ Present address: CEREP, Molecular Modeling Department, 128 rue Danton, 92500 Rueil Malmaison, France.

not develop any symptom of this disease, its transmission to immunocompromised patients such as AIDS patients is life threatening. The other problem concerns its transmission to the fetus, which can result in malformations or stillborns. Chemotherapeutic treatment against toxoplasmosis is limited by side effects or poor absorption of efficient drugs. *Plasmodium* (*P.*) spp., which are parasitic protozoans belonging to the same apicomplexan phylum as *T. gondii*, are also of great concern as they are responsible for another fatal disease, i.e. malaria. Indeed, it represents two million deaths per year and 90% are due to *Plasmodium falciparum* [5]. Numerous strains are resistant to the most frequently used antimalarial drugs, i.e. chloroquine and pyrimethamine/sulfadoxine [6,7].

In the search of new therapeutical targets and new antiinfective agents, fluoroquinolones (see generic structure in Table 1 with $R^6 = F$ and examples in Table 2) are particularly interesting because of their broad spectrum of activity against various bacteria, mycobacteria, and parasites [4,8– 15]. Quinolones are bactericidal by interfering with two essential bacterial enzymes, DNA topoisomerases II (DNA gyrase) and IV, which are enzymes involved in DNA replication, decatenation, recombination and repair [11,16–19]. There are clues that quinolones act on similar targets of *T. gondii* and *P. falciparum*, i.e. the plastids which are circular DNA episomes located within the apicoplast organelle of both parasites, and through similar pathways, although no definitive evidence has been provided up to now [15]. Since the first antibacterial quinolone, i.e. nalidixic acid which was isolated in 1962 [20], more than ten thousands of quinolones have been patented, and the successive chemical modifications improved considerably their potency and spectrum of activity [for reviews, see Refs. [8–14]] and parasitical responses [15,21–24].

The most often used, relatively safe and well-tolerated 6fluoroquinolones as antibacterials include norfloxacin (NFX), ofloxacin (OFX), ciprofloxacin (CPFX), levofloxacin (LVFX), moxifloxacin (MXFX), and gatifloxacin (GTFX). OFX was used as second-line agent against M. tuberculosis [25]. Furthermore, MXFX, which turns out to be as efficient as rifampicin and isoniazid [26], was recently suggested by the American Thoracic Society to be used against tuberculosis, as well as GTFX and LVFX. MXFX and GTFX with grepafloxacin (GPFX) and trovafloxacin (TVFX) account for among the most powerful antiparasitical fluoroquinolones known so far (for the chemical structure of MXFX, GTFX, GPFX and TVFX, see Table 2) [22,23]. However, GPFX and TVFX were taken off from the market more or less shortly after launch. If a huge number of (fluoro)quinolones differing by the nature of the R^7 substituent were elaborated enabling the establishment of structure/antibacterial [27], antituberculosis [28], or antiparasitical relationships [15,22,24], only a few R⁵ or/and R⁸ substituted 6-fluoroquinolones are known, probably due to the difficult access to precursors of these derivatives.

Table 1 Chemical structure of the targeted "virtual" 6-fluoroquinolones and their predicted anti-*Toxoplasma gondii* activity (the atom numbering is used for the description of the NMR data)

	Compound number		R ⁷	R^1	R ⁵	R ⁸	Predicted IC ₅₀ (µg/mL)
(a) deneric structure	a Series	1	6A-C	cP	Н	MeO	0.4
$ \begin{array}{c} $		2	6AM-C	cP	Н	MeO	0.5
		3	6A-C	dFP	Н	MeO	0.3
		4	6AM-C	dFP	Н	MeO	0.3
	b Series	5	6A-C	cP	Et	MeO	0.5
		6	6AM-C	cP	Et	MeO	0.6
		7	6A-C	dFP	Et	MeO	0.4
		8	6AM-C	dFP	Et	MeO	0.3
(b) targeted compounds with $R^7 = H_{1/2} N_{2"}^{5"} (6A-C)$	c Series	9	6A-C	cP	Н	Et	0.4
		10	6AM-C	cP	Н	Et	0.5
		11	6A-C	dFP	Н	Et	0.3
		12	6AM-C	dFP	Н	Et	0.3
LI NIVE - TH							

Structural features and in vitro anti-*T. gondii* activities (IC_{50}), antimalarial activities (IC_{50}) against blood stages of *P. falciparum* and hepatic stages of *P. yoelii*, *yoelii*, and *M. tuberculosis* DNA gyrase (IC_{50}) and growth inhibition (MIC) of quinolones **1-4** in comparison with those of already known quinolones

Table 2

CO₂H R CO₂H CO²H R7 R^7 48 R \dot{R}^1 R Structure A Structure B Structure C (quinolone) (naphthyridone) Quinolones Base Substituent Inhibitory concentrations (µg/mL) R^{1a} R^5 R^{7b} R^6 \mathbb{R}^8 T. gondii P. falciparum P. yoelii yoelii M. tuberculosis DNA gyrase (IC₅₀) $265By^{d_*}$ (IC₅₀) MIC^e RH (IC₅₀) NF54-R^c (IC₅₀) F 6A-C OMe 1.3 45* 3.5 64 1 A cP Н 56 >100 2 cР Н F 6AM-C OMe 30 45 6 64 Α 4.1^{f} 3h Gatifloxacin (GTFX) cР F 3Me-Pi OMe 11^g $>100^{g}$ 0.12^{h} Α Н Moxifloxacin (MXFX) F 5.1^f 4.5^h 0.5^{h} А cP Н PpP OMe 18^g $>100^{2}$ 1^h 16^h Grepafloxacin (GPFX) A cР Me F 3Me-Pi Н 2.4^{1} 3.1^g 4.4^g* F 53^g 2^h 0.25^{h} cР F 40^{f} 74⁸ Sparfloxacin (SPFX) NH_2 dMe-Pi Α FO4 В cР Н F 6A-C 0.6 FO9 В cP Н F 6AM-C 4.3ⁱ 3 dFP F 6A-C OMe 19 62 >10020 256 Α Η F 6AM-C 22 24 15 128 4 A dFP Η OMe >100FO6 A dFP Н F 6A-C Н 1.1^{i} 31^g* 15^h 16^h Trovafloxacin (TVFX) В dFP Н F 6A-C 0.4^{f} 9.2^g FQ11 В dFP F 6AM-C 4.3ⁱ Η 22^g* 26^f Piromidic acid С Et Н Р 148 _

^a dFP = 2,4-Difluorophenyl; cP = cyclopropyl.

^b 6A-C = 6-Amino-3-azabicyclo[3.1.0]hxan-3-yl, 6AM-C = 6-(aminomethyl)-C, 3Me-Pi = 3-methyl-piperazin-1-yl, dMe-Pi = 3,4-dimethyl-Pi, P = pyrrolidin-1-yl; PpP = piperidinopyrrolidinyl.

^c Against blood stages of chloroquine-resistant (NF54-R) strain.

^d Against hepatic stages, symbol *indicates that in these cases only inhibition was also associated with an effect on schizont size.

^e MIC: minimum inhibitory concentration.

^f Data from Ref. [22].

^g Data from Ref. [23].

^h Data from Ref. [28].

ⁱ Data from Ref. [21].

In the search for new potent antiparasitical fluoroquinolones, a QSAR analysis by molecular connectivity of a series of quinolones active against *T. gondii* was performed [22,24]. This analysis led to the design of R^{5} - and/or R^{8} substituted 6-fluoroquinolones which were predicted to display higher or at least comparable biological activities to those of already known fluoroquinolones. Among the virtually computer designed, potentially active derivatives, we selected those presented in Table 1 (compounds 1–12). Their structures are all original combinations of the R^1 , R^5 , R^7 and/or R^8 substituents found in the most anti-*T. gondii* active quinolones MXFX, GTFX, GPFX, TVFX, FQ4, FQ6, FQ9 and FQ11 (see structures in Table 2). Moreover, the ethyl group in R^5 or in R^8 position has never been explored to our knowledge.

This paper is dedicated to (i) the rational design, by QSAR analysis against *T. gondii*, of the new series of fluoroquinolones shown in Table 1, (ii) the detailed synthesis of derivatives 1-4, (iii) our unsuccessful attempts to prepare compounds 5-12, and (iv) the results of in vitro biological tests, including antiparasitical activity against *T. gondii*, blood stages of *P. falciparum* and hepatic stages of *Plasmodium yoelii*, and antibacterial activity against *M. tuberculosis* (DNA gyrase and growth inhibition). Part of this work was briefly reported as a preliminary communication [24].

2. Chemistry

The retrosynthetic scheme to obtain the targeted R^5 - and/or R^8 -substituted 6-fluoroquinolones starting from commercially

available derivatives 13 and 14 is shown in Scheme 1. The entry to quinolin-4-one nucleus relies on an intramolecular cyclization step in enaminone intermediates 19. Such intermediates were used for the building-up of thousands of quinolone analogs known to date, though other peculiar alternatives have also been explored [19,29,30]. The approach to 19 from acid 17 is more classically performed through compounds of type 22 (route II) [19,29]. However, we used the alternative route I where the enaminone part was introduced in two steps from 17 using an (N-alkyl) acrylate derivative [30–33]. Moreover, this method is easier to implement (milder conditions) and more efficient than the one depicted in route II. The appropriate starting acids 13 and 14 were thus needed to get the key acids 17, precursors of the target 6-fluoro-8-methoxy-quinolones (a and b series) and 6-fluoro-8-ethyl-quinolones (c series) listed in Table 1 (see Scheme 1). These acids 13 and 14 can be converted into 15 which contains (i) the ethyl or methoxy group in the 3 position (\mathbb{R}^8 for the position numbering see Scheme 1). (ii) the fluor atom in the 5 position essential for the bioactivity of the target 6-fluoro-8-ethyl(or methoxy)quinolones, (iii) two fluor atoms in the 2 and 4 positions, the former being necessary for the building of the heterocyclic nucleus, the latter for the regioselective introduction of the amino derivative moiety (e.g. R⁷) through its nucleophilic displacement by suitable amines [19,29] and (iv) an aromatic C-H (position 6), which can be further used to introduce the R^5 substituent (i.e. the ethyl radical), thus generating the R^5 and R^8 substituted synthons 17. precursor of the target 6-fluoro-5ethyl-8-methoxy-quinolones (b series).

The detailed synthetic pathway to the 6-fluoroquinolone targets of series **a**, **b**, and **c** starting from synthons of type **17** is depicted in Schemes 2–4, respectively. The syntheses of the synthons **17** wherein $\mathbb{R}^5/\mathbb{R}^8$ is H/methoxy (i.e. **17a**), ethyl/methoxy (i.e. **17b**), and H/ethyl (i.e. **17c**) from **13** and **14** have been described elsewhere [34]. They were adapted from procedures that were elaborated in the literature for the

preparation of \mathbb{R}^5 - and/or \mathbb{R}^8 -substituted **17**-type derivatives [34–36]. The 6-amino-3-aza-bicyclo[3.1.0]hexane **23** and its methyleneamino analog **24** (Fig. 1), which constitute the amino \mathbb{R}^7 moiety of the target molecules, were synthesized from commercial *N*-benzylmaleimide in eight steps (about 10% overall yield) according to the published procedures [24,37,38].

Of the targeted R^{5}/R^{8} -6-fluoroquinolones 1–12 listed in Table 1, we succeeded only in the synthesis of the 6-fluoro-8-methoxy-quinolones 1-4 (a series). These compounds were prepared in seven steps from 17a in 25-30% overall vield (Scheme 2). For the building of the key quinolone cycle 20a, acid 17a was first converted into its acid chloride derivative which was then reacted with ethyl 3-(diethylamino)-2(E)-propendate [39], thus affording the N.N-diethyl enaminone intermediate 18a. Transaminolysis of 18a with cyclopropylamine or 2,4-difluorophenylamine followed by cyclization of the resulting cyclopropyl- or 2,4-difluorophenyl-enaminone intermediates 19a1 or 19a2 afforded 20a1 or 20a2, respectively, in 65% yield. These two steps were performed in a one-pot process and ¹H NMR monitoring showed that compounds 19 consisted of E/Z mixture (data not shown). For cyclization, the mild K₂CO₃ base was preferred to the most frequently used NaH [36,40], which in our hands led to numerous by-products. Noticeably, this three-step two-pot process was more efficient than the two-step one-pot procedure [31,41,42] consisting of the condensation of the acid chloride derivative of 17 with ethyl 3-(cvclopropylamino)-2(E)-propenoate or ethyl 3-(2,4-diffuorophenylamino)-2(E)-propenoate, followed by cyclization. Actually in these particular cases, the condensation step gave essentially the amide compounds of type 25 (example given in Scheme 5, data not shown), rather than the corresponding enaminone compound of type 19, thus preventing all further cyclization steps. Next the introduction of the R⁷ substituent onto **20a1** and **20a2** could only be achieved provided the C-7 position was activated, as

Scheme 1. Retrosynthetic pathway to the targeted quinolin-4-one derivatives 1-12.

Scheme 2. Synthetic pathways to the quinolin-4-one derivatives 1-4 (a series), compounds 1-4: (i) oxalyl chloride, then Et₂NCH=CHCO₂Et, NEt₃, toluene, 90 °C, 5 h; (ii) R¹NH₂, 1:2 EtOH/Et₂O rt, 3 h; (iii) K₂CO₃, DMF, 100 °C, 5 h; (iv) BF₃·Et₂O, THF, reflux; (v) amine 23 or 24, CH₃CN, seven days, reflux; (vi) 1:1 CH₂Cl₂/TFA; cP = cyclopropyl; dFP = 2,4-difluorophenyl.

reported in the literature for similar analogs [36,43–45]. Indeed, no reaction occurred between **20a1** and **20a2** and the heterobicyclic amines **23** or **24** (Fig. 1). Compounds **20a1** and **20a2** were thus activated as their boron difluoride derivatives **21a1** and **21a2**, respectively, by reaction with boron trifluoride etherate in refluxing THF. The successive but nevertheless time-consuming (seven days) nucleophilic displacement of the C-7 fluorine atom in **21a1** (resp. **21a2**) with 2.5–3 equiv of amines 23 or 24 followed by *N*-Boc deprotection using an excess of 1:1 TFA/CH₂Cl₂ gave the desired fluoroquinolones 1 or 2 (resp. 3 or 4), as their TFA salts in 40–44% overall yield from 20a1 and 20a2.

Concerning the 5-ethyl-8-methoxy quinolones 5-8 (b series, Scheme 3), all our attempts to obtain the ethyl R⁵-substituted enaminone derivative **18b** or β -ketoester **22b** from **17b**, which constitutes the entry to these quinolones,

Scheme 3. Synthetic pathways explored to the quinolin-4-one derivatives 5-8 (b series): (i) oxalyl chloride, then Et₂NCH=CHCO₂Et, NEt₃, toluene, 90 °C, 5 h; (ii) HO₂CCH₂CO₂Et, *n*-BuLi (2 equiv).

Scheme 4. Synthetic pathways explored to the quinolin-4-one derivatives 9-12 (c series). See Scheme 2 for (i)–(v). cP = cyclopropyl; dFP = 2,4-difluorophenyl.

failed. Indeed, the acid chloride of the ethyl-methoxy disubstituted acid **17b** led, under the same conditions as used for the synthesis of quinolones **20a** (and also **20c**, see below), to a complex mixture from which we could not isolate the expected **18b** (Scheme 3, route I), thus prohibiting the building of the key quinolone cycle **20b**, and, consequently, the access to the targeted quinolones **5–8** of series **b**. The more classical route II shown in Scheme 3, which involves the intermediary preparation of **22b**, by reacting the previous acid chloride with monoethylmalonate was also unsuccessful.

Concerning the synthesis of the 8-ethyl-quinolones 9-12 (c series, Scheme 4), we were fully successful in building the key quinolones **20c1** and **20c2** from **17c** using the same strategy as that described above for the synthesis of their **21a1** and **21a2** analogs. However, and in sharp contrast with the **a** series, the aromatic substitution of the C-7 fluorine in compounds **20c1** and **20c2** (Scheme 2) whether in the presence of a Lewis acid such as LiCl or Al(OTf)₃, or activated as their BF₂-derivatives **21c1** and **21c2** could not be performed with amines

Fig. 1. Structure of Boc-protected 6-amino-3-aza-bicyclo[3.1.0]hexane **23** and its 6-aminomethyl analog **24**.

23 or 24. Indeed, reacting 20c2 or 21c2 with 23 or 24 led to the decarboxylation of 20c2 or 21c2 giving 26c1 or 26c2 (Fig. 2), while derivative 21c1, under the same conditions, was inert. It should be further noticed that the aromatic substitution of the C-7 fluorine in 21c1 was observed when 21c1 was reacted with piperazine. Thus, 25% yield of the 7-piperazine compound 27 (Fig. 2), i.e. the analog of 9-Boc and 10-Boc which were expected from the reaction between 21c1 and amines 23 or 24, were obtained (data not shown), indicating that the nucleophilicity of the entering amine is of importance.

The chemical structures of fluoroquinolones 1-4 (as their TFA salts) and of all intermediates shown in Schemes 2 and 4 were unambiguously attested by ¹H, ¹³C, ¹⁹F NMR, ¹H-¹³C DEPT, HSQC, ESI-high resolution mass spectrometry, and by comparison with the ¹H, ¹³C and ¹⁹F NMR data reported for similar analogs [46]. The cyclization, and consequently the quinolone structures of **20a1**, **20a2**, **20c1**, and **20c2**, were established by the presence of two fluor resonances in their ¹⁹F NMR spectra (as compared to three for **18**) and the deshielding of the H-2 proton (~0.5–1 ppm) with respect to the chemical shift of the vinylic one in the ¹H NMR spectra of **18**. The introduction of the azabicyclic moieties into **1**–4

Scheme 5. Formation of amide **25a1**: (i) oxalyl chloride, CH_2Cl_2 rt, 24 h; (ii) toluene, 90 °C, 5 h.

Fig. 2. Structure of decarboxylated by-product derivatives **26c1** and **26c2**, and 7-piperazinyl-1-cyclopropyl-6-fluoro-1,4-dihydro-8-methoxy-4-oxo-3-quinolinecarboxylic acid, **27**; cP = cyclopropyl; dFP = 2,4-difluorophenyl.

was attested by the presence of their characteristic ¹H and ¹³C patterns. Its location in R⁷ was confirmed by ¹H NMR which showed the presence of a doublet for H-5 at 7.4–7.7 ppm with $J \sim 13.0-13.5$ Hz, characteristic of a ³J_{H-F} coupling. Concerning the degree of purity of the target fluoroquinolones 1–4, the samples used for the determination of their antiparasitical and antibacterial activities (see Section 3) were obtained by recrystallization from appropriate solvents, and analyzed by two distinct HPLC systems which showed the absence of any trace of impurities.

3. Pharmacology

The antiparasitical activities of quinolones 1-4 were evaluated in vitro against *T. gondii* (RH strain), blood stages of *P. falciparum* (chloroquine-resistant strain NF54-R), and hepatic stages of *P. yoelii yoelii* (265BY strain) according to the published procedures [22,23]. The quinolones 1-4 were also assessed in vitro for their ability to inhibit *M. tuberculosis* DNA gyrase activity (IC₅₀) and the growth of *M. tuberculosis* (MIC). Table 2 lists all the data from these biological evaluations together with those of selected (fluoro)quinolones and naphthyridones taken from literature for comparison and determined strictly under the same conditions.

4. Results and discussion

4.1. Design rationale

Numerous structure—activity relationships concerning quinolones have been examined to rationalize the various biological activities of quinolones as well as to design new powerful compounds [19,47–50]. In our search for new potent antiparasitical fluoroquinolones, we used the previously described QSAR analysis by molecular connectivity that was performed on quinolones active against *T. gondii* [22] and validated on TVFX analogs [21] for which a good agreement was observed between the predicted and experimental IC₅₀ values [22,51,52]. This analysis by molecular topology and virtual computational techniques led to the design of virtual structures which were expected to display higher or at least comparable anti-*T. gondii* activities to those of already known fluoroquinolones. Among these virtually active structures, we selected the structures shown in Table 1 for the feasibility of their synthesis and for their predicted high anti-T. gondii activities within the 0.3–0.6 µg/mL range. For their design, we used, as topological indices (TIs), the *E*-state indices, which are specific for each atom and reflect the electronic and topological atomic features taking into account the interaction with the rest of the molecule [53]. These TIs were related to the anti-T. gondii activity of known quinolones, thus providing some insights into the substitutions leading to higher anti-T. gondii activity. Computational screening was then used to select new quinolones with improved efficacy. Virtual structures were designed around the quinolone chemotype by using a home-made software that allows the introduction of virtual radicals on the most active quinolones (i.e. TVFX, GPFX, GTFX and MXFX with IC₅₀ values below 5 μ g/mL) and their systematic combination, thus leading to a "virtual combinatorial library" of compounds. Their TIs were calculated, and linear discriminant analysis (LDA) and multilinear regression (MLR) equations were used to determine their activity/inactivity and IC_{50} values, respectively.

The originality of the selected 12 6-fluoroquinolones listed in Table 1 lies in the combination of R^1 , R^5 , R^7 and R^8 substituents which are found in the most potent anti-T. gondii TVFX, FQ4 and FQ9 naphthyridones [21], and MXFX, GTFX, GPFX quinolones (see structures in Table 2). Indeed, these fluoroquinolones contain on a quinolone skeleton (i) as R^1 , the cyclopropyl moiety of GTFX, MXFX, and GPFX, or the 2,4-difluorophenyl one of TVFX, FQ6 and FQ11, (ii) as \mathbb{R}^7 , the azabicyclohexyl (6A-C or 6AM-C) substituent of TVFX. FO6 and FO11, (iii) as R^8 , the methoxy group of MXFX and GTFX, and (iv) as R^5 and/or R^8 , the ethyl radical which has up to now not been investigated. Although R⁵ or/and R⁸-substituted 6-fluoroquinolones have been the focus of intensive search, R⁵ or R⁸ substitutions are restricted to F, Cl, Br, NH₂, Me, MeO, EtO, MeS, OH, F₂CHO, or CF₃O [29,35,36,40,43,54,55]. R⁵- and R⁸-substituted 6-fluoroquinolones are also scarce and R^5/R^8 substitutions are limited to Me/F, Me/Cl, Me/Me, Me/OMe, Cl/Me, NH2/Me, NHMe/Me, NMe2/Me, NH2/ OMe, NH₂/OEt, NH₂/F, NH₂/Cl [35,40,43,56-58].

It is further expected that the original \mathbb{R}^1 , \mathbb{R}^5 , \mathbb{R}^7 and/or \mathbb{R}^8 combinations provide not only active antiparasitical/antibacterial drugs but also new drugs displaying reduced side effects as compared with TVFX and GPFX which were withdrawn from the market owing to hepatotoxicity, phototoxicity and/or CNS reactions [59]. Lower toxic side effects are more particularly expected for the derivatives containing a methoxy as \mathbb{R}^8 . Indeed, this substituent in MXFX and GTFX contributed favorably to the reduction of phototoxicity [19], the selection of less resistant strains [60], and to their activity on resistant strains [61,62].

4.2. Anti-T. gondii activity

The four fluoroquinolones 1-4, which were predicted to display an anti-*T. gondii* activity, were indeed found to be active. However, only compound **1** had an activity (1.3 µg/mL) close to that predicted (0.4 µg/mL), while the other three derivatives were less active than predicted. It should be noted that the anti-*T. gondii* activity of **1** is in the range found for

the most potent quinolones, e.g. TVFX, GPFX, FQ4, and FQ6 (see Table 2). The data from these evaluations show the usefulness and limits of the predictive QSAR models based on molecular topology and multilinear regression analysis which led to the identification of the basic chemical structures of quinolones responsible for anti-toxoplasmosis activity and to the design of quinolones 1-4.

4.3. Anti-P. falciparum and P. yoelii yoelii activities

The four quinolones 1-4 display a moderate activity against blood stages of the chloroquine-resistant strain (NF54-R) of *P*. *falciparum* (IC₅₀ range 24–62 µg/mL). Their activity is much lower than that of the most active quinolones, i.e. GPFX and TVFX. Moreover, of these four quinolones, only 1 is active (45 µg/mL) against the hepatic stages of *P*. *yoelii yoelii*, and interestingly shows an alteration of *P*. *yoelii yoelii* schizonts. Among the 30 quinolones tested in the literature against chloroquine-sensitive and resistant blood stages of *P*. *falciparum*, and hepatic stages of *P*. *yoelii yoelii*, only fluoroquinolone 1 and three other quinolones, i.e. GPFX, TVFX, and piromidic acid, were associated with a marked morphology alteration, number and size reduction of the *P*. *yoelii yoelii* schizonts [23].

The analysis of these data indicates that the predictive QSAR models established for *T. gondii* cannot be reliably extended for the design of highly active antimalarial drugs. Although all the four quinolones that were active against *T. gondii* were also found to be active against the chloroquine-resistant blood stages of *P. falciparum*, only one of them displayed inhibitory effects against the hepatic stages of *P. yoelii yoelii*.

4.4. SAR studies

Concerning SAR at position 8 (C-OMe, C-H or N), the analysis of the experimental IC_{50} values of 1-4 and of structurally-related quinolones published in literature indicates that the anti-T. gondii and anti-P. falciparum activities are increasing, in a homogenous series, when replacing at position 8 C-OMe by C-H or by N. Indeed, in the 1-difluorophenylsubstituted quinolone series (3, 4, FQ6, TVFX and FQ11), the replacement of C-OMe in 3 (resp. 4) by C-H as in FQ6 or by N as in TVFX (resp. FQ11) induces a substantial decrease of the IC₅₀ values [3 (resp. 4) > FQ6 > TVFX (resp. FQ11) for anti-T. gondii; 3 (resp. 4) > TVFX (resp. FQ11) for anti-P. falciparum]. A similar trend but to a much lesser extent is also found in the cyclopropyl series (IC50 of 1 > FQ4; 2 > FQ9). That at position 8 a C-OMe is likely less suited for antiparasitical activity than C-H or N seems to be supported by the fact that among the six fluoroquinolones possessing a methoxy group as R⁸ (1-4, GTFX, and MXFX), only one (i.e. 1) was found to be active, though moderately, against P. yoelii yoelii.

Concerning R⁷ SAR, our data with those of literature indicate that the contribution of R⁷ to antiparasitical activity is also contrasting. In the 1-cyclopropyl-quinolone series, it decreases along (i) 6A-C (as in 1) ~ 3-MePi (as in GTFX) ~ PpP (as in MXFX) > 6AM-C (as in 2), for anti-*T. gondii*, (ii), it varies,

however, along 3-MePi (as in GTFX) ~ PpP (as in MXFX) > 6AM-C (as in 2) ~ 6A-C (as in 1) for anti-*P. falcipa*rum, and (iii), 6A-C (as in 1) > 6AM-C (as in 2), 3-MePi (as in GTFX), or PpP (as in MXFX) for anti-*P. yoelii yoleii*. In the 2,4difluorophenyl-quinolone series, the contribution of 6A-C to anti-*T. gondii* activity is almost comparable to that of 6AM-C (IC₅₀ 3 ~ 4) while in the 2,4-difluorophenyl-naphtyridone series, replacement of 6A-C by 6AM-C induces a substantial decrease of activity (IC₅₀ TVFX < FQ11).

Concerning R¹ SAR, replacement of cyclopropyl for 2,4-difluorophenyl is also contrasting, in line with literature, and depends on R⁷ and on the nature of the antiparasitical activity: when R⁷ is 6A-C, this replacement decreases anti-*T. gondii* and anti-*P. yoleii yoleii* activities (IC₅₀ **1** < **3**) but is rather of low incidence on anti-*P. falciparum* activity (IC₅₀ **1** ~ **3**); when R⁷ is 6AM-C, it increases anti-*P. falciparum* activity (IC₅₀ **2** > **4**) and is rather of low incidence on anti-*T. gondii* activity (IC₅₀ **2** ~ **4**).

4.5. Antibacterial activity against M. tuberculosis and SAR study

The quinolones 1–4 were found to inhibit DNA gyrase and growth of *M. tuberculosis* (see data Table 2). If they display a DNA gyrase activity comparable to that of commercially available fluoroquinolones, two of them demonstrated an activity close to the most active compounds, e.g. MXFX, SPFX and GTFX. Our data confirm that anti-*M. tuberculosis* activity is higher for the cyclopropyl fluoroquinolone series (i.e. 1, 2) than for the 2,4-difluorophenyl series (i.e. 3, 4), in line with literature (GTFX, MXFX vs TVFX) [28]. Interestingly, it appears also that the nature of substituent R⁷ (6A-C, 6AM-C, 3Me-Pi, PpP) has almost no impact on DNA gyrase inhibition (IC₅₀ 1 ~ 2 ~ GTFX, MXFX).

MICs of all the four compounds were very high (>64 μ g/mL) and they account for among the lowest active quinolones for inhibiting the growth of M. tuberculosis. Moreover, no correlation was found for quinolones 1–4 between DNA gyrase and growth inhibition of *M. tuberculosis*, in contrast to the other guinolones listed in Table 2. This could be due to either a poor bacterial uptake of quinolones 1-4, as a result of low diffusion across the cell wall or efficient efflux. Instability or degradation of these compounds during MIC determination experiment, which requires incubation at 37 °C for 21-30 days, seems unlikely as they were found to be very stable under even more drastic conditions. However, we may observe that MIC is indeed increasing along 3Me-Pi (as in GTFX) < PpP (as in MXFX) < 6A-C (as in 1/resp. 3 = 6AM-C (as in 2/resp. 4), indicating that the high MIC of 1-4 and consequently their poor bacterial uptake could mainly be related to the R^7 6A-C and 6MA-C azabicyclic rings. These results further indicate that MIC measurements are essential to determine whether a quinolone is a promising antituberculosis agent or not.

5. Conclusion

The synthesis of the four new 8-methoxy-substituted fluoroquinolones 1-4 was performed with 15-18% overall yield in seven steps from commercially available acid materials. Unfortunately, the synthetic strategy applied for 1-4 was unsuccessful for the preparation of the corresponding 8-ethyl-substituted fluoroquinolones 9-12, the introduction of the substituent \mathbb{R}^7 through an aromatic nucleophilic substitution of the C-7 fluorine atom in synthons 20c1,c2 or 21c1,c2 being the most difficult step to achieve. It was also unsuccessful for the 5-ethyl-8-methoxy analogs 5-8, the main difficulty being here the condensation step leading to the key enaminone 18b or malonate 22, from the 6-ethyl-3-methoxy synthon 17b.

The biological results show the usefulness and limits of our predictive QSAR models for T. gondii. Indeed, the four computer-designed fluoroquinolones were active on T. gondii but only one of these derivatives, i.e. 1, was as active as predicted, showing that the models remain of interest to direct the synthesis of active anti-T. gondii quinolones. Concerning anti-Plasmodium spp. activity, the four compounds are active against blood stages of *P. falciparum* though at high concentration and one of them, i.e. 1, is also inhibitory for hepatic stages associated with an effect on schizont size reduction. However, further studies are necessary to define more adapted and specific QSAR models for the design of new antimalarial drugs. Moreover, fluoroquinolones 1-4 inhibit DNA supercoiling by *M. tuberculosis* gyrase, the IC₅₀ of **1** and **2** being below 6 μ g/mL. This promising antituberculosis activity was unfortunately invalidated by their poor inhibition of *M. tuberculosis* growth as shown by their high MIC values. These results confirm the SAR deduced from previous study [28]. Nevertheless, it would be worth to explore the pharmacological properties and safety profile of 1 which is active against T. gondii, as well as against both erythrocytic and hepatic stages of P. falciparum, and against hepatic P. yoelii yoelii schizonts, thus appearing to be an antiparasitical drug with great potential.

6. Materials and methods

6.1. Design of quinolones

The mathematical QSAR models used for the design of the fluoroquinolones listed in Table 1 and for the prediction of their anti-T. gondii activity are detailed elsewhere [22,51,52]. Briefly, these models were based on the numerical description of a set of "training" compounds by topological indices (TIs) and the application of the statistical LDA technique. The obtained QSAR-LDA equations were applied to 24 known quinolones and the results indicate theoretical activity against T. gondii to be in good agreement with the experimentally in vitro IC₅₀ data. These latter data were used for developing a new QSAR model by multilinear regression (MLR). The equation thus obtained accurately matched experimental and calculated IC₅₀ values ($r^2 = 0.87$), and a very good predictive capacity of the model was confirmed by the cross-validation test ($r_{cv}^2 =$ 0.74). From both the experiments and the mathematical model, four fluoroquinolones emerged as being more active than the other compounds, as their IC_{50} values were below 10 mg/L. Trovafloxacin was the most active drug, with experimental and calculated IC_{50} values below 0.5 mg/L, followed by

grepafloxacin, gatifloxacin and moxifloxacin. Furthermore, 11 trovafloxacin analogs experimentally tested [21] were submitted to the QSAR model, and good agreement was observed between the predicted and experimental IC_{50} values.

We then used as TIs, the *E*-state indices, which are specific for each atom and reflect the electronic and topological atomic features taking into account the interaction with the rest of the molecule [53]. These TIs were related to the anti-T. gondii activity of 24 known quinolones, thus providing some insights about the substituents leading to higher anti-Toxoplasma activity. Computational screening was finally used to select new quinolones with improved efficacy. Virtual structures were designed by the omission or substitution of some radicals on the most active quinolones tested (trovafloxacin, grepafloxacin, gatifloxacin and moxifloxacin, with IC₅₀ values below 5 mg/L). Their TIs were calculated, and LDA and MLR equations were used to determine their activity/inactivity and IC₅₀ values, respectively. The LDA and MLR models were then used to identify the pharmacophoric structures responsible for anti-Toxoplasma activity of quinolones [22].

6.2. Chemistry

6.2.1. General methods, reagents and starting materials

Reactions were conducted under an anhydrous nitrogen atmosphere using freshly distilled and dry solvents. Anhydrous solvents were prepared by standard methods. Column chromatography purifications were carried out on Silica Gel 60 (E. Merck, 70–230 mesh). The purity of all new compounds was checked by thin-layer chromatography (TLC) and NMR. All reactions were monitored by TLC analyses on precoated Silica Gel F254 plates (E. Merck) with detection by UV and by KMnO₄ (0.5% in 1 N aq NaOH solution, w/v) or charring with ninhydrin (0.3% in MeOH containing 3 vol% of acetic acid, w/v) or with 50% methanol-sulfuric acid solution. The purity of the final products (>99.5%) was checked by HPLC analyses (flow of 1 mL min⁻¹) using a Waters 996 photodiode array detector apparatus (PDA, UV detector from 195 to 290 nm) using a Lichrospher 100 RP-18 (5 µm)-packed column $(250 \times 4 \text{ mm})$ and two solvent systems, i.e. solvent A [isocratic H₂O/CH₃CN (65:35) 0.1% TFA] or solvent B [gradient H₂O/ CH₃CN (from 80:20 to 0:100) 0.1% TFA over 30 min]. Melting points, determined with an Electrothermal model 3100 apparatus, are uncorrected. The ¹H, ¹³C, and (¹H decoupled) ¹⁹F NMR spectra were recorded with a Bruker AC 200 spectrometer at 200, 50.3, and 188.3 MHz, respectively. Chemical shifts (δ) were expressed in parts per million relative to the signal indirectly (i) to CHCl₃ (δ 7.27) for ¹H and (ii) to CDCl₃ (δ 77.16) for ¹³C, and directly (iii) to CFCl₃ (internal standard) (δ 0.0) for ¹⁹F. Coupling constants are expressed in hertz, and multiplicities are referred to as s (singlet), br s (broad singlet), d (doublet), t (triplet), and m (multiplet). Concerning the description of the NMR spectra, the atom numbering is indicated in Table 1. Electron-spray ionization mass spectra in positive mode [ESI(+)]MS] were recorded on a Finnigan MAT TSQ 7000 apparatus equipped with an atmospheric pressure ionization source. The high resolution mass spectrometry (HRMS) analyses were

performed by the "Service Commun de Spectrométrie de Masse" at the Institut de Chimie des Substances Naturelles, Gif sur Yvette, France.

N-Benzylmaleimide, boron trifluoride diethyl etherate, triethylamine, trifluoroacetic acid (TFA) and oxalyl chloride were purchased from Aldrich. Ethyl propiolate, cyclopropylamine and 2,4-difluoraniline were obtained from Fluka.

2,4,5-Trifluoro-3-methoxybenzoic acid **17a** was prepared from 3,4,5,6-tetrafluorophthalic acid (Lancaster) as described in literature [36,63]. The 3-ethyl-2,4,5-trifluorobenzoic acid **17b** was synthesized from 2,4,5-trifluorobenzoic acid (Lancaster) according to literature [34].

The synthesis of $(1\alpha, 5\alpha, 6\alpha)$ -6-*tert*-butoxycarbonylamino-3azabicyclo[3.1.0]hexane **23** and $(1\alpha, 5\alpha, 6\alpha)$ -6-(*tert*-butoxycarbonyl)aminomethyl-3-azabicyclo[3.1.0]hexane **24** was performed from *N*-benzylmaleimide in eight steps (about 10% overall yield) according to published procedures [37,38].

Compound 23: Mp = 110-111 °C; R_f = 0.35 (90:10:1 CHCl₃/MeOH/NH₄OH, UV, ninhydrin); ¹H NMR (CDCl₃) δ 1.42 [s, 10H, NH and C(CH₃)₃], 1.54 (s, 2H, H₁ and H₅), 2.26 (br s, 1H, H₆), 2.88 and 3.10 (AB system, 4H, H₂ and H₄, ²J_{H-H} = 11.6 Hz), 4.69 (s, 1H, NHBoc); ¹³C NMR (CDCl₃) δ 26.4 (C₁ and C₅), 28.5 [C(CH₃)₃], 30.4 (C₆), 48.8 (C₂ and C₄), 79.7 [C(CH₃)₃], 156.4 [NC(O)].

Compound 24: $R_f = 0.30$ (1:1 AcOEt/MeOH, UV, ninhydrin); ESI-MS (positive mode): $(M + H)^+ = 213.3$ (calcd for $C_{11}H_{20}N_2O_2$ 212.15); ¹H NMR (CDCl₃) δ 0.70 (tt, 1H, H₆, ³ $J_{H-H} = 6.9$ Hz, ³ $J_{H-H} = 3.4$ Hz), 1.21 (m, 2H, H₁ and H₅), 1.34 [s, 9H, C(CH₃)₃], 1.88 (br s, 1H, NH), 2.78–2.96 (m, 6H, H₂, H₄ and CH₂NHBoc), 4.92 (br s, 1H, NHBoc); ¹³C NMR (CDCl₃) δ 20.4 (C₆), 21.1 (C₁ and C₅), 28.2 [C(CH₃)₃], 41.4 (CH₂NHBoc), 46.7 (C₂ and C₄), 79.0 [C(CH₃)₃], 155.9 [NHC(O)].

The synthesis of ethyl 3-(diethylamino)-2(*E*)-propenoate was carried out by heating an equimolar amount of diethylamine and ethyl propiolate in acetonitrile as described in Ref. [39]. After solvent evaporation, the Michael adduct was used without further purification [¹H NMR (CDCl₃) δ 4.55 (d, 1H, *HC*=CHN, ³J_{H-H} = 13.1 Hz), and 7.42 (d, 1H, HC=CHN, ³J_{H-H} = 13.1 Hz)].

6.2.2. Synthesis of α -enamino- β -ketoesters

6.2.2.1. Ethyl $\alpha(E)$ -[(diethylamino)methylene]-2,4,5-trifluoro-3-methoxy- β -oxo-benzenepropanoate, **18a**. A CH₂Cl₂ solution (30 mL) of **17a** (1.36 g, 6.60 mmol), oxalyl chloride (0.80 mL, 9.17 mmol) and five drops of DMF was stirred for 24 h at room temperature. The reaction mixture was then subjected to concentrated evaporation under reduced pressure, solubilized in toluene (15 mL) and added dropwise to a toluene solution (15 mL) of triethylamine (3 mL, 16.5 mmol) and ethyl 3-(diethylamino)-2*E*-propenoate (1.29 g, 7.54 mmol). After 5 h of stirring at 90 °C, the cooled reaction mixture was washed with water. The organic layer was dried over Na₂SO₄, filtered and evaporated. The crude residue was purified by flash chromatography on silica gel (95:5 to 60:40 hexane/AcOEt) to give **18a** (1.88 g, 5.22 mmol, 79%) as a colourless oil. $R_f = 0.25$ (7:3

hexane/AcOEt, UV); ¹H NMR (CDCl₃) & 0.77 (t, 3H, OCH_2CH_3 , ${}^{3}J_{H-H} = 7.1$ Hz), 0.84 (br s, 3H, NCH_2CH_3), 1.08 (br s, 3H, NCH₂CH₃), 3.25 (br s, 4H, NCH₂CH₃), 3.76 (q, 2H, OCH₂CH₃, ${}^{3}J_{H-H} = 7.1$ Hz), 3.78 (s, 3H, OCH₃), 6.87 (ddd, 1H, H_{AP}, ${}^{3}J_{H-F} = 10.1$ Hz, ${}^{4}J_{H-F} = 8.5$ Hz, ${}^{4}J_{H-F} = 6.0$ Hz), 7.53 (s, 1H, C=CHN); ¹⁹F NMR (CDCl₃) δ -135.1 (dd, F₂, ${}^{5}J_{\rm F-F} = 13.8 \text{ Hz}, {}^{4}J_{\rm F-F} = 7.6 \text{ Hz}), -141.5 \text{ (dd, } F_5, {}^{3}J_{\rm F-F}$ $= 20.6 \text{ Hz}, \quad {}^{5}J_{F-F} = 13.7 \text{ Hz}), \quad -149.2 \text{ (br d, } F_{4}, \quad {}^{3}J_{F-F}$ = 16.5 Hz); 13 C NMR (CDCl₃) δ 10.8, 14.2 (br s, NCH₂CH₃), 13.4 (OCH₂CH₃), 45.0, 53.8 (br s, NCH₂CH₃), 59.4 (OCH₂CH₃), 61.5 (t, OCH₃, ${}^{4}J_{C-F} = 3.5$ Hz), 101.6 (C=CHN), 109.5 (dd, C₆, ${}^{2}J_{C-F} = 20.1$ Hz, ${}^{3}J_{C-F} = 3.3$ Hz), 126.2 (ddd, C₁, $^{2}J_{C-F} = 14.8 \text{ Hz}, \quad ^{3}J_{C-F} = 5.6 \text{ Hz}, \quad ^{4}J_{C-F} = 3.9 \text{ Hz}), \quad 137.1$ (ddd, C₃, ${}^{2}J_{C-F} = 16.6$ Hz, ${}^{2}J_{C-F} = 11.1$ Hz, ${}^{3}J_{C-F} = 2.1$ Hz), 145.1 (ddd, C₄, ${}^{1}J_{C-F} = 253.2$ Hz, ${}^{2}J_{C-F} = 15.2$ Hz, ${}^{3}J_{C-F} =$ 5.3 Hz), 146.6 (ddd, C₅, ${}^{1}J_{C-F} = 246.1$ Hz, ${}^{2}J_{C-F} = 11.5$ Hz, ${}^{4}J_{C-F} = 3.3$ Hz), 149.1 (dt, C₂, ${}^{1}J_{C-F} = 248.8$ Hz, ${}^{3}J_{C-F} =$ ${}^{4}J_{C-F} = 3.3 \text{ Hz}$, 154.4 (C=CHN), 167.3 [C(O)O], 184.5 [C(O)C].

6.2.2.2. Ethyl $\alpha(E)$ -[(diethylamino)methylene]-3-ethyl-2,4,5trifluoro- β -oxo-benzenepropanoate, **18c**. The procedure as described for 6, when applied to 17c (524 mg, 2.58 mmol), 0.35 mL (4.0 mmol) of oxalyl chloride, 1.4 mL (10 mmol) of Et₃N and 790 mg (4.61 mmol) of ethyl 3-(diethylamino)-2Epropenoate gave, after silica gel chromatography (90:10 to 75:25 hexane/AcOEt), 750 mg (2.10 mmol, 80%) of 18c as a colourless oil. $R_f = 0.25$ (7:3 hexane/AcOEt, UV); ¹H NMR (CDCl₃) δ 0.84 (t, 3H, OCH₂CH₃, ³J_{H-H} = 7.1 Hz), 0.90 (br s, 3H, NCH₂CH₃), 1.08 (t, 3H, CH₃(Ar), ${}^{3}J_{H-H} = 7.6 \text{ Hz}$, 1.10 (br s, 3H, NCH₂CH₃), 2.59 (q, 2H, CH₂(Ar), ${}^{3}J_{H-H} = 7.5$ Hz), 3.36 (br s, 4H, 2NCH₂CH₃), 3.86 (q, 2H, OCH₂CH₃, ${}^{3}J_{H-H} = 7.1$ Hz), 7.16 (td, 1H, H(Ar), ${}^{3}J_{H-F} = {}^{4}J_{H-F} = 9.2$ Hz, ${}^{4}J_{H-F} = 6.6$ Hz), 7.64 (s, 1H, C=CHN); ¹⁹F NMR (CDCl₃) δ -122.8 (dd, 1F, F₂, ⁵J_{F-F} = 15.8 Hz, ${}^{4}\!J_{\rm F-F}\!=\!6.9$ Hz), -137.1 (br s, 1F, F₄), -143.4 (dd, F_5 , ${}^3J_{F-F} = 21.3 \text{ Hz}$, ${}^5J_{F-F} = 15.8 \text{ Hz}$; ${}^{13}\text{C}$ NMR (CDCl₃) δ 11.2, 14.5 (2br s, 2NCH₂CH₃), 13.7 (2s, CH₃(Ar) and OCH₂CH₃), 16.1 [CH₂(Ar)], 45.3, 54.1 (2br s, 2NCH₂CH₃), 59.7 (OCH₂CH₃), 102.1 (C=CHN), 114.3 (dd, C₆, ${}^{2}J_{C-F} =$ 19.9 Hz, ${}^{3}J_{C-F} = 3.1$ Hz), 121.1 (dd, C₃, ${}^{2}J_{C-F} = 23.8$ Hz, ${}^{2}J_{C-F} = 17.2 \text{ Hz}$, 126.3 (dt, C₁, ${}^{2}J_{C-F} = 17.2 \text{ Hz}$, ${}^{3}J_{C-F} = {}^{4}J_{C-F} = 4.4 \text{ Hz}$), 126.3 (dt, C₁, ${}^{2}J_{C-F} = 17.2 \text{ Hz}$, ${}^{3}J_{C-F} = {}^{4}J_{C-F} = 4.4 \text{ Hz}$), 146.5 (ddd, C₅, ${}^{1}J_{C-F} = 245.1 \text{ Hz}$, ${}^{2}J_{C-F} = 13.5 \text{ Hz}$, ${}^{4}J_{C-F} = 3.3 \text{ Hz}$), 149.8 (ddd, C₄, ${}^{1}J_{C-F} = 251.0 \text{ Hz}$, ${}^{2}J_{C-F} = 14.3 \text{ Hz}, {}^{3}J_{C-F} = 9.2 \text{ Hz}), 153.8 \text{ (ddd, } C_{2}, {}^{1}J_{C-F}$ = 247.7 Hz, ${}^{3}J_{C-F} = 7.0$ Hz, ${}^{4}J_{C-F} = 2.4$ Hz), 154.5 (C=CHN), 167.9 [C(O)O], 185.7 [C(O)C].

6.2.3. Synthesis of ethyl 6,7-difluoro-8-substituted quinoline-carboxylates (cyclization step)

6.2.3.1. Ethyl 1-cyclopropyl-6,7-difluoro-1,4-dihydro-8-methoxy-4-oxo-3-quinoline-carboxylate, **20a1**. Compound **18a** (850 mg, 2.37 mmol) in 1:2 EtOH/Et₂O (20 mL) was added to cyclopropylamine (0.38 mL, 5.48 mmol). After 3 h of stirring at room temperature, the reaction mixture was evaporated under reduced pressure. The oily residue containing

19a1 (¹H NMR monitoring) was dissolved in DMF (20 mL) and K₂CO₃ (1.32 g, 9.57 mmol) was then added. After 5 h of stirring at 100 °C, cold water (3 mL) was added. The yellow precipitate was filtered and dried affording 20a1 (627 mg, 1.94 mmol, 82%). $R_f = 0.60$ (97:3 CHCl₃/MeOH, UV); mp = $183-184 \,^{\circ}C$; ¹H NMR (CDCl₃) δ 1.04 and 1.19 [2m, 4H, CH₂(cPr)], 1.37 (t, 3H, OCH₂CH₃, ${}^{3}J_{H-H} = 7.1$ Hz), 3.97 [tt, 1H, CH(cPr), ${}^{3}J_{H-H} = 7.5$ Hz, ${}^{3}J_{H-H} = 3.7$ Hz], 4.07 (d, 3H, OCH₃, ${}^{5}J_{H-F} = 1.9$ Hz), 4.35 (q, 2H, OCH₂CH₃, ${}^{3}J_{\rm H-H} = 7.1$ Hz), 7.97 (dd, 1H, H₅, ${}^{3}J_{\rm H-F} = 10.0$ Hz, ${}^{4}J_{\rm H-F} = 8.8$ Hz), 8.56 (s, 1H, H₂); 19 F NMR (CDCl₃) $\delta - 136.9$ and -145.1 (2d, 2F, F₆ and F₇, ${}^{3}J_{F-F} = 21.3$ Hz); ${}^{13}C$ NMR (CDCl₃) & 9.2 [CH₂(cPr)], 14.5 (OCH₂CH₃), 39.8 [CH(cPr)], 61.1 (OCH₂CH₃), 62.9 (d, OCH₃, ${}^{4}J_{C-F} = 7.7$ Hz), 108.7 (dd, C₅, ${}^{2}J_{C-F} = 18.7$ Hz, ${}^{3}J_{C-F} = 1.1$ Hz), 110.1 (C₃), 126.1 (dd, C₁₀, ${}^{3}J_{C-F} = 5.9$ Hz, ${}^{4}J_{C-F} = 1.8$ Hz), 131.6 (dd, C₉, ${}^{3}J_{C-F} =$ $3.7 \text{ Hz}, {}^{4}J_{C-F} = 2.2 \text{ Hz}), 140.4 \text{ (d, } C_{8}, {}^{2}J_{C-F} = 12.1 \text{ Hz}), 148.2$ (dd, C₇, ${}^{1}J_{C-F} = 253.7 \text{ Hz}$, ${}^{2}J_{C-F} = 15.6 \text{ Hz}$), 149.2 (dd, C₆, ${}^{1}J_{C-F} = 251.4 \text{ Hz}, {}^{2}J_{C-F} = 12.4 \text{ Hz}, 150.7 (C_2), 165.2 [C(O)O],$ 172.3 (C₄).

6.2.3.2. Ethyl 1-(2,4-difluorophenyl)-6,7-difluoro-1,4-dihydro-8-methoxy-4-oxo-3-quinoline-carboxylate, 20a2. The procedure described for 20a1 when applied first to 18a (672 mg, 1.87 mmol) and 2,4-difluoroaniline (0.40 mL, 3.97 mmol) for 24 h at room temperature, then to DMF (15 mL) and K₂CO₃ (978 mg, 7.08 mmol), led to **20a2** (611 mg, 1.55 mmol, 83%) as a yellow solid. $R_f = 0.65$ $(97:3 \text{ CHCl}_3/\text{MeOH}, \text{UV}); \text{ mp} = 186-187 \,^{\circ}\text{C}; \,^{1}\text{H} \text{ NMR} (\text{CDCl}_3)$ δ 1.30 (t, 3H, OCH₂CH₃, ³J_{H-H} = 7.1 Hz), 3.46 (d, 3H, OCH₃, ${}^{5}J_{H-F} = 1.5$ Hz), 4.26 (qd, 2H, OCH₂CH₃, ${}^{3}J_{H-H} = 7.1$ Hz, ${}^{9}J_{H-F}$ = 1.3 Hz), 7.00–7.07 [m, 2H, H(Ar)], 7.73 [td, 1H, H(Ar), J = 8.6 Hz, J = 5.7 Hz], 7.87 (dd, 1H, H₅, ${}^{3}J_{H-F} = 10.2$ Hz, ${}^{4}J_{H-F}$ = 8.5 Hz), 8.16 (s, 1H, H₂); ¹⁹F NMR (CDCl₃) δ -106.5 and -117.2 (2d, 2F, F_{2'} and F_{4'}, ${}^{4}J_{F-F} = 8.2$ Hz), -136.4 and -144.8(2d, 2F, F₆ and F₇, ${}^{3}J_{F-F} = 21.3$ Hz); ${}^{13}C$ NMR (CDCl₃) δ 14.3 (OCH_2CH_3) , 61.1 (OCH_2CH_3) , 62.0 (d, OCH_3 , ${}^4J_{C-F} = 7.0$ Hz), 104.7 (dd, $C_{3'}$, ${}^{2}J_{C-F} = 26.7$ Hz, ${}^{2}J_{C-F} = 23.1$ Hz), 108.4 (d, C_{5} , ${}^{2}J_{C-F} = 19.0 \text{ Hz}$), 110.9 (C₃), 112.0 (dd, C₅', ${}^{2}J_{C-F} = 22.7 \text{ Hz}$, ${}^{4}J_{C-F} = 4.0 \text{ Hz}$), 125.0 (dd, C₁₀, ${}^{3}J_{C-F} = 6.2 \text{ Hz}$, ${}^{4}J_{C-F}$ = 2.2 Hz), 128.7 (dd, $C_{1'}$, ${}^{2}J_{C-F}$ = 13.5 Hz, ${}^{4}J_{C-F}$ = 4.4 Hz), 128.9 (d, C₆', ${}^{3}J_{C-F} = 10.6$ Hz), 130.9 (dd, C₉, ${}^{3}J_{C-F} = 4.0$ Hz, ${}^{4}J_{C-F} = 2.2$ Hz), 139.2 (dd, C₈, ${}^{2}J_{C-F} = 12.4$ Hz, ${}^{3}J_{C-F} = 1.1$ Hz), 148.0 (dd, C₇, ${}^{1}J_{C-F} = 254.9$ Hz, ${}^{2}J_{C-F} = 15.5$ Hz), 149.2 (dd, C₆, ${}^{1}J_{C-F} = 252.3 \text{ Hz}, {}^{2}J_{C-F} = 12.3 \text{ Hz}), 151.2 (C_2), 157.6 (dd, C_{2'} \text{ or})$ $C_{4'}$, ${}^{1}J_{C-F} = 254.0 \text{ Hz}$, ${}^{3}J_{C-F} = 12.8 \text{ Hz}$), 162.8 (dd, $C_{2'}$ or $C_{4'}$, ${}^{1}J_{C-F} = 253.2 \text{ Hz}, {}^{3}J_{C-F} = 11.0 \text{ Hz}), 164.2 \text{ [C(O)O]}, 172.1 \text{ (br s, C_4)}.$

6.2.3.3. Ethyl 1-cyclopropyl-8-ethyl-6,7-difluoro-1,4-dihydro-4-oxo-3-quinoline-carboxylate, **20c1**. The procedure described for **20a1** when applied to **18c** (195 mg, 0.55 mmol), cyclopropylamine (0.10 mL, 1.42 mmol), and K₂CO₃ (300 mg, 2.17 mmol) gave after work-up **20c1** (148 mg, 0.46 mmol, 83%) as a yellow solid. R_f = 0.65 (96:4 CHCl₃/MeOH, UV); mp = 202-204 °C; ¹H NMR (CDCl₃) δ 1.01 and 1.22 [2m, 4H, CH₂(cPr)], 1.20 (br t, 3H, CH₃(Ar), ³J_{H-H} = 7.5 Hz), 1.37 (t, 3H, OCH₂CH₃, ³J_{H-H} = 7.1 Hz), 3.39 (qd, 2H, CH₂(Ar), ³J_{H-H} = 7.5 Hz, ⁴J_{H-F} = 2.8 Hz), 3.88 (tt, 1H, CH(cPr), ${}^{3}J_{H-H} = 7.0$ Hz, ${}^{3}J_{H-H} = 3.5$ Hz), 4.35 (q, 2H, OCH₂CH₃, ${}^{3}J_{H-H} = 7.1$ Hz), 8.09 (t, 1H, H₅, ${}^{3}J_{H-F} = {}^{4}J_{H-F} = 9.6$ Hz), 8.64 (s, 1H, H₂); ${}^{19}F$ NMR (CDCl₃) δ -131.0 and -138.5 (2d, 1F, F₆ and F₇, ${}^{3}J_{F-F} = 22.7$ Hz); ${}^{13}C$ NMR (CDCl₃) δ 11.1 [2 CH₂(cPr)], 14.4 (OCH₂CH₃), 15.3 [CH₃(Ar)], 19.3 (dd, CH₂(Ar), ${}^{3}J_{C-F} = 7.2$ Hz, ${}^{4}J_{C-F} = 1.7$ Hz), 38.9 [CH(cPr)], 60.9 (OCH₂CH₃), 110.6 (C₃), 112.4 (dd, C₅, ${}^{2}J_{C-F} = 18.9$ Hz, ${}^{3}J_{C-F} = 2.8$ Hz), 124.1 (d, C₈, ${}^{2}J_{C-F} = 15.4$ Hz), 127.2 (dd, C₁₀, ${}^{3}J_{C-F} = 5.1$ Hz, ${}^{4}J_{C-F} = 2.0$ Hz), 148.6 (dd, C₆, ${}^{1}J_{C-F} = 250.7$ Hz, ${}^{2}J_{C-F} = 15.9$ Hz), 152.2 (C₂), 152.3 (dd, C₇, ${}^{1}J_{C-F} = 250.3$ Hz, ${}^{2}J_{C-F} = 14.5$ Hz), 165.0 [C(O)O], 173.0 (C₄).

6.2.3.4. Ethyl 8-ethyl-1-(2,4-difluorophenyl)-6,7-difluoro-1,4dihydro-4-oxo-3-quinoline-carboxylate, 20c2. The procedure described for 20a1 when applied to 11 (438 mg, 1.23 mmol), 2,4-difluoraniline (0.40 mL, 3.97 mmol), and K₂CO₃ (606 mg, 4.38 mmol) gave after work-up 20c2 (388 mg, 0.99 mmol, 80%) as an orange solid. $R_f = 0.65$ (97:3 CHCl₃/MeOH, UV); mp = $172-174 \circ C$; ¹H NMR (CDCl₃) δ 0.79 (t, 3H, CH₃(Ar), ${}^{3}J_{H-H} = 7.4$ Hz), 1.28 (t, 3H, OCH₂CH₃, ${}^{3}J_{H-H} =$ 7.1 Hz), 2.17 [m, 2H, CH₂(Ar)], 4.26 (q, 2H, OCH₂CH₃, ${}^{3}J_{H-H} = 7.1 \text{ Hz}$, 7.04–7.10 [m, 2H, H(Ar)], 7.70 [m, 1H, H(Ar)], 8.03 (t, 1H, H₅, ${}^{3}J_{H-F} = {}^{4}J_{H-F} = 9.6$ Hz), 8.18 (s, 1H, H₂); ¹⁹F NMR (CDCl₃) δ -104.5 and -116.0 (2d, 2F, $F_{2'}$ and $F_{4'}$, ${}^{4}J_{F-F} = 8.5$ Hz), -130.0 and -137.8 (2d, 2F, F_{6} and F_{7} , ${}^{3}J_{F-F} = 22.7$ Hz); 13 C NMR (CDCl₃) δ 13.8 [CH₃(Ar)], 14.2 (OCH₂CH₃), 18.2 (dd, CH₂(Ar), ${}^{3}J_{C-F} =$ 6.6 Hz, ${}^{4}J_{C-F} = 1.1$ Hz), 61.0 (OCH₂CH₃), 105.9 (dd, C_{3'}, ${}^{2}J_{C-F} = 26.5$ Hz, ${}^{2}J_{C-F} = 22.9$ Hz), 111.0 (C₃), 112.4 (dd, C₅, ${}^{2}J_{C-F} = 18.7$ Hz, ${}^{3}J_{C-F} = 2.6$ Hz), 113.2 (dd, C₅', ${}^{2}J_{C-F} =$ 22.7 Hz, ${}^{4}J_{C-F} = 4.0$ Hz), 123.5 (d, C₈, ${}^{2}J_{C-F} = 16.1$ Hz), 126.6 (dd, C_{10} , ${}^{3}J_{C-F} = 5.1$ Hz, ${}^{4}J_{C-F} = 2.2$ Hz), 128.1 (dd, $C_{1'}$, ${}^{2}J_{C-F} = 12.8 \text{ Hz}$, ${}^{4}J_{C-F} = 4.4 \text{ Hz}$), 129.9 (d, $C_{6'}$, ${}^{3}J_{C-F} = 10.2 \text{ Hz}$), 135.8 (dd, C_{9} , ${}^{3}J_{C-F} = 5.7 \text{ Hz}$, ${}^{4}J_{C-F} = 2.0 \text{ Hz}$), 148.7 (dd, C₆, ${}^{1}J_{C-F} = 251.4 \text{ Hz}$, ${}^{2}J_{C-F} = 15.7 \text{ Hz}$), 152.2 (C₂), 152.8 (dd, C₇, ${}^{1}J_{C-F} = 251.4 \text{ Hz}$, ${}^{2}J_{C-F} = 14.3 \text{ Hz}$), 157.5 (dd, C_{2'} or C_{4'}, ${}^{1}J_{C-F} = 255.4 \text{ Hz}$, ${}^{3}J_{C-F} = 12.6 \text{ Hz}$), 163.3 (dd, C_{2'} or C_{4'}, ${}^{1}J_{C-F} = 255.4 \text{ Hz}$, ${}^{3}J_{C-F} = 11.0 \text{ Hz}$), 164.2 [C(O)O], 172.8 (C₄).

6.2.4. Synthesis of boron complexes

6.2.4.1. (1-Cyclopropyl-6,7-difluoro-1,4-dihydro-8-methoxy-4oxo-3-quinoline-carboxylato-O3,O4)difluoro-boron, 21a1. BF₃·Et₂O (1.5 mL, 11.8 mmol) was added to 20a1 (321 mg, 0.99 mmol) in suspension in THF (20 mL). After refluxing for 48 h, the clear reaction mixture was evaporated under reduced pressure. The crude oily residue was successively washed with Et₂O, CHCl₃, and water affording **21a1** as a white solid (265 mg, 0.77 mmol, 78%). $R_f = 0.40$ (97:3 CHCl₃/MeOH, UV): mp = 221 - 223 °C; ESI-MS (positive mode): $(M + H)^+ = 344.2$ (calcd for $C_{14}H_{10}BF_4NO_4$ 343.06); ¹H NMR (CD₃CN) δ 1.25-1.37 [m, 4H, 2CH₂(cPr)], 4.19 (d, 3H, OCH₃, ${}^{5}J_{H-F} = 2.4$ Hz), 4.48 (tt, 1H, CH(cPr), ${}^{3}J_{H-H} = 7.3$ Hz,

 ${}^{3}J_{H-H} = 3.8 \text{ Hz}$), 8.17 (dd, 1H, H₅, ${}^{3}J_{H-F} = 9.8 \text{ Hz}$, ${}^{4}J_{H-F} = 8.1 \text{ Hz}$), 9.17 (s, 1H, H₂); ¹⁹F NMR (CD₃CN) δ –131.7 and –139.0 (2d, 2F, F₆ and F₇, ${}^{3}J_{F-F} = 19.9 \text{ Hz}$), –144.0 (s, 0.5F, ¹⁰BF₂), –144.1 (s, 2.4F, ¹¹BF₂).

6.2.4.2. (1-(2,4-Difluorophenyl)-6,7-difluoro-1,4-dihydro-8methoxy-4-oxo-3-quinolinecarboxylato-O3,O4)difluoro-boron, **21a2**. Similarly, **20a2** (499 mg, 1.26 mmol) when reacted with BF₃·Et₂O (2.0 mL, 15.80 mmol) in THF (25 mL) afforded after work-up **21a2** (407 mg, 0.98 mmol, 78%) as a white solid. R_f =0.50 (97:3 CHCl₃/MeOH, UV); mp = 227-228 °C; ¹H NMR (CD₃CN) δ 3.54 (d, 3H, OCH₃, ⁵J_{H-F} = 2.0 Hz), 7.26 [m, 2H, H(Ar)], 7.70 [m, 1H, H(Ar)], 8.30 (dd, 1H, H₅, ³J_{H-F} = 9.7 Hz, ⁴J_{H-F} = 8.0 Hz), 9.06 (s, 1H, H₂); ¹⁹F NMR (DMSO-d₆) δ -105.6 and -116.9 (2d, 2F, F_{2'} and F_{4'}, ⁴J_{F-F} = 8.9 Hz), -128.5 and -135.9 (2d, 2F, F₆ and F₇, ³J_{F-F} = 71.5 Hz), 139.1 and 140.3 (AB system, 2.0F, ¹¹BF₂, J_{F-F} = 71.5 Hz).

6.2.4.3. (1-Cyclopropyl-8-ethyl-6,7-difluoro-1,4-dihydro-4-oxo-3quinoline-carboxylato-O3,O4)difluoro-boron, **21c1**. Similarly, **20c1** (117 mg, 0.364 mmol) and BF₃·Et₂O (0.60 mL, 4.74 mmol) in THF (5 mL) afforded after work-up **21c1** (97 mg, 0.28 mmol, 78%) as a white solid. R_f =0.50 (96:4 CHCl₃/MeOH, UV); mp = 274–276 °C; ¹H NMR (CD₃CN) δ 1.16 (br t, 5H, CH₂(cPr) and CH₃(Ar), ³J_{H-H} = 7.5 Hz), 1.38 [m, 2H, CH₂(cPr)], 3.60 (qd, 2H, CH₂(Ar), ³J_{H-H} = 7.5 Hz, ⁴J_{H-F} = 3.3 Hz), 4.49 (tt, 1H, CH(cPr), ³J_{H-H} = 7.0 Hz, ³J_{H-H} = 3.5 Hz), 8.23 (t, 1H, H₅, ³J_{H-F} = ⁴J_{H-F} = 9.1 Hz), 9.24 (s, 1H, H₂); ¹⁹F NMR (CD₃CN) δ –121.8 and –131.8 (2d, 2F, F₆ and F₇, ³J_{F-F} = 21.3 Hz), -142.2 (s, 0.4F, ¹⁰BF₂), -142.3 (s, 1.9F, ¹¹BF₂).

6.2.4.4. (8-*Ethyl-1-(2,4-diffuorophenyl)-6,7-diffuoro-1,4-dihydro-4-oxo-3-quinolinecarboxylato-O3,O4) diffuoro-boron*, **21c2**. Similarly, **20c2** (285 mg, 0.725 mmol) and BF₃·Et₂O (1.20 mL, 9.44 mmol) in THF (25 mL) afforded **21c2** (152 mg, 0.37 mmol, 51%) as a white solid. $R_f = 0.50$ (92:8 CHCl₃/MeOH, UV); mp = 279–281 °C; ¹H NMR (CD₃CN) δ 0.87 (t, 3H, CH₃(Ar), ³J_{H-H} = 7.5 Hz), 2.35 [m, 2H, CH₂(Ar)], 7.30 [m, 2H, H(Ar)], 7.80 [m, 1H, H(Ar)], 8.48 (t, 1H, H₅, ³J_{H-F} = ⁴J_{H-F} = 9.1 Hz), 9.09 (s, 1H, H₂); ¹⁹F NMR (DMSO-*d*₆) δ –103.2 and –116.3 (2d, 2F, F_{2'} and F_{4'}, ⁴J_{F-F} = 9.3 Hz), -119.4 and -130.4 (d, 1F, F₆ and F₇, ³J_{F-F} = 21.3 Hz), 141.6 and 142.4 (AB system, 0.5F, ¹⁰BF₂, J_{F-F} = 72.9 Hz), 141.7 and 142.5 (AB system, 2.0F, ¹¹BF₂, J_{F-F} = 72.9 Hz).

6.2.5. Synthesis of 7-amino-derived-6-fluoro-8-methoxy-quinolinecarboxylic acids, **1–4**

6.2.5.1. 7-[$(1\alpha,5\alpha,6\alpha)$ -6-Amino-3-azabicyclo[3.1.0]hex-3-yl]-1-cyclopropyl-6-fluoro-1,4-dihydro-8-methoxy-4-oxo-3-quinolinecarboxylic acid, **1**

6.2.5.1.1. 1-Cyclopropyl-7- $[(1\alpha,5\alpha,6\alpha)-6-[[(1,1-dimethyle-thoxy)carbonyl]amino]-3-azabicyclo[3.1.0]hex-3-yl]-6-fluoro-$

1.4-dihvdro-8-methoxy-4-oxo-3-quinolinecarboxylic acid, 1-Boc. A solution of 23 (78 mg, 0.39 mmol) and 21a1 (52 mg, 0.15 mmol) in CH₃CN (2 mL) was refluxed for one week. After evaporation under reduced pressure, the crude residue was partitioned in 1:1 CHCl₃/H₂O. The organic layer was evaporated leading to a yellow oil (97 mg) consisting of a mixture of 1'-Boc (difluoro-boron complex of 1-Boc) and 21a1 in 75:25 ratio (TLC and ¹⁹F NMR monitoring). This oily residue dissolved in EtOH (2 mL) and triethylamine (0.9 mL, 6.4 mmol) was stirred at 80 °C for 48 h. After evaporation, the crude residue obtained was poured into 2 N NaOH and filtered. The precipitate was dissolved in CHCl₃. The organic layer was washed with water, dried over Na₂SO₄, filtered and evaporated to afford 1-Boc (52 mg, 0.10 mmol, 72%) as a yellow oil. $R_f = 0.50$ (94:6 CHCl₃/MeOH, UV); ¹H NMR (CDCl₃) δ 0.95 and 1.18 [m, 4H, CH₂(cPr)], 1.42 [s, 9H, $C(CH_3)_3$, 1.78 (s, 2H, $H_{1''}$ and $H_{5''}$), 2.52 (s, 1H, $H_{6''}$), 3.55 (s, 3H, OCH₃), 3.62 and 3.89 (AB system, 4H, H_{2"} and $H_{4''}$, ${}^{2}J_{H-H} = 11.1 \text{ Hz}$, 3.99 [m, 1H, CH(cPr)], 4.87 (br s, 1H, NHBoc), 7.72 (d, 1H, H_5 , ${}^{3}J_{H-F} = 13.3$ Hz), 8.74 (s, 1H, H₂), 14.89 (br s, 1H, COOH); ¹⁹F NMR (CDCl₃) δ -118.4 (s, 1F, F₆); ¹³C NMR (CDCl₃) δ 9.6 $[CH_2(cPr)]$, 24.5 (C_{1"} and C_{5"}), 28.4 $[C(CH_3)_3]$, 31.8 $(C_{6''})$, 40.6 [CH(cPr)], 51.8 (d, $C_{2''}$ and $C_{4''}$, ${}^{4}J_{C-F} =$ 7.3 Hz), 61.7 (OCH₃), 79.8 [C(CH₃)₃], 107.7 (C₃), 107.9 (d, C₅, ${}^{2}J_{C-F} = 24.2$ Hz), 120.3 (d, C₁₀, ${}^{3}J_{C-F} = 9.2$ Hz), 134.2 (C₉), 136.5 (d, C₇, ${}^{2}J_{C-F} = 11.3$ Hz), 143.8 (d, C₈, ${}^{3}J_{C-F} = 6.6 \text{ Hz}$, 149.9 (C₂), 155.1 (d, C₆, ${}^{1}J_{C-F}$ = 252.1 Hz, 156.4 [NHC(O)O], 166.9 [C(O)O], 176.9 (d, C_4 , ${}^4J_{C-F} = 2.9$ Hz).

6.2.5.1.2. Synthesis of 1 (as its 2.6 TFA salt). The Boc deprotection of 1-Boc (22 mg, 0.0465 mmol) was achieved in 1:1 CH₂Cl₂/TFA mixture (4 mL) at 0 °C for 2 h. After evaporation, several additions of hexane and evaporations were performed to eliminate excess TFA. The crude residue was successively washed with Et₂O and CH₂Cl₂. Recrystallization (9:1 H₂O/CH₃CN) followed by lyophilization afforded 1 (21 mg, 0.037 mmol, 79%) as a white solid. $R_f = 0.20$ (98:2 CHCl₃/MeOH, UV); HPLC: $R_t = 5.2$ min (solvent A) and 11.8 min (solvent B); ¹H NMR (1:4 CD_3CN/D_2O) δ 0.93 and 1.13 [m, 4H, $CH_2(cPr)$], 2.04 (s, 2H, $H_{1''}$ and $H_{5''}$), 2.54 (s, 1H, $H_{6''}$), 3.52 (s, 3H, OCH₃), 3.59 and 3.82 (AB system, 4H, H_{2"} and $H_{4''}$, ${}^{2}J_{H-H} = 9.7 \text{ Hz}$, 4.10 [m, 1H, CH(cPr)], 7.63 (d, 1H, H₅, ${}^{3}J_{\rm H-F} = 13.1 \text{ Hz}$, 8.75 (s, 1H, H₂); ${}^{19}F$ NMR (1:4) CD_3CN/D_2O) δ -74.4 (s, 4.8F, TFA), -117.4 (s, 1F, F₆); ¹³C NMR (1:4 CD₃CN/D₂O) δ 9.3 [CH₂(cPr)], 20.9 (C_{1"} and C5"), 29.9 (C6"), 41.1 [CH(cPr)], 51.2 (d, C2" and $C_{4''}$, ${}^{4}J_{C-F} = 5.6$ Hz), 62.4 (OCH₃), 106.6 (C₃), 106.7 (d, C₅, ${}^{2}J_{C-F} = 24.1$ Hz), 119.9 (d, C₁₀, ${}^{3}J_{C-F} = 8.0$ Hz), 134.5 (C₉), 136.1 (d, C₇, ${}^{2}J_{C-F} = 11.4$ Hz), 144.8 (d, C₈, ${}^{3}J_{C-F} = 6.9 \text{ Hz}$, 150.8 (C₂), 154.9 (d, C₆, ${}^{1}J_{C-F} =$ 250.1 Hz), 158.8 (q, CF_3CO_2H , ${}^2J_{C-F} = 31.7$ Hz), 166.3 [C(O)O], 176.5 (C₄). ESI-MS (positive mode): $(M + H)^+ =$ 374.2, $(M + Na)^+ = 396.2$, in agreement with the mass calculated for $M = C_{19}H_{20}FN_3O_4$ (373.14). ESI-HRMS

(positive mode): 374.1516 is in agreement with the mass calculated for $(M+H)=C_{19}H_{21}FN_3O_4$ (374.1516).

6.2.5.2. $7 - [(1\alpha, 5\alpha, 6\alpha) - 6 - (Aminomethyl) - 3 - azabicyclo[3.1.0] - hex-3-yl] - 1 - cyclopropyl - 6 - fluoro - 1, 4 - dihydro - 8 - methoxy - 4 - oxo-3 - quinoline carboxylic acid,$ **2**

6.2.5.2.1. 1-Cyclopropyl-7- $[(1\alpha,5\alpha,6\alpha)-6-[[((1,1-dimethy$ lethoxy)carbonyl]amino]-methyl]-3-azabicyclo[3.1.0]hex-3yl]-6-fluoro-1,4-dihydro-8-methoxy-4-oxo-3-quinolinecarboxylic acid, 2-Boc. A solution of 24 (445 mg, 2.10 mmol) and 21a1 (157 mg, 0.46 mmol) in CH₃CN (14 mL) was refluxed for one week. After evaporation, the crude residue was dissolved in a 1:1 CHCl₃/H₂O mixture. The organic layer was extracted, dried over Na₂SO₄, filtered and evaporated. The yellow oily residue was purified by flash chromatography on silica gel (100:0 to 96:4 CHCl₃/MeOH) affording 2-Boc (180 mg, 0.37 mmol, 81%) as a colourless oil. $R_f = 0.85$ (9:1 CHCl₃/MeOH, UV); ¹H NMR (CDCl₃) δ 0.70 (tt, 1H, H_{6"}, ${}^{3}J_{H-H} = 3.4 \text{ Hz}, {}^{3}J_{H-H} = 6.9 \text{ Hz}$, 0.90 and 1.13 [2m, 4H, CH₂(cPr)], 1.33 [s, 9H, C(CH₃)₃], 1.47 (s, 2H, H_{1"} and H_{5"}), 3.02 (m, 2H, CH₂NHBoc), 3.49 (s, 3H, OCH₃), 3.53 (m, 2H, $H_{2''}$ and $H_{4''}$ exo or endo), 3.71 (d, 2H, $H_{2''}$ and $H_{4''}$ exo or endo, ${}^{2}J_{H-H} = 10.2 \text{ Hz}$), 3.95 (tt, 1H, CH(cPr), ${}^{3}J_{H-H}$ = 3.6 Hz, ${}^{3}J_{H-H}$ = 7.0 Hz), 4.93 (br s, 1H, NHBoc), 7.59 (d, 1H, H₅, ${}^{3}J_{H-F}$ = 13.4 Hz), 8.65 (s, 1H, H₂), 14.86 (br s, 1H, COOH); ¹⁹F NMR (CDCl₃) δ –118.7 (s, 1F, F6); ¹³C NMR (CDCl₃) δ 9.2 [CH₂(cPr)], 20.7 (C_{6"}), 21.0 (C_{1"} and C_{5"}), 28.1 [C(CH₃)₃], 40.3 (CH₂NHBoc), 41.9 [CH(cPr)], 51.9 (d, $C_{2''}$ and $C_{4''}$, ${}^{4}J_{C-F} = 7.3 \text{ Hz}$, 61.3 (OCH₃), 78.9 [C(CH₃)₃], 107.1 (C₃), 107.3 (d, C₅, ${}^{2}J_{C-F} = 24.2$ Hz), 119.4 (d, C₁₀, ${}^{4}J_{C-F} = 9.2 \text{ Hz}$), 133.9 (C₉), 136.7 (d, C₇, ${}^{2}J_{C-F} = 11.0 \text{ Hz}$), 143.3 (d, C_8 , ${}^3J_{C-F} = 6.6$ Hz), 149.4 (C_2), 154.6 (d, C_6 , ${}^{1}J_{C-F} = 252.1 \text{ Hz}$, 155.7 [NHC(O)O], 166.6 [C(O)O], 176.5 (d, C₄, $J_{C-F} = 3.3$ Hz).

6.2.5.2.2. Synthesis of 2 (as its 0.6 TFA salt). Likewise, the Boc deprotection procedure when applied to 2-Boc (114 mg, 0.234 mmol) afforded, after recrystallization (9:1 $H_2O/$ CH_3CN) and lyophilization, 2 as a white solid (103 mg, 0.148 mmol, 63%). $R_f = 0.35$ (80:20 CHCl₃/MeOH, UV); HPLC: $R_t = 7.4 \text{ min}$ (solvent A) and 13.2 min (solvent B); ¹H NMR (1:9 CD₃CN/D₂O) δ 0.93 [m, 2H, CH₂(cPr)], 1.13 [m, 3H, $CH_2(cPr)$ and $H_{6''}$], 1.66 (s, 2H, $H_{1''}$ and H_{5"}), 2.88 (d, 2H, CH₂NHBoc, ${}^{3}J_{H-H} = 7.5$ Hz), 3.49 (s, 3H, OCH₃), 3.53 and 3.75 (AB system, 4H, $H_{2''}$ and $H_{4''}$, ${}^{2}J_{H-H} = 10.4 \text{ Hz}$, 4.13 (tt, 1H, CH(cPr), ${}^{3}J_{H-H} = 7.2 \text{ Hz}$, ${}^{3}J_{\rm H-H} = 3.6$ Hz), 7.45 (d, 1H, H₅, ${}^{3}J_{\rm H-F} = 13.4$ Hz), 8.74 (s, 1H, H₂); ¹⁹F NMR (1:9 CD₃CN/D₂O) δ -74.4 (s, 1.8F, TFA), -117.2 (s, 1F, F₆); ¹³C NMR (1:9 CD₃CN/D₂O) δ 9.9 [CH₂(cPr)], 18.6 (s, C_{6"}), 22.6 (C_{1"} and C_{5"}), 42.2 and 42.5 [CH(cPr) and CH₂NH₂], 52.7 (d, $C_{2''}$ and $C_{4''}$, ${}^{4}J_{C-F} = 7.0 \text{ Hz}$), 62.7 (OCH₃), 107.0 (C₃), 107.5 (d, C₅, ${}^{2}J_{C-F} = 24.2 \text{ Hz}$, 119.9 (d, C₁₀, ${}^{3}J_{C-F} = 8.0 \text{ Hz}$), 135.7 (C₉), 138.4 (d, C₇, ${}^{2}J_{C-F} = 11.4$ Hz), 145.1 (d, C₈, ${}^{3}J_{C-F} =$ 7.0 Hz), 151.8 (C₂), 156.1 (d, C₆, ${}^{1}J_{C-F} = 250.7$ Hz), 169.5 [C(O)O], 177.6 (C₄). ESI-MS (positive mode): $(M + H)^+$ =388.2 is in agreement with the mass calculated for $M = C_{20}H_{22}FN_3O_4$ (387.16). ESI-HRMS (positive mode):

388.1656 is in agreement with the mass calculated for $(M + H) = C_{20}H_{23}FN_3O_4$ (386.1673).

6.2.5.3. 7-[$(1\alpha,5\alpha,6\alpha)$ -6-Amino-3-azabicyclo[3.1.0]hex-3-yl]-1-(2,4-difluoro-phenyl)-6-fluoro-1,4-dihydro-8-methoxy-4-oxo-3-quinolinecarboxylic acid, **3**

methylethoxy)carbonyl]-amino]-3-azabicyclo[3.1.0]hex-3-yl]-6-fluoro-1,4-dihydro-8-methoxy-4-oxo-3-quinolinecarboxylic acid. 3-Boc. The procedure, as described for 2-Boc, when applied to 23 (189 mg, 0.95 mmol) and 21a1 (157 mg, 0.38 mmol) in CH₃CN (8 mL) gave, after work-up and flash chromatography, **3-Boc** (151 mg, 0.277 mmol, 73%) as a colourless oil. $R_f = 0.70$ (9:1 CHCl₃/MeOH, UV); ¹H NMR (CDCl₃) δ 1.42 [s, 9H, C(CH₃)₃], 1.72 (s, 2H, H_{1"} and H_{5"}), 2.45 (s, 1H, H_{6"}), 3.07 (s, 3H, OCH₃), 3.38 [d, 1H, $H_{2''}$ or $H_{4''}$ endo or exo, ${}^{2}J_{H-H}$ = 10.1 Hz], 3.64 (s, 2H, $H_{2''}$ or $H_{4''}$ endo or exo), 3.94 [d, 1H, $H_{2''}$ or $H_{4''}$ endo or exo, ${}^{2}J_{H-H} = 10.4$ Hz], 4.76 (br s, 1H, NHBoc), 7.03 [m, 2H, H(Ar)], 7.45 (td, 1H, H(Ar), J = 8.7 Hz, J = 5.6 Hz), 7.85 (d, 1H, H₅, ${}^{3}J_{H-F} = 13.3$ Hz), 8.45 (s, 1H, H₂), 14.73 (br s, 1H, COOH); ¹⁹F NMR (CDCl₃) δ –106.7 and –117.3 (2d, 2F, F_{2'} and $F_{4'}$, ${}^{4}J_{F-F} = 8.2$ Hz), -117.8 (br s, 1F, F₆); ${}^{13}C$ NMR (CDCl₃) δ 24.4 (C_{1"} and C_{5"}), 28.4 [C(CH₃)₃], 31.8 (C_{6"}), 51.4 (d, C_{2"} or $C_{4''}$, ${}^{4}J_{C-F} = 7.0$ Hz), 52.1 (d, $C_{4''}$ or $C_{2''}$, ${}^{4}J_{C-F} = 7.7$ Hz), 60.8 (OCH₃), 79.9 [*C*(CH₃)₃], 104.9 (dd, $C_{3'}$, ²*J*_{C-F} = 26.7 Hz, ${}^{2}J_{C-F} = 23.1 \text{ Hz}$), 108.1 (d, C₅, ${}^{2}J_{C-F} = 24.2 \text{ Hz}$), 108.5 (C₃), 111.9 (dd, C₅', ${}^{2}J_{C-F} = 22.9 \text{ Hz}$, ${}^{4}J_{C-F} = 3.8 \text{ Hz}$), 119.8 (d, C₁₀, ${}^{3}J_{C-F} = 9.2$ Hz), 127.3 (d, C₆', ${}^{3}J_{C-F} = 10.3$ Hz), 129.2 (dd, C_{1'}, ${}^{2}J_{C-F} = 13.5 \text{ Hz}, {}^{4}J_{C-F} = 4.4 \text{ Hz}), 133.0 (C_{9}), 136.5 (d, C_{7}),$ ${}^{2}J_{C-F} = 11.3 \text{ Hz}$, 142.5 (d, C₈, ${}^{3}J_{C-F} = 7.0 \text{ Hz}$), 150.6 (C₂), 155.4 (d, C_6 , ${}^1J_{C-F} = 252.5$ Hz), 156.4 [NHC(O)O], 157.3 (dd, $C_{2'}$ or $C_{4'}$, ${}^{1}J_{C-F} = 254.3$ Hz, ${}^{3}J_{C-F} = 12.4$ Hz), 162.8 (dd, $C_{2'}$ or $C_{4'}$, ${}^{1}J_{C-F} = 253.6 \text{ Hz}$, ${}^{3}J_{C-F} = 11.2 \text{ Hz}$), 166.6 [C(O)O], 177.4 $(d, C_4, J_{C-F} = 2.9 \text{ Hz}).$

6.2.5.3.2. Synthesis of 3 (as its 1.6 TFA salt). Likewise, 3-Boc (41 mg, 0.0753 mmol) gave, after Boc deprotection, recrystallization (9:1 H₂O/CH₃CN) and lyophilization, **3** (33 mg, 0.053 mmol, 70%) as a pale yellow solid. $R_f = 0.30$ (84:14:2) CHCl₃/MeOH/H₂O, UV); HPLC: $R_t = 9.0$ min (solvent A) and 14.6 min (solvent B); ¹H NMR (1:4 CD₃CN/D₂O) δ 1.98 (m, 2H, H_{1"} and H_{5"}), 2.46 (br s, 1H, H_{6"}), 2.97 (s, 3H, OCH₃), 3.28 and 3.57 (2d, 1H each, $H_{2''}$ or $H_{4''}$ endo or exo, $J_{H-H} =$ 7.8 Hz), 3.45 and 3.82 (2d, 1H each, $H_{2''}$ or $H_{4''}$ endo or exo, $J_{\rm H-H} = 9.1$ Hz), 7.11 [m, 2H, H(Ar)], 7.50 (d, 1H, H₅, ${}^{3}J_{\rm H-F}$ = 13.0 Hz, 7.63 [m, 1H, H(Ar)], 8.84 (s, 1H, H₂); ¹⁹F NMR $(1:4 \text{ CD}_3 \text{CN/D}_2 \text{O}) \delta - 74.4 \text{ (s, 4.8F, TFA)}, -106.7 \text{ and } -117.9$ (2d, 2F, $F_{2'}$ and $F_{4'}$, ${}^{4}J_{F-F} = 7.9$ Hz), -117.5 (s, 1F, F_{6}); ${}^{13}C$ NMR (1:4 CD₃CN/D₂O) δ 21.5 and 21.6 (C_{1"} and C_{5"}), 30.7 $(C_{6''})$, 51.5 (d, $C_{2''}$ or $C_{4''}$, ${}^{4}J_{C-F} = 6.9$ Hz), 52.2 (d, $C_{4''}$ or $C_{2''}$, ${}^{4}J_{C-F} = 6.9 \text{ Hz}$), 61.8 (s, OCH₃), 105.1 (dd, C_{3'}, ${}^{2}J_{C-F} =$ 27.0 Hz, ${}^{2}J_{C-F} = 23.5$ Hz), 107.6 (d, C₅, ${}^{2}J_{C-F} = 24.1$ Hz), 107.8 (C₃), 112.7 (d, C_{5'}, ${}^{2}J_{C-F} = 21.8$ Hz), 120.0 (d, C₁₀, ${}^{3}J_{C-F} = 7.4 \text{ Hz}$), 128.7 (d, C_{6'}, ${}^{3}J_{C-F} = 10.7 \text{ Hz}$), 129.5 (dd, $C_{1'}$, ${}^{2}J_{C-F} = 13.2 \text{ Hz}$, ${}^{4}J_{C-F} = 4.0 \text{ Hz}$, 133.8 (C₉), 137.3 (d, C₁, ${}^{2}J_{C-F} = 11.5 \text{ Hz}$), 143.7 (d, C₈, ${}^{3}J_{C-F} = 6.9 \text{ Hz}$), 152.1 (C₂), 156.1 (d, C₆, ${}^{1}J_{C-F} = 251.0 \text{ Hz}$), 157.7 (dd, C_{2'} or C_{4'}, ${}^{1}J_{C-F} = 251.3 \text{ Hz}$, ${}^{3}J_{C-F} = 12.6 \text{ Hz}$), 162.5 (dd, C_{2'} or $C_{4'}$, ${}^{1}J_{C-F} = 251.3 \text{ Hz}$, ${}^{3}J_{C-F} = 10.9 \text{ Hz}$), 168.2 [C(O)O], 178.0 (C₄). ESI-MS (positive mode): (M + H)⁺ = 446.1 is in agreement with the mass calculated for M = $C_{22}H_{18}F_3N_3O_4$ (445.12). ESI-HRMS (positive mode): 446.1313 is in agreement with the mass calculated for (M + H) = $C_{22}H_{19}F_3N_3O_4$ (446.1328).

6.2.5.4. $7-[(1\alpha,5\alpha,6\alpha)-6-(Aminomethyl)-3-azabicyclo[3.1.0]-hex-3-yl]-1-(2,4-difluorophenyl)-6-fluoro-1,4-dihydro-8-me-thoxy-4-oxo-3-quinolinecarboxylic acid,$ **4**

6.2.5.4.1. $1-(2,4-Diffuor ophenvl)-7-[(1\alpha,5\alpha,6\alpha)-6-[[[(1,1-\alpha,5\alpha,6\alpha)-6-[[(1,1-\alpha,5\alpha,6\alpha)-6-[[(1,1-\alpha,5\alpha,6\alpha)-6-([(1,1-\alpha,5\alpha,2\alpha)-6-([(1,1-\alpha,5\alpha,2\alpha)-6-([(1,1-\alpha,3\alpha,2\alpha)-6-([(1,1-\alpha,3\alpha,2\alpha)-6-((1,1-\alpha,3\alpha)-6-((1,1-\alpha,3\alpha)-6-((1,1-\alpha,3\alpha)-6-((1,1-\alpha,3\alpha)-6-((1,1-\alpha,3\alpha)-6-((1,1-\alpha,3\alpha)-6-((1,1-\alpha,3\alpha)-6-((1,1-\alpha,3\alpha)-6-((1,1-\alpha,3\alpha)-6-((1,1-\alpha,3\alpha)-6-((1,1-\alpha,3\alpha)-6-((1,1-\alpha,3\alpha)-6-((1,1-\alpha,3\alpha)-6-((1,1-\alpha,3\alpha)-6-((1,1-\alpha,3\alpha)-6-((1,1-\alpha,3\alpha)-6-((1,$ dimethylethoxy)carbonyl]-amino]methyl]-3-azabicyclo[3.1.0]hex-3-yl]-6-fluoro-1,4-dihydro-8-methoxy-4-oxo-3-quinolinecarboxylic acid, 4-Boc. The procedure, as described for 2-Boc, when applied to 24 (211 mg, 0.99 mmol) and 21a2 (145 mg, 0.35 mmol) gave after work-up and flash chromatography 4-Boc (173 mg, 0.31 mmol, 89%) as a colourless oil. $R_f = 0.75$ (9:1 CHCl₃/MeOH, UV); ¹H NMR (CDCl₃) δ 0.94 (tt, 1H, $H_{6''}$, ${}^{3}J_{H-H} = 3.4$ Hz, ${}^{3}J_{H-H} = 6.8$ Hz), 1.37 [s, 9H, C(CH₃)₃], 1.56 (s, 2H, H_{1"} and H_{5"}), 3.03 (s, 3H, OCH₃), 3.40–3.80 (m, 6H, $H_{2''}$, $H_{4''}$ and CH_2 NHBoc), 4.79 (br s, 1H, NHBoc), 6.95 [m, 2H, H(Ar)], 7.49 [m, 1H, H(Ar)], 7.73 (d, 1H, H₅, ${}^{3}J_{H-F} = 13.4$ Hz), 8.38 (s, 1H, H₂), 14.69 (br s, 1H, COOH); 19 F NMR (CDCl₃) δ -106.8 and -117.4 (2d, 2F, $F_{2'}$ and $F_{4'}$, ${}^{4}J_{F-F} = 8.3$ Hz), -117.6 (br s, 1F, F_{6}); ¹³C NMR (CDCl₃) δ 20.9 and 21.1 (C_{1"} and C_{5"}), 21.2 (C_{6"}), 28.4 [C(CH₃)₃], 42.2 (CH₂NHBoc), 51.7 (d, C_{2"} or $C_{4''}$, ${}^{4}J_{C-F} = 7.3 \text{ Hz}$), 52.5 (d, $C_{4''}$ or $C_{2''}$, ${}^{4}J_{C-F} = 7.2 \text{ Hz}$), 60.7 (OCH₃), 79.3 [C(CH₃)₃], 104.7 (dd, C_{3'}, ${}^{2}J_{C-F}$ = 26.7 Hz, ${}^{2}J_{C-F} = 22.7$ Hz), 107.8 (d, C₅, ${}^{2}J_{C-F} = 24.5$ Hz), 108.2 (C₃), 111.7 (dd, C_{5'}, ${}^{2}J_{C-F} = 22.9$ Hz, ${}^{4}J_{C-F} = 3.8$ Hz), 119.8 (d, C_{10} , ${}^{3}J_{C-F} = 9.2$ Hz), 127.3 (d, $C_{6'}$, ${}^{3}J_{C-F} = 9.5$ Hz), 129.1 (dd, $C_{1'}$, ${}^{2}J_{C-F} = 13.4$ Hz, ${}^{4}J_{C-F} = 4.2$ Hz), 132.9 (C₉), 137.0 (d, C₇, ${}^{2}J_{C-F} = 11.0$ Hz), 142.2 (d, C₈, ${}^{3}J_{C-F} = 7.0 \text{ Hz}$, 150.4 (C₂), 155.2 (d, C₆, ${}^{1}J_{C-F} = 252.5 \text{ Hz}$), 155.9 [NHC(O)O], 157.1 (dd, $C_{2'}$ or $C_{4'}$, ${}^{1}J_{C-F} = 254.3$ Hz, ${}^{3}J_{C-F} = 12.4$ Hz), 162.7 (dd, $C_{2'}$ or $C_{4'}$, ${}^{1}J_{C-F} =$ 252.9 Hz, ${}^{3}J_{C-F} = 11.0$ Hz), 166.4 [C(O)O], 177.1 (d, C₄, $J_{\rm C-F} = 3.3$ Hz).

6.2.5.4.2. Synthesis of 4 (as its 1.2 TFA salt). Likewise, compound 4-Boc (63 mg, 0.113 mmol) gave, after Boc deprotection, recrystallization (9:1 H₂O/CH₃CN) and lyophilization, 4 (43 mg, 0.072 mmol, 64%) as a pale yellow solid. $R_f = 0.20$ (84:14:2 CHCl₃/MeOH/H₂O, UV); HPLC: $R_f =$ 14.0 min (solvent A) and 16.1 min (solvent B); mp = 126-130 °C; ¹H NMR (1:4 CD₃CN/D₂O) δ 1.00 (m, 1H, H_{6"}), 1.59 (s, 2H, $H_{1''}$ and $H_{5''}$), 2.83 (d, 2H, CH_2NH_2 , ${}^{3}J_{H-H} =$ 5.8 Hz), 2.98 (s, 3H, OCH₃), 3.27 and 3.59 (2d, 1H each, $H_{2''}$ or $H_{4''}$ endo or exo, $J_{H-H} = 9.5$ Hz), 3.38 and 3.82 (2d, 1H each, $H_{2''}$ or $H_{4''}$ endo or exo, $J_{H-H} = 10.0$ Hz), 7.13 [m, 2H, H (Ar)], 7.66 [m, 1H, H (Ar)], 7.73 (d, 1H, H₅, ${}^{3}J_{H-}$ $_{\rm F} = 13.4$ Hz), 8.48 (s, 1H, H₂); ¹⁹F NMR (1:4 CD₃CN/D₂O) δ –74.4 (s, 3.6F, TFA), –107.3 and –118.1 (2d, 2F, F_{2^\prime} and $F_{4'}$, ${}^{4}J_{F-F} = 7.6 \text{ Hz}$), -116.2 (s, 1F, F_{6}); ${}^{13}C$ NMR (1:4) CD₃CN/D₂O) δ 18.4 (C_{6"}), 22.3 and 22.4 (C_{1"} and C_{5"}), 42.2 (CH₂NH₂), 52.0 (d, C_{2"} or C_{4"}, ⁴J_{C-F} = 5.7 Hz), 52.9 (br s, $C_{4''}$ or $C_{2''}$), 61.7 (OCH₃), 105.2 (t, $C_{3'}$, ${}^{2}J_{C-F}$ =

25.2 Hz), 107.9 (d, C₅, ${}^{2}J_{C-F} = 21.8$ Hz), 108.1 (C₃), 112.8 (dd, C₅', ${}^{2}J_{C-F} = 20.7$ Hz, ${}^{4}J_{C-F} = 4.4$ Hz), 119.9 (d, C₁₀, ${}^{3}J_{C-F} = 3.3$ Hz), 128.8 (d, C₆', ${}^{3}J_{C-F} = 8.0$ Hz), 129.8 (dd, C_{1'}, ${}^{2}J_{C-F} = 13.5$ Hz, ${}^{4}J_{C-F} = 4.8$ Hz), 134.2 (C₉), 138.2 (d, C₇, ${}^{2}J_{C-F} = 12.6$ Hz), 143.4 (d, C₈, ${}^{3}J_{C-F} = 6.6$ Hz), 152.3 (C₂), 156.2 (d, C₆, ${}^{1}J_{C-F} = 253.5$ Hz), 157.9 (d, C_{2'} or C_{4'}, ${}^{1}J_{C-F} = 251.0$ Hz), 165.6 (d, C_{2'} or C_{4'}, ${}^{1}J_{C-F} = 250.0$ Hz), 168.7 [C(O)O], 178.1 (C₄). ESI-MS (positive mode): (M + H)⁺ = 460.2, (M + Na)⁺ = 482.2 is in agreement with the mass calculated for M = C₂₃H₂₀F₃N₃O₄ (459.14). ESI-MRMS (positive mode): 460.1488 is in agreement with the mass calculated for (M + H) = C₂₃H₂₁F₃N₃O₄ (460.1484).

6.3. Biological assays

6.3.1. In vitro antiparasitical activities

6.3.1.1. Anti-T. gondii activity. Briefly, following a previously described method [22], the virulent RH strain of T. gondii was maintained in mice by intraperitoneal passage every two days. For each experiment, tachyzoites were collected from the peritoneal cavity of infected mice then resuspended in physiological saline. Tissue cultures and drug tests were carried out using MRC5 fibroblast tissue cultures. Confluent monolayers prepared in 96-well tissue culture plates were inoculated with 2000 fresh tachyzoites. After 4 h, drugs at various concentrations were added into the culture medium and culture plates were incubated for an additional 72 h. Each culture plate comprised eight negative control (without T. gondii) and eight positive control wells (without drug). After incubation, the plates were examined microscopically for cytopathic effects and thereafter fixed with cold methanol for 5 min. Toxoplasma growth was assessed by enzyme linked immunoassay (ELISA) performed directly on the fixed cultures using a peroxidase labeled monoclonal antibody directed against the SAG-1 surface protein of T. gondii. After addition of the substrate, spectrophotometric readings were recorded at a wavelength of 405 nm with blank on the negative control well. For each well, the results were expressed as optical density (OD) values. The effect of each drug at various concentrations was described by plotting the OD values as a function of the logarithm of the concentration and a linear regression model was used to summarize the concentration-effect relationship and to determine the IC_{50} .

6.3.1.2. Anti-P. falciparum activity. Cultures of the NF54-R chloroquine-resistant derived from the NF54 strain were maintained in continuous culture according to Ref. [64]. The in vitro activities of the drugs were evaluated by using the methods described in Ref. [65]. Two hundred microliters of ring stage parasitized erythrocytes (parasitemia, 0.5%; hematocrit, 1.8%) were distributed in 96-well plates preloaded with nine concentrations (0.025–166 µg/mL) of each drug in triplicate and with serial dilutions of chloroquine in positive control wells. After 72 h, [³H] hypoxanthine was added to each well and then plates were incubated for an additional 24 h. Parasites were harvested, and incorporation of radioactivity was determined by liquid scintillation counting. Experiments were repeated twice.

6.3.1.3. Anti-P. yoelii yoelii activity. Mouse hepatocyte cultures were prepared in Lab-Tek slides as described in Ref. [66] and then incubated for 24 h before sporozoite inoculation. Sporozoites were obtained by dissection of the salivary glands of Anopheles stephensi mosquitoes infected with P. yoelii yoelii (265 By). Dilutions of drugs were made in culture medium (1–100 µg/mL), and 8×10^4 sporozoites of P. voelii voelii were added to hepatocyte cultures. Each drug was tested in four replicates. The culture medium containing the drug was renewed every 24 h, thus maintaining a correct concentration. Cultures were incubated for 48 h for P. yoelii yoelii and then fixed with cold methanol. Schizonts were evaluated using an immunofluorescence test with an anti-HSP-i72 polyclonal antibody. Both the numbers and size of schizonts in the culture were taken into account to assess drug activity. Experiments were repeated twice.

6.3.2. Inhibitory activity against DNA gyrase of *M. tuberculosis*

A reaction mixture containing 2U of purified M. tuberculosis DNA gyrase, DNA gyrase assay buffer (40 mM Tris-HCl, pH 7.5), 25 mM KCl, 6 mM magnesium acetate, 2 mM spermidine, 4 mM dithiothreitol, 0.1 mg of Escherichia coli tRNA per mL, bovine serum albumin (0.36 mg/mL), 100 mM potassium glutamate, 1 mM ATP (pH 8) and relaxed pBR322 DNA (0.4 μ g) as the substrate were incubated with or without increasing concentrations of quinolones at 37 °C for 1 h. Reactions were terminated by the addition of 50% glycerol containing 0.25% bromophenol blue, and the total reaction mixture was subjected to electrophoresis in a 1% agarose gel in $0.5 \times$ TBE buffer. After running for 5.5 h at 50 V, the gel was stained with ethidium bromide (0.7 μ g/mL). One unit of enzyme activity was defined as the amount of DNA gyrase that converted 400 ng of relaxed pBR322 to the supercoiled form in 1 h at 37 °C. DNA gyrase of E. coli was used as a positive control for the assay procedures and buffer. Inhibition of the supercoiling activity of the recombinant DNA gyrase was performed by the following method. A reaction mixture containing 1 U of purified DNA gyrase and increasing concentrations of quinolones was incubated as describe above. The inhibitory effect of quinolones on DNA gyrase was assayed by determining the concentration of drug required to inhibit the supercoiling activity of the enzyme by 50% (IC₅₀).

6.3.3. In vitro antibacterial activity against

M. tuberculosis – determination of MICs

MICs were determined by the 1% standard proportion method on 7H11 agar supplemented with 10% oleic acid—albumin—dextrose—catalase (OSI) [67]. Bacterial suspensions were prepared by diluting *M. tuberculosis* H37Rv grown in 7H9 medium at 37 °C for 21–36 days in normal saline to match that of a standard 1 mg/mL suspension of *Mycobacterium bovis* BCG. Those suspensions were further diluted for MIC determination. MIC values were defined as the lowest concentration of quinolone that inhibited more than 99% of the bacterial growth.

Acknowledgements

We thank the Centre National de la Recherche Scientifique (CNRS) for financial support, and MNERT (G.A.) for grant.

References

- C. Dye, S. Scheele, P. Dolin, V. Pathania, M.C. Raviglione, JAMA 282 (1999) 677–686.
- [2] T.R. Frieden, T.R. Sterling, S.S. Munsiff, C.J. Watt, C. Dye, Lancet 362 (2003) 887–899.
- [3] J.G. Montoya, O. Liesenfeld, Lancet 363 (2004) 1965-1976.
- [4] F. Derouin, Curr. Opin. Invest. Drugs 2 (2001) 1368-1374.
- [5] R. Carter, K.N. Mendis, Clin. Microbiol. Rev. 15 (2002) 564-594.
- [6] A.F. Cowman, Int. J. Parasitol. 31 (2001) 871-878.
- [7] T.E. Wellems, Nat. Med. 10 (2004) 1169-1171.
- [8] K. Drlica, X. Zhao, Microbiol. Mol. Biol. Rev. 61 (1997) 377-392.
- [9] R.C. Owens Jr., P.G. Ambrose, Med. Clin. North Am. 84 (2000) 1447–1469.
- [10] D.C. Hooper, Clin. Infect. Dis. 32 (2001) S9-S15.
- [11] D.C. Hooper, Emerg. Infect. Dis. 7 (2001) 337-341.
- [12] A.M. Emmerson, A.M. Jones, J. Antimicrob. Chemother. 51 (2003) 13–20.
- [13] P.M. Hawkey, J. Antimicrob. Chemother. 51 (2003) 29-35.
- [14] J. Ruiz, J. Antimicrob. Chemother. 51 (2003) 1109-1117.
- [15] G. Anquetin, J. Greiner, P. Vierling, Curr. Drug Targets: Infect. Disord. 5 (2005) 227–245.
- [16] F.L. Alovero, X.-S. Pan, J.E. Morris, R.H. Manzo, L.M. Fisher, Antimicrob. Agents Chemother. 44 (2000) 320–325.
- [17] F.M. Barnard, A. Maxwell, Antimicrob. Agents Chemother 45 (2001) 1994–2000.
- [18] J.J. Champoux, Annu. Rev. Biochem. 70 (2001) 369-413.
- [19] L.A. Mitscher, Chem. Rev. 105 (2005) 559-592.
- [20] G.Y. Lesher, E.J. Froelich, M.D. Gruett, J.H. Bailey, R.P. Brundage, J. Med. Pharm. Chem. 5 (1962) 1063–1065.
- [21] A.A. Khan, F.G. Araujo, K.E. Brighty, T.D. Gootz, J.S. Remington, Antimicrob. Agents Chemother. 43 (1999) 1783–1787.
- [22] R. Gozalbes, M. Brun-Pascaud, R. Garcia-Domenech, J. Galvez, P.-M. Girard, J.-P. Doucet, F. Derouin, Antimicrob. Agents Chemother. 44 (2000) 2771–2776.
- [23] N. Mahmoudi, L. Ciceron, J.-F. Franetich, K. Farhati, O. Silvie, W. Eling, R. Sauerwein, M. Danis, D. Mazier, F. Derouin, Antimicrob. Agents Chemother. 47 (2003) 2636–2639.
- [24] G. Anquetin, M. Rouquayrol, N. Mahmoudi, M. Santillana-Hayat, R. Gozalbes, J. Greiner, K. Farhati, F. Derouin, R. Guedj, P. Vierling, Bioorg. Med. Chem. Lett. 14 (2004) 2773–2776.
- [25] E. Cambau, W. Sougakoff, M. Besson, C. Truffot-Pernot, J. Grosset, V. Jarlier, J. Infect. Dis. 170 (1994) 479–483.
- [26] M.W.R. Pletz, A. De Roux, A. Roth, K.-H. Neumann, H. Mauch, H. Lode, Antimicrob. Agents Chemother. 48 (2004) 780–782.
- [27] N. Gutierrez-Zufiaurre, Rev. Esp. Quimioter. 17 (2004) 232-243.
- [28] A. Aubry, X.S. Pan, L.M. Fisher, V. Jarlier, E. Cambau, Antimicrob. Agents Chemother. 48 (2004) 1281–1288.
- [29] A.D. Da Silva, M.V. De Almeida, M.V.N. De Souza, M.R.C. Couri, Curr. Med. Chem. 10 (2003) 21–39.
- [30] V. Cecchetti, O. Tabarrini, S. Sabatini, H. Miao, E. Filipponi, A. Fravolini, Bioorg. Med. Chem. 7 (1999) 2465–2471.
- [31] K. Grohe, H. Heitzer, Liebigs Ann. Chem. (1987) 29-37.
- [32] V. Cecchetti, A. Fravolini, M.C. Lorenzini, O. Tabarrini, P. Terni, T. Xin, J. Med. Chem. 39 (1996) 436–445.
- [33] V. Cecchetti, A. Fravolini, M. Palumbo, C. Sissi, O. Tabarrini, P. Terni, T. Xin, J. Med. Chem. 39 (1996) 4952–4957.

- [34] G. Anquetin, J. Greiner, P. Vierling, Tetrahedron 61 (2005) 8394-8404.
- [35] S.E. Hagen, J.M. Domagala, J. Heterocycl. Chem. 27 (1990) 1609– 1616.
- [36] J.P. Sanchez, R.D. Gogliotti, J.M. Domagala, S.J. Gracheck, M.D. Huband, J.A. Sesnie, M.A. Cohen, M.A. Shapiro, J. Med. Chem. 38 (1995) 4478–4487.
- [37] K.E. Brighty, M.J. Castaldi, Synlett (1996) 1097-1099.
- [38] K.E. Brighty, US Pat. 5,229,396, 1993.
- [39] W.E. Truce, D.G. Brady, J. Org. Chem. 31 (1966) 3543-3550.
- [40] S.E. Hagen, J.M. Domagala, C.L. Heifetz, J. Johnson, J. Med. Chem. 34 (1991) 1155–1161.
- [41] K. Grohe, H. Heitzer, Liebigs Ann. Chem. (1987) 871-879.
- [42] M. Vales, V. Lokshin, G. Pepe, A. Samat, R. Guglielmetti, Synthesis (2001) 2419–2426.
- [43] T. Yoshida, Y. Yamamoto, H. Orita, M. Kakiuchi, Y. Takahashi, M. Itakura, N. Kado, K. Mitani, S. Yasuda, H. Kato, Y. Itoh, Chem. Pharm. Bull. 44 (1996) 1074–1085.
- [44] Y. Kuramoto, Y. Ohshita, J. Yoshida, A. Yazaki, M. Shiro, T. Koike, J. Med. Chem. 46 (2003) 1905–1917.
- [45] J.M. Domagala, S.E. Hagen, T. Joannides, J.S. Kiely, E. Laborde, M.C. Schroeder, J.A. Sesnie, M.A. Shapiro, M.J. Suto, S. Vanderroest, J. Med. Chem. 36 (1993) 871–882.
- [46] U. Holzgrabe, S.K. Branch, Magn. Reson. Chem. 32 (1994) 192-196.
- [47] M.R. Jacobs, Curr. Pharm. Des. 10 (2004) 3213-3220.
- [48] L.A. Mitscher, Z.K. Ma, in: A.R. Ronald, D.E. Low (Eds.), Fluoroquinolone Antibiotics, Birkhaeuser Verlag, Basel, 2003, pp. 11–48.
- [49] B. Ledoussal, J.-I.K. Almstead, J.L. Gray, E.X. Hu, S. Roychoudhury, Curr. Med. Chem.: Agents 2 (2003) 13–25.

- [50] L.R. Peterson, Clin. Infect. Dis. 33 (2001) S180-S186.
- [51] R. Gozalbes, J.P. Doucet, F. Derouin, Curr. Drug Targets: Infect. Disord. 2 (2002) 93–102.
- [52] R. Gozalbes, J. Galvez, R. Garcia-Domenech, F. Derouin, SAR QSAR Environ. Res. 10 (1999) 47–60.
- [53] L.B. Kier, L.H. Hall, Pharm. Res. 7 (1990) 801-807.
- [54] C.Y. Hong, S.H. Kim, Y.K. Kim, Bioorg. Med. Chem. Lett. 7 (1997) 1875–1878.
- [55] X.E. Hu, N.K. Kim, J.L. Gray, J.-I.K. Almstead, W.L. Seibel, B. Ledoussal, J. Med. Chem. 46 (2003) 3655–3661.
- [56] H. Inagaki, S. Miyauchi, R.N. Miyauchi, H.C. Kawato, H. Ohki, N. Matsuhashi, K. Kawakami, H. Takahashi, M. Takemura, J. Med. Chem. 46 (2003) 1005–1015.
- [57] J.M. Domagala, S.E. Hagen, J.S. Kiely, PCT Int. Appl. (1989) 6649.
- [58] S.R. Mundla, J.L. Randall, PCT Int. Appl. (2002) 48113.
- [59] A. De Sarro, G. De Sarro, Curr. Med. Chem. 8 (2001) 371-384.
- [60] Y. Dong, X. Zhao, B.N. Kreiswirth, K. Drlica, Antimicrob. Agents Chemother. 44 (2000) 2581–2584.
- [61] Y. Dong, C. Xu, X. Zhao, J. Domagala, K. Drlica, Antimicrob. Agents Chemother. 42 (1998) 2978–2984.
- [62] X. Zhao, C. Xu, J. Domagala, K. Drlica, Proc. Natl. Acad. Sci. U.S.A. 94 (1997) 13991–13996.
- [63] K. Ataka, M. Oku, Eur. Pat. 271,275, 1988.
- [64] W. Trager, J.B. Jensen, Science 193 (1976) 673-675.
- [65] R.E. Desjardins, C.J. Canfield, J.D. Haynes, J.D. Chulay, Antimicrob. Agents Chemother. 16 (1979) 710–718.
- [66] L.K. Basco, P. Ringwald, J.F. Franetich, D. Mazier, Trans. R. Soc. Trop. Med. Hyg. 93 (1999) 651–652.
- [67] B. Ji, C. Truffot-Pernot, J. Grosset, Tubercle 72 (1991) 181-186.