Contents lists available at ScienceDirect



Journal of Photochemistry & Photobiology, A: Chemistry

journal homepage: www.elsevier.com/locate/jphotochem



# The synergy of CHEF and ICT toward fluorescence 'turn-on' probes based on push-pull benzothiazoles for selective detection of ${\rm Cu}^{2+}$ in acetonitrile/ water mixture

Jukkrit Nootem<sup>a</sup>, Rathawat Daengngern<sup>b</sup>, Chanchai Sattayanon<sup>g</sup>, Worawat Wattanathana<sup>c</sup>, Suttipong Wannapaiboon<sup>d</sup>, Paitoon Rashatasakhon<sup>e,f</sup>, Kantapat Chansaenpak<sup>a,f,\*</sup>

<sup>a</sup> National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand

<sup>b</sup> Integrated Applied Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand

<sup>c</sup> Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Ladyao, Chatuchak, Bangkok, 10900, Thailand

<sup>d</sup> Synchrotron Light Research Institute, 111 University Avenue, Suranaree, Muang, Nakhon, Ratchasima, 30000, Thailand

<sup>e</sup> Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand

<sup>f</sup> Research Network of Nanotec-CU on Nanotechnology for Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok,

10330, Thailand

<sup>g</sup> School of Liberal Arts, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand

# ARTICLE INFO

Keywords: Fluorescence Sensor Copper Benzothiazole Drinking water

#### ABSTRACT

New push-pull schiff base ligands based on benzothiazole (**BZ**) unit were developed for the selective detection of  $Cu^{2+}$  through fluorescence 'turn-on' mechanism. These derivatives with electron withdrawing trifluoromethyl (-CF<sub>3</sub>) and cyano (-CN) substituents (**BZ2** and **BZ3**) demonstrated a prominent fluorescence enhancement upon copper ion binding which could be the results from the synergistic effect between the chelation-enhanced fluorescence (CHEF) and the intramolecular charge transfer (ICT) processes. In addition, these compounds displayed 1:1 binding with  $Cu^{2+}$  with low limits of detection of 0.77 µM and 0.64 µM for **BZ2** and **BZ3**, respectively, in acetonitrile-water (3:1 v/v) media. The electronic and photophysical properties of these **BZ** ligands and the copper ion complexes were modelled by the density functional theory (DFT) and the time-dependent density functional theory (TD-DFT) calculations, respectively. Analysis of X-ray absorption spectra probed at Cu K-edge of  $Cu^{2+}$ -**BZ** mixtures revealed the complex formation of **BZ** ligands with the targeted  $Cu^{2+}$  and confirmed the non-centrosymetric structures of the complexes as predicted by the DFT calculation. The electron density distributions of the HOMO-LUMOs in the computational results as well as large stokes shifts of the ligand-metal complexes in the experimental data confirmed the strong ICT effect after  $Cu^{2+}$  binding which is a key process promoting fluorescence 'turn-on' mechanism.

# 1. Introduction

Copper ion  $(Cu^{2+})$  is the third most abundant transition metal ion in human body after ferrous  $(Fe^{2+})$  and zinc  $(Zn^{2+})$  ions, respectively [1]. It plays essential roles in several biological processes, such as a cofactor for electron transfers in many proteins or a catalyst for redox reactions in biological pathways. However, excessive uptake of copper ions in human can cause severe neurodegenerative diseases, including, Alzheimer, Parkinson, Huntington and Prion diseases [2]. In addition, long-term exposure to copper ion can give rise to liver or kidney damage as well as gastrointestinal disturbance [3,4]. Due to these detrimental effects to human health, fluorescent sensors for  $Cu^{2+}$  have gained much attention and a number of them have been developed to detect copper contaminants in environments, waters, and cellular matrices [5–8].

 $Cu^{2+}$  ion is well known as a fluorescence quencher due to its paramagnetic effect, so that, most of fluorescent chemosensors detected  $Cu^{2+}$ via fluorescence quenching processes. [9–14] However, chemosensors possessing fluorescence enhancement are more desirable as they can be simply monitored and more applicable for biological studies, such as, cellular or small animal imaging [7,15,16]. The fluorescence turn-on

https://doi.org/10.1016/j.jphotochem.2021.113318

Received 26 January 2021; Received in revised form 3 April 2021; Accepted 21 April 2021 Available online 25 April 2021 1010-6030/© 2021 Elsevier B.V. All rights reserved.

<sup>\*</sup> Corresponding author at: National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand.

E-mail address: kantapat.cha@nanotec.or.th (K. Chansaenpak).



Fig. 1. The proposed push-pull benzothiazole molecules in this work.

probes can be constructed based on various mechanisms, such as, chelation-induced enhanced fluorescence (CHEF) [17], intramolecular charge transfer (ICT) [18], excited-state intramolecular proton transfer (ESIPT) [19], and fluorescence resonance energy transfer (FRET) [20]. Among these, CHEF plays a vital role in metal sensing as most metal ions tend to chelate with the organic donor ligands. Indeed, CHEF phenomenon leads to an increased conjugation in organic molecule upon metal binding which could facilitate ICT process throughout the pi-systems yielding fluorescence enhancement [21]. However, the fluorescence probes relying on the synergy of CHEF and ICT are scarcely reported in literature, therefore, there is still a large room for improvement.

As part of our investigations on fluorescent sensors, we pinned our interest to the benzothiazole (**BZ**) backbone due to its ease of preparation and functionalization as well as its intrinsic optical properties. [22–30] Similar to other fluorescence sensors, most of benzothiazole derivatives detected  $Cu^{2+}$  through fluorescence turn-off processes. [3, 31–35] Only a few examples can sense  $Cu^{2+}$  via fluorescence turn-on pathway. [36] In this work, we have prepared novel push-pull benzothiazole derivatives employing a thiazole unit as an electron donor group and electron-withdrawing (EWG) functionalized phenylene as an electron acceptor moiety to acquire ICT effect (Fig. 1). The two nitrogen atoms in the proposed molecules are aimed to chelate  $Cu^{2+}$  ion leading to fluorescence enhancement via CHEF and ICT processes. The experimental details as well as density functional theory (DFT) calculation results regarding  $Cu^{2+}$  sensing were presented in this report.

# 2. Experimental section

## 2.1. Materials and instruments

2-Hydrazinobenzothiazole, benzaldehyde, 4-(trifluoromethyl)benzaldehvde, 4-formylbenzonitrile, 4-(diethylamino)benzaldehvde, and glacial acetic acid were purchased from TCI Chemicals; all metal nitrate salts were purchased from Sigma Aldrich; ethanol (ACS grade) were purchased from Honeywell. Standard buffer solutions pH 1-12 were purchased from Merck (glycine/NaCl/HCl for pH 1, Citric acid/NaOH/ HCl for pH 2-6, Na<sub>2</sub>HPO<sub>4</sub>/KH<sub>2</sub>PO<sub>4</sub> for pH 7, boric acid/ KCl/NaOH for pH 8-11, Na<sub>3</sub>PO<sub>4</sub>/NaOH for pH 12). All chemicals were used without further purification. Electrospray mass spectra were obtained from a Bruker micrOTOF spectrometer. NMR spectra were recorded on a Bruker NMR 400 and 500 MHz spectrometer at ambient temperature. Chemical shifts are given in ppm, and are referenced to residual <sup>1</sup>H and <sup>13</sup>C solvent signals. The crystallographic measurement was performed using a Bruker APEX-II CCD area detector diffractometer. UV-vis absorption and fluorescence spectra were acquired from a Cary Series UV-vis-NIR spectrophotometer (Agilent Tech, Santa Clara, CA, USA) and a Perkin Elmer LS55 fluorescence spectrometer, respectively.

# 2.2. General details for UV-vis and fluorescence measurements

# 2.2.1. Preparation of the stock solutions

The stock solutions of **BZ** compounds was prepared by dissolving 30 mg of **BZ** with 50 mL of acetonitrile : water (3 : 1) solution in standard volumetric flasks (~ 2 mM). The stock solution of Cu(NO<sub>3</sub>)<sub>2</sub>.3H<sub>2</sub>O was prepared by dissolving 30 mg of Cu(NO<sub>3</sub>)<sub>2</sub>.3H<sub>2</sub>O with 25 mL acetonitrile : water (3 : 1) solution in standard volumetric flasks (5 mM). UV–vis and fluorescence measurements were performed by taking appropriate

amount of these stock solutions.

#### 2.2.2. UV-vis absorption measurement

The suitable amount of stock solution of **BZ** was added to acetonitrile : water (3 : 1) solution (3 mL) in a 3.5 mL quartz cuvette (final concentration = 25  $\mu$ M). The UV-vis absorption spectra were recorded before and after 15 min incubation time with appropriate amount of Cu (NO<sub>3</sub>)<sub>2</sub>.3H<sub>2</sub>O.

#### 2.2.3. Fluorescence measurement

The suitable amount of stock solution of **BZ** was added to acetonitrile : water (3 : 1) solution (3 mL) in a 3.5 mL quartz cuvette (final concentration = 25  $\mu$ M). The fluorescence spectra were recorded before and after 15 min incubation time with appropriate amounts of Cu (NO<sub>3</sub>)<sub>2</sub>.3H<sub>2</sub>O, using the following parameters: excitation wavelength =332 nm for **BZ1**, 343 nm for **BZ2**, 375 nm for **BZ3**, and 367 nm for **BZ4**, excitation slit =10 nm, and emission slit =10 nm.

# 2.3. Determination of fluorescence quantum yield

Fluorescence quantum yields of the **BZ**-Cu<sup>2+</sup> complexes were measured in water using quinine sulfate in 0.1 M H<sub>2</sub>SO<sub>4</sub> as a standard ( $Q_{std} = 0.58$ ) and were calculated based on the Eq. (1) [37]:

$$Q = Q_{std} \times \left(\frac{A_{sample}}{A_{std}}\right) \times \left(\frac{I_{std}}{I_{sample}}\right) \times \left(\frac{\eta_{sample}}{\eta_{std}}\right)^2$$
(1)

where Q denotes the fluorescence quantum yields, A is the peak area of emission spectra, *I*stands for absorption intensities at the excitation wavelength and y is the solvent reflective index.

# 2.4. Binding stoichiometry and binding constant determination

The binding stoichiometry of the complexes between benzothiazole derivatives (**BZ2** and **BZ3**) and Cu<sup>2+</sup> was determined by Job's plot experiments. [38] The samples for Job's plot were prepared by mixing **BZ** compounds (**BZ2** or **BZ3**) with Cu<sup>2+</sup> at different ratios of **BZ** over total concentration of **BZ** and Cu<sup>2+</sup> ([**BZ**]/([**BZ**] + [Cu<sup>2+</sup>])) in acetonitrile-water (3:1 v/v) solution, while maintaining the overall concentration of **BZ** and Cu<sup>2+</sup> ([**BZ**] + [Cu<sup>2+</sup>]) at 50  $\mu$ M. The emission intensities of the samples were recorded at 455 nm for **BZ2** and 490 for **BZ3** (excitation wavelength =343 nm for **BZ2** and 375 nm for **BZ3**). Then, the emission intensities at 455 and 490 nm were plotted against molar fractions of **BZ2** and **BZ3** ([**BZ2**]/([**BZ2**] + [Cu<sup>2+</sup>]) and [**BZ3**]/([**BZ3**] + [Cu<sup>2+</sup>]), respectively.

The binding constant values were determined from emission intensities of **BZ2** and **BZ3** (25  $\mu$ M) upon the constantly addition of Cu<sup>2+</sup> from 0.1 molar equivalent (2.5  $\mu$ M) to 1 molar equivalent (25  $\mu$ M) (0.1 molar equivalent or 2.5  $\mu$ M increment). The data was fitted to the modified Benesi-Hildebrand Eq. (2) [39]:

$$\frac{1}{F - F_{min}} = \frac{1}{K(F_{max} - F_{min})[Cu^{2+}]} + \frac{1}{F_{max} - F_{min}}$$
(2)

where  $F_{min}$  denotes the emission intensities of benzothiazole-based dyes in the absence of copper ions, *F* is the emission intensities of the dyes at intermediate copper concentrations,  $F_{max}$  stands for the emission intensities of the dyes at the complete interaction with copper ions, and *K* is the binding constant values.

# 2.5. Theoretical calculation

The ground-state geometry optimization of **BZ1**, **BZ2**, and **BZ3** and their complexes with  $Cu^{2+}$  (**BZ-Cu**<sup>2+</sup>) was performed without symmetry constraints. The Becke's three-parameter hybrid exchange functional with the Lee-Yang-Parr gradient-corrected correlation (B3LYP) [40,41]



**Fig. 2.** The molecular structures of A) **BZ2** (CCD No. 2014836) and B) **BZ3** (CCD No. 2014835) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50 % probability level. The non-IUPAC atom labeling is for the convenience of discussion. Views of the crystal packing which illustrate C) the part of *C* (4) N—H…N hydrogen bonds (red dash lines) in the extended structure of **BZ2** and D) the  $R_2^2(8)$  N—H…N hydrogen bonding loop (red dash lines) between two inversion related molecules of **BZ3**.

and the triple- $\zeta$  valence quality with one set of polarization functions (TZVP) [42] were applied for all atoms except Cu atom. To reduce computational cost, the LANL2DZ effective core potential was applied for the Cu atom to describe the Cu core electrons. The optimized structures and electronic property were then examined in implicit acetonitrile using conductor-like polarized continuum model (C-PCM) framework [43,44]. The frontier molecular orbitals (FMOs) and HOMO-LUMO energy diagrams of **BZs** and **BZ-Cu<sup>2+</sup>** complexes were also calculated at B3LYP/TZVP level of theory. Simulated UV–vis absorption spectra and vertical excitation energy ( $E_{ex}$ ) were carried out using the time-dependent PBE0 function (TD-PBE0) [45] with the same basis set in implicit acetonitrile. This selected method was elucidated in our previous work [46]. All calculations were performed by the Gaussian 16 program package [47].

# 2.6. X-ray absorption spectroscopy (XAS) of the mixtures between $Cu^{2+}$ and BZ ligands

To examine the structural information of the binding between the **BZ** ligands and the target Cu<sup>2+</sup> ions as well as their complexes, the mixtures between **BZ** ligands and Cu(NO<sub>3</sub>)<sub>2</sub>.3H<sub>2</sub>O in acetonitrile : water 3:1 v/v were characterized by X-ray absorption spectroscopy (XAS) in both X-

ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses. The XAS measurements probed at Cu K-edge were performed at Beamline 1.1 W: Multiple X-ray Techniques, Synchrotron Light Research Institute (SLRI), Thailand. The XAS measurements were conducted in both transmission and fluorescence modes at ambient temperature and pressure by simultaneously measuring the solutions together with the Cu foil as standard reference for an in-line alignment of the energy shift during the synchrotron-operating time. The XAS measurements of Cu(NO<sub>3</sub>)<sub>2</sub>.3H<sub>2</sub>O solution in acetonitrile : water 3:1 v/v was carried out as standard references for comparison with the Cu<sup>2+</sup>-BZ mixtures. The obtained data were analyzed using ATHENA and ARTEMIS software.

#### 3. Results and discussion

# 3.1. Synthesis and crystal structures of benzothiazole derivatives

Novel benzothiazole derivatives featuring electron withdrawing groups (EWG), including, trifluoromethyl (**BZ2**) and cyano (**BZ3**) and electron donating group, such as, diethylamino (**BZ4**) were synthesized by a straightforward and environmental-friendly method as shown in Scheme 1. The known benzothiozole containing phenyl ring (**BZ1**) was



Fig. 3. A-C) Absorption spectra of BZ derivatives (25  $\mu$ M) before and after addition of 1 molar equivalent of Cu<sup>2+</sup> (25  $\mu$ M). p-F) Emission spectra of BZ derivatives (25  $\mu$ M) before and after addition of 1 molar equivalent of Cu<sup>2+</sup> (25  $\mu$ M).

also synthesized to use as a reference compound to study the effect of electron tuning substituents toward photophysical properties of the dyes. [48] Their NMR characterizations as well as mass spectrometry results are shown in the supporting information (SI) section.

Furthermore, the structures of BZ2 and BZ3 were confirmed by single crystal X-ray diffraction. Crystal data and their corresponding refinement details of the compounds BZ2 and BZ3, are tabulated in Table S1 and the structural models referring their crystal structures are displayed in Fig. 2A-B. The intermolecular interactions within the crystals of BZ2 and BZ3 are displayed in Fig. 2C-D and listed in Table S2. The N-H---N hydrogen bonds were observed in the crystal structures of both compounds. The freely-refined N-H bond distances are 0.89(2) Å and 0.85(2) Å for BZ2 and BZ3, respectively. Although the crystal system and space group of both compound crystals were similar, BZ2 and BZ3 possessed the different hydrogen bonding fashions. In the case of BZ3, the N-H-...N hydrogen bonds linked two molecules related by an inversion center into a dimer creating an  $R_2^2(8)$ -loop motif (Fig. 2D). Unlike BZ3, the molecules of BZ2 were joined by the N-H--N hydrogen bonds creating an infinite C(4) chains propagating along the [010] direction (Fig. 2C and Figure S15). In addition, the molecular planarity, the  $\pi$ - $\pi$  interactions, and the Hirshfeld surface (HS) analysis of the crystal structures are further explained in the SI section.

# 3.2. Photophysical properties

Firstly, the photophysical properties of BZ1-3 upon copper ion complexations were investigated to probe the effect of electron withdrawing substituents. As seen in Fig. 3A-C, the absorption spectra of all BZ derivatives (25 µM) exhibited the decrease in absorption intensities at 333 nm for BZ1, 344 nm for BZ2 and 360 nm for BZ3 upon the addition of  $Cu^{2+}$  (25  $\mu$ M, 1 molar equivalent) which were similar to those of the pyrene analogue reported in the literature. [36] They also showed the bathochromic shifts of 10 and 5 nm for BZ1 and BZ2 and no shift for BZ3 upon  $Cu^{2+}$  binding (25  $\mu$ M, 1 molar equivalent). These results initially confirmed the copper binding for all BZ derivatives. It is also important to note that the absorption maxima of free BZ2 and BZ3 demonstrated bathochromic shifts of 11 nm and 26 nm compared with that of BZ1, respectively (Figure S20) due to electron-withdrawing effects from the -CF3 and -CN groups. These results indicated that the electronic transition energy levels of these **BZ** and **BZ-Cu<sup>2+</sup>** complexes could be tuned by varying electron-withdrawing substituents.

In the emission spectra, **BZ1**, **BZ2**, and **BZ3** displayed increased fluorescent intensities upon the addition of  $Cu^{2+}$  (Fig. 3D-F). Similar to the observation in absorption spectra, the emission maxima of **BZ2**- $Cu^{2+}$  and **BZ3**- $Cu^{2+}$  showed red shifts of 23 nm and 58 nm from that of **BZ1-Cu**<sup>2+</sup> resulting blue and green fluorescence emission, consecutively



Fig. 4. Proposed sensing mechanism for electron-withdrawing substituted benzothiazoles upon copper ion binding.



Fig. 5. Absorption, emission spectra, and stokes shifts of  $BZ-Cu^{2+}$  complexes.



Fig. 6. A) Copper ion complexation reaction of BZ4, B) Absorption spectra of BZ4 (25  $\mu$ M) before and after addition of 1 molar equivalent of Cu<sup>2+</sup> (25  $\mu$ M), C) Emission spectra of BZ4 (25  $\mu$ M) before and after addition of 1 molar equivalent of Cu<sup>2+</sup> (25  $\mu$ M).

(**Figure S21**). These fluorescence turn-on phenomena could be the results from chelation-induced enhanced fluorescence (CHEF) effect and inhibited C = N isomerization leading to the rigid backbone (Fig. 4). In addition, the intramolecular charge transfer (ICT) process is facilitated over the molecules causing large stokes' shifts in **BZ-Cu<sup>2+</sup>** complexes (Fig. 5) suggesting strong ICT effect as seen in other ICT-based fluorescent molecules in the literature. [49–51]

To prove that the ICT mechanism plays a vital role in these fluorescence 'turn-on' processes, the copper ion binding of non-ICT benzothiazole containing electron-donating diethylamino substituent (**BZ4**) was investigated. As displayed in Fig. 6, the **BZ4** underwent fluorescence quenching phenomena upon copper complexation due to paramagnetic effect. The **BZ4-Cu<sup>2+</sup>** showed the lowest stokes' shifts in this series (76 nm) indicating weak ICT upon copper complexation. These results confirmed that the fluorescence 'turn-on' processes in **BZ1–3** derivatives upon Cu<sup>2+</sup> binding were caused by the synergistic effect between CHEF and ICT processes. As **BZ2** and **BZ3** are new compounds that possess superior ICT phenomena, they were selected for further studies as copper ion fluorescent sensors.

# 3.3. Sensing properties toward copper ion

The selectivity of **BZ2** and **BZ3** toward various metal cations was investigated by mixing them with 5 equivalents of  $Cu^{2+}$ ,  $Ca^{2+}$ ,  $Mg^{2+}$ ,  $Co^{2+}$ ,  $Ni^{2+}$ ,  $Mn^{2+}$ ,  $Zn^{2+}$ ,  $Cd^{2+}$ ,  $Pb^{2+}$ ,  $Al^{3+}$ ,  $Fe^{3+}$ ,  $Cr^{3+}$ ,  $Ag^+$ , and  $Hg^{2+}$ , respectively. Their selective fluorescence enhancements by copper ions were observed with a strong blue and green fluorescence emissions (Fig. 7A). The fluorescence spectra of **BZ2** and **BZ3** in the presence of various metal ions were shown in **Figure S22** and **S23** in the SI section. Subsequently, the effects of interference of the above-mentioned cations on  $Cu^{2+}$  sensing were also studied. The emission intensities in Fig. 7**B** suggested that the co-existence of these metal ions does not interfere with  $Cu^{2+}$  detection in this solvent system. It is also interesting to note that the co-presence of  $Hg^{2+}$  with  $Cu^{2+}$  could slightly enhance fluorescence signals in both **BZ2** and **BZ3**.

Next,  $Cu^{2+}$  titrations with **BZ2** and **BZ3** (25 µM) were investigated by both absorption and emission techniques. As demonstrated in Fig. 8A-B, when  $Cu^{2+}$  was constantly added from 0.1 molar equivalent (2.5 µM) to 1 molar equivalent (25 µM) of  $Cu^{2+}$  into the solution of 1 molar equivalent of **BZ** compounds (25 µM) (0.1 molar equivalent or 2.5 µM)



Fig. 7. A) Images of BZ2 and BZ3 (25  $\mu$ M) before and after addition of various metal ions (5 equiv., 125  $\mu$ M) in acetonitrile-water (v/v = 3:1). B) Bar chart demonstrating fluorescence intensities at 455 nm for BZ2 and 490 nm for BZ3 in the presence of different metal ions (selectivity test) and in the presence of Cu<sup>2+</sup> (125  $\mu$ M) co-existing with other metal ions (125  $\mu$ M) (interfering test).



Fig. 8. Changes in the absorption spectra of BZ2 (A), BZ3 (B) and emission spectra of BZ2 (C), BZ3 (D) (excitation wavelength =343 nm for BZ2 and 375 nm for BZ3) in the presence of various molar equivalents of  $Cu^{2+}$  in acetonitrile-water (3:1 v/v) solutions (final concentration of BZ compounds = 25  $\mu$ M).

increment), the absorption intensities at 344 and 360 nm gradually decreased while the emission intensities at 455 nm and 490 nm gently increased for **BZ2** and **BZ3**, respectively. There were no significant changes in absorption and emission intensities observed after the additions of 2–5 molar equivalents (50–125  $\mu$ M) of Cu<sup>2+</sup> to the solution of 1 molar equivalent of **BZ** compounds suggesting 1:1 binding ratios

between these **BZ** ligands and Cu<sup>2+</sup>. The photophysical properties, including, extinction coefficients ( $\epsilon$ ), fluorescence quantum yields ( $\Phi_f$ ), of **BZ2** and **BZ3** before and after addition of Cu<sup>2+</sup> were summarized in Table 1.

The binding stoichiometry of BZ-Cu<sup>2+</sup> complexes was further confirmed by Job's plot analysis. As display in Fig. 9A-B, the emission

#### Table 1

Photophysical properties of **BZ2** and **BZ3** in in acetonitrile-water (3:1 v/v) solution (1  $\mu$ M) before and after addition of Cu<sup>2+</sup>.

| Cpd. | Absorption      |                                                | Emission                 |                | Emission with Cu <sup>2+[a]</sup> |                        |
|------|-----------------|------------------------------------------------|--------------------------|----------------|-----------------------------------|------------------------|
|      | $\lambda_{abs}$ | $\epsilon$ (M <sup>-1</sup> cm <sup>-1</sup> ) | $\lambda_{\text{emiss}}$ | $\Phi_{\rm f}$ | $\lambda_{emiss}^{[b]}$           | $\Phi_f^{[c]}$ (n = 3) |
| BZ2  | 344             | $3.4 	imes 10^4$                               | NF <sup>[d]</sup>        |                | 455                               | $0.40 \ (\pm \ 0.025)$ |
| BZ3  | 360             | $3.1	imes10^4$                                 | NF                       |                | 490                               | $0.42~(\pm 0.03)$      |

 $^{[a]}$  1.5  $\mu M$  of Cu(NO\_3)\_2.3H\_2O was added.

<sup>[b]</sup> excitation wavelength =343 nm for **BZ2** and 375 nm for **BZ3**.

 $^{[c]}$  fluorescence quantum yields estimated by using quinine sulfate in 0.1 M  $H_2SO_4$  as a standard ( $\Phi_f=0.58$ ).

[d] NF = non-fluorescence.

intensities at 455 nm and 490 nm were plotted against molar fractions of **BZ2** and **BZ3** ([**BZ2**]/([**BZ2**] + [Cu<sup>2+</sup>]) and [**BZ3**]/([**BZ3**] + [Cu<sup>2+</sup>]), while maintaining the total concentrations of **BZ** compound and Cu<sup>2+</sup> ([**BZ**] + [Cu<sup>2+</sup>]) at 50  $\mu$ M. The maximum emission intensities of both compounds were observed at the mole fractions of 0.5, indicating 1:1 binding ratios of **BZ2**-Cu<sup>2+</sup> and **BZ3**-Cu<sup>2+</sup> complexes. [38] The detections of molecular ions at m/z = 481.0509 {[(**BZ2**)Cu(NO<sub>3</sub>) (H<sub>2</sub>O)<sub>2</sub>]<sup>+</sup>} and 411.0895 {[(**BZ3**-H)Cu(H<sub>2</sub>O)<sub>4</sub>]<sup>+</sup>} from electrospray ionization mass spectra (ESI-MS) of the complexes served as the addition proofs of the 1:1 binding stoichiometry of **BZ2** and **BZ3** with Cu<sup>2+</sup> (**Figure S13-S14**).

The binding constants (K) of **BZ2** and **BZ3** were determined based on Benesi-Hildebrand Eq. (2) by plotting  $1/(F-F_{min})$  vs.  $1/[Cu^{2+}]$  as depicted in Fig. 10**A-B**. The data was linearly fitted, and the K values were calculated as  $2.18 \times 10^4$  and  $3.30 \times 10^4$  M<sup>-1</sup> for **BZ2** and **BZ3**, respectively. These K values are comparable to that of compound **IV** and



Fig. 9. Job plots for BZ2 (A) and BZ3 (B) in acetonitrile-water (3:1 v/v).



Fig. 10. Binding plots generated from the analysis of fluorescence enhancements of BZ2 (A) and BZ3 (B) upon addition of  $Cu^{2+}$ , and fitted in accordance with Eq.(2), and standard calibration curves demonstrating the fluorescence intensity increment at 455 nm for BZ2 (C) and 490 nm for BZ3 (D) as a function of copper concentrations.  $F_{min} =$  Emission intensities of the benzothiazole-based dyes in the absence of copper ions.

#### Table 2

Comparison of **BZ2** and **BZ3** with other reported benzothiazole-based sensors for copper ion detection.

| Sensor | Solvent<br>system                    | LOD Binding<br>(ppb) Constant (K)<br>(binding mode:<br>Cu <sup>2+</sup> : ligand) |                                                                                          | Sensing<br>mechanism | Reference |
|--------|--------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------|-----------|
| I      | Acetonitrile-<br>water (3:1 v/<br>v) | 2.73<br>μΜ                                                                        | $5.00 \times 10^8 \mathrm{M}^{-2}$ (1:2)                                                 | Turn-on              | [36]      |
| II     | Acetonitrile                         | 0.014<br>μM                                                                       | N.R.                                                                                     | Turn-off             | [32]      |
| ш      | Acetonitrile-<br>water (4:1 v/<br>v) | 1.05<br>μM                                                                        | $2.92 	imes 10^{10}$ $M^{-2}$ (2:1)                                                      | Turn-off             | [34]      |
| IV     | DMSO-water<br>(2:98v/v)              | 2.4 nM                                                                            | $7.78 \times 10^4 \mathrm{M^{-1}}$<br>(1:1)                                              | Turn-off             | [31]      |
| v      | Acetonitrile-<br>water (1:1 v/<br>v) | 0.36<br>μM                                                                        | $\begin{array}{c} 5.70 \times 10^{6}\text{M}^{-1} \\ (1:1) \end{array}$                  | Turn-off             | [33]      |
| VI     | Acetonitrile-<br>water (9:1 v/<br>v) | N.R.                                                                              | $5.06 \times 10^{6} \mathrm{M}^{-1}$ (1:1)                                               | Turn-off             | [35]      |
| BZ2    | Acetonitrile-<br>water (3:1 v/<br>v) | 0.77<br>μM                                                                        | $\begin{array}{c} \textbf{2.18}\times 10^{4}\text{M}^{-1} \\ \textbf{(1:1)} \end{array}$ | Turn-on              | This work |
| BZ3    | Acetonitrile-<br>water (3:1 v/<br>v) | 0.64<br>μM                                                                        | $3.30 \times 10^4 \mathrm{M}^{-1}$<br>(1:1)                                              | Turn-on              | This work |

N.R. = Not Report.

slightly lower than those of compound V and VI in the literature (Table 2). Next, the limits of detection (LOD) of these chemosensors were determined from the plots of emission intensities (F-F<sub>min</sub>)/F<sub>min</sub> and Cu<sup>2+</sup> concentrations as demonstrated in Fig. 10C-D by employing  $3\sigma/m$  formula, where  $\sigma$  is the standard deviation of fluorescence signals of sensors in the absence of Cu<sup>2+</sup> and *m* is the slopes of the plots. The LODs of **BZ2** and **BZ3** were calculated as 0.77 and 0.64  $\mu$ M, respectively. Compared with the LODs of other benzothiazole-based sensors in the literature, the LODs of **BZ2** and **BZ3** were lower than those of pyrene-linked benzothiazole (sensor I) and calix [4]arene appended benzothiazole (Sensor III) (Table 2).

The effect of pH toward  $Cu^{2+}$  binding of **BZ2** and **BZ3** was investigated in acetonitrile-standard buffer solution (3:1 v/v) in the pH range of 1–12. As displayed in Fig. 11, these **BZ** compounds worked well in neutral pH condition (pH = 7) as they demonstrated distinct fluorescent intensity change upon  $Cu^{2+}$  binding. This result suggested the suitable pH value for the  $Cu^{2+}$  ion detection in real water samples using these probes. There were no florescence signals observed at the acidic pHs (pH 1–6) with and without the presence of copper ion which could be the results from the protonations at the imine and the nitrogen atom in the five-membered ring as seen in the literature. [28] These protonations could block both electron conjugation and metal binding of **BZ** 

compounds in acetonitrile/water media.

#### 3.4. Theoretical calculations

To further understand the electronic and photophysical properties of **BZ** and **BZ-Cu<sup>2+</sup>** complexes, the DFT calculations were preformed using B3LYP/TZVP level of theory in the implicit solvent of acetonitrile and the LANL2DZ basis set for  $Cu^{2+}$ . The optimized structures as well as the calculated highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels, and the HOMO-LUMO energy gap of the BZ1-3 and BZ1-3- $Cu^{2+}$  are presented in Fig. 12. Comparing among free BZ ligands, the HOMO-LUMO energy gaps decreased from **BZ1** to **BZ3** ( $\Delta E = 3.96, 3.76, \text{ and } 3.54 \text{ eV}$ , for **BZ1**, **BZ2**, and BZ3, respectively), as the electron withdrawing groups (-CF<sub>3</sub>, and -CN) could stabilize the LUMO levels effectively. The LUMO isosurface diagrams of BZ2 and BZ3 demonstrated larger electron distributions on CF<sub>3</sub>- and CN-substituted phenylene indicating weak ICT in these molecules. When Cu<sup>2+</sup> interacted with nitrogen donor atoms in the ICT-based compounds, such as BZ2 and BZ3, the ground states of  $BZ2-Cu^{2+}$  and **BZ3-Cu**<sup>2+</sup> are more stabilized than the excited state leading to larger energy gaps of BZ2-Cu<sup>2+</sup> and BZ3-Cu<sup>2+</sup> comparing to those of BZ2 and BZ3 [49]. These computational results are consistent with the experimental outcomes that the **BZ1** displayed the highest red shift upon Cu<sup>2+</sup> binding (Fig. 3A-C). The changes of HOMO and LUMO diagrams in  $BZ2-Cu^{2+}$  and  $BZ3-Cu^{2+}$  showed distinct electron density moves distributing from benzothiazole units in the HOMOs to CF3- and CN-connected phenylene groups in the LUMOs, respectively, suggesting a strong ICT effect in these complexes.

Next, the UV–vis spectra of **BZ1**, **BZ2**, **BZ3**, **BZ1-Cu<sup>2+</sup>**, **BZ2-Cu<sup>2+</sup>**, and **BZ3-Cu<sup>2+</sup>** were calculated using time-dependent density functional theory (TD-DFT) calculations in an acetonitrile medium. The simulated absorption peaks obtained from TD-PBE0/TZVP level of theory (**Figure S24-S29**) agreed well with the experimentally obtained peaks as seen in Table 3. The simulated results by this TD-PBE0/TZVP method indicated that the electronic transitions of **BZ1–3** are predominantly contributed from HOMO-LUMO transitions with up to 99 % contributions while the electronic transitions of **BZ1-Cu<sup>2+</sup>**, **BZ2-Cu<sup>2+</sup>**, and **BZ3-Cu<sup>2+</sup>** complexes are mainly contributed from the HOMO-LUMO and the HOMO-LUMO+1 transitions.

# 3.5. Revealing structural binding of BZ ligands with targeted $Cu^{2+}$ by XAS

XAS measurements probed at the Cu K-edge were carried out in both XANES and EXAFS regions to identify the structural information of the binding between the **BZ** ligands and the targeted Cu<sup>2+</sup> ions. XANES spectra (Fig. 13A) reveals the significantly different fingerprint patterns of the equimolar **BZ1-Cu<sup>2+</sup>**, **BZ2-Cu<sup>2+</sup>**, and **BZ3-Cu<sup>2+</sup>** mixtures in acetonitrile : water of 3:1 v/v from the one of Cu(NO<sub>3</sub>)<sub>2</sub>.3H<sub>2</sub>O solution in the same solvent system. Moreover, EXAFS data of the **BZ-Cu<sup>2+</sup>** 



Fig. 11. Fluorescence intensity variation at maximum emission of 455 nm for BZ2 (A) and 490 nm for BZ3 (B) at media alternation of pH from 1 to 12.



Fig. 12. Frontier molecular orbitals (HOMO and LUMO) of BZ1, BZ1-Cu<sup>2+</sup>, BZ2, BZ2-Cu<sup>2+</sup>, BZ3, and BZ3-Cu<sup>2+</sup> and energy gaps ( $\Delta E$  in eV) computed by B3LYP/TZVP level of theory. The HOMO and LUMO orbitals are plotted with isovalue of 0.02.

Table 3

Comparison of calculated UV-vis absorption wavelength ( $\lambda_{cal}$ ), experimental UV-vis absorption wavelength ( $\lambda_{exp}$ ), excitation energies ( $E_{ex}$ ), oscillator strengths (f), and molecular orbital contributions (MOs) of **BZ1**, **BZ2**, **BZ3**, **BZ1-Cu**<sup>2+</sup>, **BZ2-Cu**<sup>2+</sup>, and **BZ3-Cu**<sup>2+</sup>. The calculation obtained from TD-PBE0/TZVP level of theory in implicit acetonitrile.

|                                              | Electronic and photophysical properties |                          |                              |                                      |                                                                                                                                   |  |  |
|----------------------------------------------|-----------------------------------------|--------------------------|------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|
| Compound                                     | λ <sub>cal</sub><br>(nm)                | λ <sub>exp</sub><br>(nm) | E <sub>ex</sub><br>(eV)      | f                                    | MOs (% Contributions)                                                                                                             |  |  |
| BZ1<br>BZ2<br>BZ3<br>BZ1-Cu <sup>2+</sup>    | 339<br>355<br>376<br>350                | 333<br>344<br>360<br>343 | 3.65<br>3.49<br>3.30<br>3.54 | 1.0466<br>1.0040<br>1.0565<br>0.5752 | HOMO $\rightarrow$ LUMO (99%)<br>HOMO $\rightarrow$ LUMO (99%)<br>HOMO $\rightarrow$ LUMO (99%)<br>HOMO $\rightarrow$ LUMO (47%), |  |  |
| BZ2-Cu <sup>2+</sup><br>BZ3-Cu <sup>2+</sup> | 357<br>372                              | 349<br>360               | 3.48<br>3.33                 | 0.5222<br>0.4397                     | HOMO→LUMO (49 %),<br>HOMO→LUMO (49 %),<br>HOMO→LUMO (47 %),<br>HOMO→LUMO (37 %),                                                  |  |  |
|                                              |                                         |                          |                              |                                      | HOMO $\rightarrow$ LUMO $+1$ (41 %)                                                                                               |  |  |

mixtures shown in k-space (Fig. 13B) and R-space (Fig. 13C) exhibit the deviation of oscillation pattern and the radial distance distribution from the aqua-based  $Cu^{2+}$  complex. This observation clearly confirms that the targeted  $Cu^{2+}$  are bound to the **BZ** ligands and form the **BZ-Cu**<sup>2+</sup> complexes. To get insight into the structural information of the **BZ1**- $Cu^{2+}$ , **BZ2-Cu**<sup>2+</sup>, and **BZ3-Cu**<sup>2+</sup> complexes, the detailed analysis of XANES and EXAFS fitting using the structural model obtained from DFT calculation are further examined (**Figure S30** and **Table S3**). The pronounced pre-edge peak at about 8980 eV reflects the quadrupole allowed 1s-3d transitions, which reveals a non-centrosymmetric environment of  $Cu^{2+}$  due to the 3d-4p orbital mixing. [52,53] Note that, the pre-edge at 8980 eV is not observed in the case of aqua-based  $Cu^{2+}$ 

complex consisting of 6 H<sub>2</sub>O ligands coordinated to Cu<sup>2+</sup> in octahedral geometry. According to the structural optimization based on DFT calculation, the 4-coordinated non-centrosymmetric **BZ-Cu<sup>2+</sup>** complexes are suggested. The EXAFS fittings using these structural models indicate the well-matched of the 4-coordinated non-centrosymmetric **BZ-Cu<sup>2+</sup>** structural models with the experimental data (**Figure S30** and **Table S3**). In all, XANES and EXAFS data of the **BZ-Cu<sup>2+</sup>** mixtures exhibit the binding between Cu<sup>2+</sup> and the **BZ** ligands with a 1:1 ratio in a 4-coordinated non-centrosymmetric fashion.

# 4. Conclusions

In summary, we have synthesized new Schiff base ligands containing the benzothiazolyl hydrazone acting as a metal ion binding site and an electron donor moiety and the electron withdrawing trifluoromethyl and cyano substituted phenylene as an electron acceptor. These derivatives exhibited selective fluorescence 'turn-on' responses toward copper ion binding due to the synergistic phenomena between the chelation-enahnced fluorescence (CHEF) and the intramolecular charge transfer (ICT) processes. The job plots, Benesi-Hildebrand analysis and the XAS analysis confirmed 1:1 binding mode between copper ion and the ligands with the binding constants of  $2.18 \times 10^4$  M  $^{-1}$  and  $3.30 \times 10^4$  $M^{-1}$  for BZ2 and BZ3, respectively. The low limits of detections (0.77  $\mu$ M for BZ2 and 0.64  $\mu$ M for BZ3), their Cu<sup>2+</sup> binding capability at the physiological pH and their interference studies suggested the potential of these compounds for Cu<sup>2+</sup> analysis in real water samples, such as, tap water, drinking water, and natural water. The density functional theory (DFT) and the time-dependent density functional theory (TD-DFT) calculations indicated strong accepting ability of trifluoromethyl and cyano group leading to lower HOMO-LUMO energy gaps and bathochromic shifts in BZ2 and BZ3 compared with the non-substituted phenylene derivative (BZ1). The electron density movements from the HOMOs to



**Fig. 13.** XANES spectra probed at Cu K-edge of the mixtures of **BZ1-Cu**<sup>2+</sup>, **BZ2-Cu**<sup>2+</sup>, and **BZ3-Cu**<sup>2+</sup> in acetonitrile : water 3:1 v/v comparing with Cu(NO<sub>3</sub>)<sub>2</sub>.3H<sub>2</sub>O solution and the standard Cu foil (A) and the corresponding EXAFS data plotted in k-space (B) and the corresponding Fourier-transformed R-space from the k range of  $3 - 7.5 \text{ Å}^{-1}$  (C).

the LUMOs in **BZ2-Cu**<sup>2+</sup> and **BZ3- Cu**<sup>2+</sup> as well as their large stokes shifts confirmed the strong ICT process after Cu<sup>2+</sup> binding which play vital role in fluorescence 'turn-on' mechanism.

# CRediT authorship contribution statement

Jukkrit Nootem: Methodology, Investigation, Validation, Writing original draft. Rathawat Daengngern: Investigation, Validation, Writing - review & editing. Chanchai Sattayanon: Formal analysis, Writing - review & editing. Worawat Wattanathana: Formal analysis, Writing - review & editing. Suttipong Wannapaiboon: Formal analysis, Writing - review & editing. Paitoon Rashatasakhon: Resources, Supervision. Kantapat Chansaenpak: Conceptualization, Methodology, Resources, Supervision, Project administration, Funding acquisition, Writing - review & editing.

# **Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

# Acknowledgments

This work has been financially supported by the Research Network of NANOTEC (RNN) program of the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Higher Education, Science, Research, and Innovation, Thailand (Grant No. P1851658) and Thailand Development and Promotion of Science and Technology Talents Project (DPST Research Grant 007/2559). Synchrotron Light Research Institute, Thailand is also acknowledged for the provision of XAS beamtime at the Beamline 1.1 W (Multiple X-ray Techniques, MXT).

# Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.jphotochem.2021. 113318.

# References

- J.A. Cowan, Inorganic Biochemistry: An Introduction, Wiley-VCH, New York, 1997.
- [2] V. Desai, S.G. Kaler, Role of copper in human neurological disorders, Am. J. Clin. Nutr. 88 (3) (2008), 8555-85.
- [3] K. Ghosh, D. Kar, Anthraquinone coupled benzothiazole-based receptor for selective sensing of Cu2+, J. Incl. Phenom. Macrocycl. Chem. 77 (1) (2013) 67–74.
- [4] Y. Zheng, K.M. Gattás-Asfura, V. Konka, R.M. Leblanc, A dansylated peptide for the selective detection of copper ions, Chem. Commun. (20) (2002) 2350–2351.

- [5] M. Saleem, M. Rafiq, M. Hanif, M.A. Shaheen, S.-Y. Seo, A brief review on fluorescent copper sensor based on conjugated organic dyes, J. Fluoresc. 28 (1) (2018) 97–165.
- [6] S. Chowdhury, B. Rooj, A. Dutta, U. Mandal, Review on recent advances in metal ions sensing using different fluorescent probes, J. Fluoresc. 28 (4) (2018) 999–1021.
- [7] K.P. Carter, A.M. Young, A.E. Palmer, Fluorescent sensors for measuring metal ions in living systems, Chem. Rev. 114 (8) (2014) 4564–4601.
- [8] E.V. Antina, N.A. Bumagina, A.I. V'Yugin, A.V. Solomonov, Fluorescent indicators of metal ions based on dipyrromethene platform, Dye. Pigment. 136 (2017) 368–381.
- [9] A. Torrado, G.K. Walkup, B. Imperiali, Exploiting polypeptide motifs for the design of selective Cu(II) ion chemosensors, J. Am. Chem. Soc. 120 (3) (1998) 609–610.
- [10] G. Klein, D. Kaufmann, S. Schürch, J.-L. Reymond, A fluorescent metal sensor based on macrocyclic chelation, Chem. Commun. (6) (2001) 561–562.
- [11] M. Boiocchi, L. Fabbrizzi, M. Licchelli, D. Sacchi, M. Vázquez, C. Zampa, A twochannel molecular dosimeter for the optical detection of copper(ii), Chem. Commun. (15) (2003) 1812–1813.
- [12] Y. Zheng, J. Orbulescu, X. Ji, F.M. Andreopoulos, S.M. Pham, R.M. Leblanc, Development of fluorescent film sensors for the detection of divalent copper, J. Am. Chem. Soc. 125 (9) (2003) 2680–2686.
- [13] B.C. Roy, B. Chandra, D. Hromas, S. Mallik, Synthesis of new, pyrene-containing, metal-chelating lipids and sensing of cupric ions, Org. Lett. 5 (1) (2003) 11–14.
- [14] S.H. Kim, J.S. Kim, S.M. Park, S.-K. Chang, Hg2+-Selective OFF-ON and Cu2+-Selective ON-OFF type fluoroionophore based upon cyclam, Org. Lett. 8 (3) (2006) 371-374.
- [15] J. Chan, S.C. Dodani, C.J. Chang, Reaction-based small-molecule fluorescent probes for chemoselective bioimaging, Nat. Chem. 4 (12) (2012) 973–984.
- [16] K. Chansaenpak, A. Kamkaew, O. Weeranantanapan, K. Suttisintong, G. Tumcharern, Coumarin probe for selective detection of fluoride ions in aqueous solution and its bioimaging in live cells, Sensors 18 (7) (2018).
- [17] Y. Dong, R. Fan, W. Chen, P. Wang, Y. Yang, A simple quinolone Schiff-base containing CHEF based fluorescence 'turn-on' chemosensor for distinguishing Zn2 + and Hg2+ with high sensitivity, selectivity and reversibility, J. Chem. Soc. Dalton Trans. 46 (20) (2017) 6769–6775.
- [18] S.R. Bhatta, B. Mondal, G. Vijaykumar, A. Thakur, ICT–isomerization-Induced turnon fluorescence probe with a large emission shift for mercury ion: application in combinational molecular logic, Inorg. Chem. 56 (19) (2017) 11577–11590.
- [19] V. Kumar, A. Kumar, U. Diwan, Ramesh Shweta, S.K. Srivastava, et al., Salicylideneimines as efficient dual channel emissive probes for Al3+: harnessing ESIPT and ICT processes, Sens. Actuators B Chem. 207 (2015) 650–657.
- [20] P. Sontisiri, P. Yingyuad, P. Thongyoo, A highly selective "Turn On" fluorescent probe based on FRET mechanism for hydrogen sulfide detection in living cells, J. Photochem. Photobiol. A: Chem. 391 (2020), 112401.
- [21] S. Goswami, K. Aich, S. Das, C. Das Mukhopadhyay, D. Sarkar, T.K. Mondal, A new visible-light-excitable ICT-CHEF-mediated fluorescence 'turn-on' probe for the selective detection of Cd2+ in a mixed aqueous system with live-cell imaging, J. Chem. Soc. Dalton Trans. 44 (12) (2015) 5763–5770.
- [22] C. Chang, F. Wang, J. Qiang, Z. Zhang, Y. Chen, W. Zhang, et al., Benzothiazolebased fluorescent sensor for hypochlorite detection and its application for biological imaging, Sens. Actuators B Chem. 243 (2017) 22–28.
- [23] X. Gong, X. Ding, N. Jiang, T. Zhong, G. Wang, Benzothiazole-based fluorescence chemosensors for rapid recognition and "turn-off" fluorescence detection of Fe3+ ions in aqueous solution and in living cells, Microchem. J. 152 (2020), 104351.
- [24] D. Musib, M.K. Raza, S.S. Devi, M. Roy, A reversible, benzothiazole-based "Turnon" fluorescence sensor for selective detection of Zn2+ ions in vitro, J. Chem. Sci. 132 (1) (2020) 43.
- [25] Y. Chen, T. Wei, Z. Zhang, T. Chen, J. Li, J. Qiang, et al., A benzothiazole-based fluorescent probe for ratiometric detection of Al3+ in aqueous medium and living cells, Ind. Eng. Chem. Res. 56 (43) (2017) 12267–12275.
- [26] C. Chang, F. Wang, T. Wei, X. Chen, Benzothiazole-based fluorescent sensor for ratiometric detection of Zn(II) ions and secondary sensing PPi and its applications

#### J. Nootem et al.

#### Journal of Photochemistry & Photobiology, A: Chemistry 415 (2021) 113318

for biological imaging and PPase catalysis assays, Ind. Eng. Chem. Res. 56 (31) (2017) 8797–8805.

- [27] L. Wang, X. Chen, Q. Xia, R. Liu, J. Qu, Deep-red AIE-Active fluorophore for hypochlorite detection and bioimaging in live cells, Ind. Eng. Chem. Res. 57 (23) (2018) 7735–7741.
- [28] V. Kachwal, I.S. Vamsi Krishna, L. Fageria, J. Chaudhary, R. Kinkar Roy, R. Chowdhury, et al., Exploring the hidden potential of a benzothiazole-based Schiff-base exhibiting AIE and ESIPT and its activity in pH sensing, intracellular imaging and ultrasensitive & selective detection of aluminium (Al3+), Analyst 143 (15) (2018) 3741–3748.
- [29] K. Chauhan, P. Singh, B. Kumari, R.K. Singhal, Synthesis of new benzothiazole Schiff base as selective and sensitive colorimetric sensor for arsenic on-site detection at ppb level, Anal. Methods 9 (11) (2017) 1779–1785.
- [30] C. Sravani, A. Sivaramakrishna, Benzothiazole-based sensors for protons and chromium(III) ions, ChemistrySelect. 2 (20) (2017) 5688–5694.
- [31] B. Gu, L. Huang, W. Su, X. Duan, H. Li, S. Yao, A benzothiazole-based fluorescent probe for distinguishing and bioimaging of Hg2+ and Cu2+, Anal. Chim. Acta 954 (2017) 97–104.
- [32] K. Wang, W. Feng, Y. Wang, D. Cao, R. Guan, X. Yu, et al., A coumarin derivative with benzothiazole Schiff's base structure as chemosensor for cyanide and copper ions, Inorg. Chem. Commun. 71 (2016) 102–104.
- [33] Y.B. Wagh, A. Kuwar, S.K. Sahoo, J. Gallucci, D.S. Dalal, Highly selective fluorimetric sensor for Cu2+ and Hg2+ using a benzothiazole-based receptor in semi-aqueous media and molecular docking studies, RSC Adv. 5 (56) (2015) 45528–45534.
- [34] S. Erdemir, B. Tabakci, M. Tabakci, A highly selective fluorescent sensor based on calix[4]arene appended benzothiazole units for Cu2+, S2- and HSO4- ions in aqueous solution, Sens. Actuators B Chem. 228 (2016) 109–116.
- [35] N. Kaur, J. Singh, G. Dhaka, R. Rani, V. Luxami, Benzothiazole-based chemosensor for CN- and Cu2+: multi-logic operations within a single molecule, Supramol. Chem. 27 (7-8) (2015) 453–459.
- [36] H.-F. Wang, S.-P. Wu, A pyrene-based highly selective turn-on fluorescent sensor for copper(II) ions and its application in living cell imaging, Sens. Actuators B Chem. 181 (2013) 743–748.
- [37] K. Chansaenpak, H. Wang, M. Wang, B. Giglio, X. Ma, H. Yuan, et al., Synthesis and evaluation of [18F]-Ammonium BODIPY dyes as potential positron emission tomography agents for myocardial perfusion imaging, Chem. Eur. J. 22 (34) (2016) 12122–12129.
- [38] Y. Li, X. Han, Y. Song, An azo-phenol derivative probe: colorimetric and "turn-on" fluorescent detection of copper(ii) ions and pH value in aqueous solution, RSC Adv. 7 (33) (2017) 20537–20541.
- [39] Li C-r, Qin J-c, Wang G-q, Wang B-d, Z.-y. Yang, A novel pyrazine derivative as a "turn on" fluorescent sensor for the highly selective and sensitive detection of Al3 +, Anal. Methods 7 (8) (2015) 3500–3505.

- [40] A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (7) (1993) 5648–5652.
- [41] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem. 98 (45) (1994) 11623–11627.
- [42] A. Schäfer, H. Horn, R. Ahlrichs, Fully optimized contracted Gaussian basis sets for atoms Li to Kr, J. Chem. Phys. 97 (4) (1992) 2571–2577.
- [43] M. Cossi, V. Barone, Time-dependent density functional theory for molecules in liquid solutions, J. Chem. Phys. 115 (10) (2001) 4708–4717.
- [44] P. Ordon, A. Tachibana, Investigation of the role of the C-PCM solvent effect in reactivity indices, J. Chem. Sci. Bangalore (Bangalore) 117 (5) (2005) 583–589.
  [45] C. Adamo, V. Barone, Toward reliable density functional methods without
- adjustable parameters: the PBE0 model, J. Chem. Phys. 110 (13) (1999) 6158–6170.
- [46] J. Nootem, C. Sattayanon, S. Namuangruk, P. Rashatasakhon, W. Wattanathana, G. Tumcharern, et al., Solvatochromic triazaborolopyridinium probes toward ultrasensitive trace water detection in organic solvents, Dye. Pigment. 181 (2020), 108554.
- [47] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, et al., Gaussian 16 Rev. B.01 (2016). Wallingford CT.
- [48] A.C. Pinheiro, M.V.N. de Souza, M.C.S. Lourenço, C.F. da Costa, T.C. Baddeley, J. N. Low, et al., Synthesis, potent anti-TB activity against M. Tuberculosis ATTC 27294, crystal structures and complex formation of selected 2-arylidenehydrazi-nylbenzothiazole derivatives, J. Mol. Struct. 1178 (2019) 655–668.
- [49] S. Sahana, G. Mishra, S. Sivakumar, P.K. Bharadwaj, 2-(2'-Hydroxyphenyl)benzothiazole (HBT)-terpyridine conjugate: a highly specific ICT based fluorescent probe for Zn2+ ions and its application in confocal cell imaging, J. Photochem. Photobiol. A: Chem. 351 (2018) 231–239.
- [50] M. Zhu, Y. Xu, L. Sang, Z. Zhao, L. Wang, X. Wu, et al., An ICT-based fluorescent probe with a large Stokes shift for measuring hydrazine in biological and water samples, Environ. Pollut. 256 (2020), 113427.
- [51] X. Ren, F. Zhang, H. Luo, L. Liao, X. Song, W. Chen, Red-emitting boron difluoride complexes with a mega-large stokes shift and unexpectedly high fluorescence quantum yield, Chem. Commun. 56 (14) (2020) 2159–2162.
- [52] G. Aquilanti, M. Giorgetti, M. Minicucci, G. Papini, M. Pellei, M. Tegoni, et al., A study on the coordinative versatility of new N,S-donor macrocyclic ligands: XAFS, and Cu2+ complexation thermodynamics in solution, J. Chem. Soc. Dalton Trans. 40 (12) (2011) 2764–2777.
- [53] J.E. Hahn, R.A. Scott, K.O. Hodgson, S. Doniach, S.R. Desjardins, E.I. Solomon, Observation of an electric quadrupole transition in the X-ray absorption spectrum of a Cu(II) complex, Chem. Phys. Lett. 88 (6) (1982) 595–598.