

Trifluoromethylation of Unactivated Alkenes with Me₃SiCF₃ and **N-lodosuccinimide**

Xinkan Yang and Gavin Chit Tsui*®

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR

ABSTRACT: A novel approach to the trifluoromethylation of unactivated alkenes is presented. This reaction is promoted by N-iodosuccinimide (NIS) under visible light irradiation without the need for photocatalysts. The mild conditions allow the direct synthesis of useful trifluoromethylated (E)-alkenes from readily available alkene feedstocks with excellent functional group tolerability. In addition, using easy-to-handle and commercial Me₃SiCF₃ instead of gaseous CF₃I as the CF₃ source is highly attractive for industrialscale applications.

nactivated alkenes are among the most abundant chemical feedstocks in organic synthesis.¹ They are readily available in bulk quantities at low costs from petrochemical and renewable resources and possess a characteristic reactivity profile. For this reason, alkene functionalization has become the staple method for constructing new carbon-carbon bonds.² Direct trifluoromethylation of unactivated alkenes is a powerful tool for introducing the trifluoromethyl group into organic molecules (C-CF₃ bond formation). Despite enormous progress in the field of trifluoromethylation methodology,³ this area remains underdeveloped. Pioneering work on copper-catalyzed trifluoromethylation of terminal alkenes allowed the efficient construction of allylic C-CF₃ bonds.⁴ Hydrotrifluoromethylation of unactivated alkenes was also achieved by photoredox catalysis and other conditions to provide a net addition of "H-CF₃" across the double bond.^{5,6} In view of the importance of organofluorine compounds for pharmaceutical, agrochemical, and material applications,⁷ the development of new methods for the synthesis of trifluoromethylated molecules directly from simple alkenes is of high relevance.

Vinylic trifluoromethylation of unactivated alkenes is unique for creating a Csp²-CF₃ bond in the product, which constitutes a formal vinylic C-H bond functionalization that is distinct from other trifluoromethylation processes.⁴⁻⁶ The resulting trifluoromethylated alkenes are not only key structural motifs in drug candidates⁷ but also synthetically useful substrates for C-F bond activations.⁸ Typically these compounds were prepared from prefunctionalized alkenes via cross-coupling-type reactions⁹ with the limitations of poor atom economy and moderate E/Z selectivity. Significant improvement was brought about by visible light photoredox catalysis to directly convert unactivated alkenes to alkenyl-CF₃ products with excellent E-selectivity under mild conditions.¹⁰ In the seminal report,^{10a} a Ru-based photocatalyst was employed in a reductive quenching cycle to generate an

electrophilic CF₃ radical from trifluoromethyl iodide (CF₃I) (Scheme 1a). This radical then adds to an alkene 1 to give the

trifluoromethylated secondary carbon radical. An additional base DBU was required to act as both a reductive quencher and a base for hydrogen iodide elimination leading to the final alkenyl-CF₃ product 2. The choice of CF₃I as the CF₃ radical source was universal in the photocatalytic alkene trifluoromethylation.^{10,11} Despite its utility and low cost, using CF_3I (gas, bp = -22.5 °C) in a routine operation and on an industrial scale can be challenging.¹² We herein report an alternative protocol for generating the CF3 radical from Ruppert-Prakash reagent (Me₃SiCF₃, liquid, bp = 54-55 $^{\circ}$ C),¹³ a formal CF₃ anion equivalent, in the presence of Niodosuccinimide (NIS) and visible light (Scheme 1b). This

Received: January 26, 2019

Supporting Information

Organic Letters

redox-neutral approach does not require photocatalysts and alleviates the use of gaseous $CF_{3}I$.

Oxidative allylic trifluoromethylation, 14a hydrotrifluoromethylation,^{14b} and fluorotrifluoromethylation^{14c} of unactivated alkenes using Me₃SiCF₃ have been successfully developed by Qing's group. These processes were transitionmetal-mediated and required a strong oxidant such as $PhI(OAc)_2$ for the presumable generation of CF₃ radical from CF₃ anion. To the best of our knowledge, vinylic trifluoromethylation of unactivated alkenes with Me₃SiCF₃ is unknown. We decided to circumvent this limitation by employing a common inexpensive reagent N-iodosuccinimide for its two roles: (1) as a mild oxidant; (2) as an iodine source for the iodotrifluoromethylated intermediate^{10a,d} prior to elimination. The hypothesis includes the base of known NISpromoted oxidative transformations under visible light;¹⁵ however, whether NIS is capable of generating the CF₃ radical from Me₃SiCF₃ remained unclear from the outset.

We chose the unactivated alkene 1a in the optimization studies for its higher boiling point and ease of preparation. Excess Me₃SiCF₃ (CF₃ source) and NaOAc (initiator) were adopted based on related trifluoromethylation conditions.^{14b,13c,d} Various reaction parameters were subsequently screened (Table 1),¹⁶ and the initial results showed that, under

Table 1. Optimization Studies for NIS-Promoted Trifluoromethylation of Alkene 1a with Me₃SiCF₃

Ć		Me ₃ SiCF ₃ (4.0 equiv) NaOAc (4.0 equiv) additive 1a solvent (0.1 M), rt, 24 h, argon, blue LED	O 2a	CF3
entry	x	additive (equiv)	solvent	yield % $(E/Z)^a$
1	3.0	none	DMF	38 (94:6)
2	4.0	none	DMF	62 (92:8)
3	5.0	none	DMF	42 (93:7)
4	3.0	$Ru(bpy)_{3}Cl_{2}\cdot 6H_{2}O(0.025)$	DMF	53 (93:7)
5	3.0	$AgNO_3$ (0.2)	DMF	38 (93:7)
6	3.0	$AgNO_3$ (1.2)	DMF	73 (93:7)
7	3.0	$AgNO_{3}$ (2.0)	DMF	74 (92:8)
8	3.0	AgOAc (1.2)	DMF	73 (93:7)
9	3.0	AgOAc (1.2)	MeCN	33 (96:4)
10	3.0	AgOAc (1.2)	DMSO	76 (93:7)
11	2.0	AgOAc (1.2)	DMSO	76 (93:7)
12	1.0	AgOAc (1.2)	DMSO	37 (94:6)
13 ^b	2.0	AgOAc (1.2)	DMSO	30 (94:6)
14 ^b	2.0	AgOAc (5.2)	DMSO	15 (93:7)
15 ^c	2.0	AgOAc (1.2)	DMSO	13 (92:8)
a			10	

^{*a*}Yield and E/Z ratio were determined by ¹⁹F NMR analysis of the crude mixture versus an internal standard (benzotrifluoride). ^{*b*}Without NaOAc. ^{*c*}No irradiation, at 80 °C.

irradiation with blue LED at room temperature in DMF with 3.0 equiv of NIS, the corresponding trifluoromethylated alkene product **2a** was formed in 38% yield and good E/Z-selectivity (94:6) (entry 1). Increasing the equivalents of NIS gave a higher yield (62%), but no further improvement was achieved with increased equivalents (entries 2–3). In these experiments, we also observed small amounts (4–6%) of hydrotrifluoromethylated products that were difficult to separate from **2a**. Substituting NIS with NBS, NCS, or I₂ gave no conversion at all. Next, additive effects were explored. We first added the Rubased photocatalyst and found that the yield was only

increased to 53% (entry 4), which is in contrast with the excellent yields obtained by similar photoredox catalysts with CF₃I.^{10a} Silver(I) salts are known activators for NIS,^{17a} yet adding a catalytic amount of AgNO₃ did not change the yield. However, using 1.2 equiv significantly enhanced the yield (73%); a larger excess was not useful (entries 5–7). Various other silver(I) salts were also tested and were found to be inferior to AgNO₃, except AgOAc, which gave same results (entry 8). Considering the wider commercial availability and less hazardous nature of AgOAc, we decided to continue the optimization with AgOAc. Silver was unique in this reaction, and other metal salts such as CuCl, FeCl₂, and FeCl₃ only gave traces of products along with unreacted starting materials even though FeCl₃ has been shown to activate NIS in iodination reactions.^{16,17b} We also varied the amounts of Me₃SiCF₃/ NaOAc, and 4.0 equiv of each was optimal. Solvent screening revealed that DMSO was more suitable than DMF due to the complete inhibition of hydrotrifluoromethylated side products (entries 9-10). Other less polar solvents including 1,4dioxane, dichloromethane, toluene, and diethyl ether led to poor solubilities of the reaction mixture. In DMSO, only 2.0 equiv of NIS were needed to achieve the same yield (entries 11-12). Extensive screening of the initiator for Me₃SiCF₃ was carried out¹⁶ showing that carboxylates were superior in this reaction compared to other commonly used initiators such as carbonate^{10a} and fluoride.^{10c} For instance, sodium benzoate and potassium/lithium acetate all gave similar yields as sodium acetate. However, reactions carried out without NaOAc (even using larger excess of AgOAc) caused sharp decreases in yield (entries 13-14). Irradiation was crucial for the reaction. The reactivity was dramatically reduced without light (8% yield), even after heating at 80 °C (13% yield, entry 15).¹⁶ The reaction parameters did not seem to have significant impact on the E/Z-selectivities; in all cases, the *E*-alkene predominated.

By applying the optimized conditions to readily available unactivated alkenes 1, a library of trifluoromethylated alkenes 2 were rapidly generated in one step with good E-selectivities (Scheme 2). The advantages of the mild conditions (room temperature and no strong oxidant) were reflected in the excellent functional group tolerance. Ester derivatives (2a-n)bearing electron-donating/electron-withdrawing aromatic substituent groups (2b-g), aryl halides (2h-k), and heteroaryl groups (2l-n) were shown to be compatible. Phenol derivatives (20-p) containing ketone and aldehyde functionalities mainly gave the desired products despite the fact that these carbonyl groups are highly susceptible to nucleophilic additions^{13c,d} by Me₃SiCF₃.¹⁸ Aryl iodide (2q) and boronate (2r), which are useful cross-coupling partners, were also tolerated. Gram-scale synthesis of 2q was also feasible with recovered unreacted starting material (94% yield brsm). Phthalimide derivatives (2s-t),¹⁸ benzyl and silvl ethers (2u-v), were suitable substrates. However, in cases where good leaving groups are present in the substrates (1w OTs, 1x Br), the major products obtained were the succinimide derivatives (2w-x) via $S_N 2$ displacements. A shorter carbon chain analog (2y vs 2a) was obtained with a somewhat lower yield and E/Z ratio. An allylbenzene derivative gave a mixture of alkenyl-CF₃ (36%, ¹⁹F NMR, E/Z = 94:6) and allyl-CF₃^{10a} (8%, ¹⁹F NMR) products. The longer carbon chain epoxide (2z), ester (2aa), and amide (2ab) were all tolerated. Oxidation of aliphatic alcohols such as 1ac catalyzed by AgOAc in the presence of NIS and light is known,^{15a} yet in our reaction this substrate was chemoselectively converted to 2ac Scheme 2. Scope of Trifluoromethylated Alkenes 2^{a}

^{*a*}General conditions: 1 (0.3 mmol), NIS (0.6 mmol), AgOAc (0.36 mmol), Me₃SiCF₃ (1.2 mmol), NaOAc (1.2 mmol), DMSO (3.0 mL), under argon. The *E/Z* ratio was determined by ¹⁹F NMR analysis of the crude mixture. ^{*b*}Larger excess of AgOAc (0.45 mmol) was used to inhibit side product formation. ^{*c*}Used 1.51 g (5.0 mmol) of 1q, DMSO (0.2 M). ^{*d*}Recovered starting material.

in a good yield as the sole product. Even carboxylic acid 2ad was compatible, which is rarely employed in the usually basic conditions involving Me₃SiCF₃. These protecting-group-free approaches for directly accessing functionalized trifluoromethylated alkenes are useful for enhancing step economy. It is worth noting that Ag-catalyzed trifluoromethylation of arene C-H bonds with Me₃SiCF₃ in DMSO at room temperature has been reported,^{19a} yet our reactions were devoid of any aryl-CF₃ side products which was likely due to the absence of strong oxidants such as PhI(OAc)₂. Styrene derivatives were unreactive under these conditions. Such limitation also existed in previously reported photocatalytic methods.^{10a,d,20} Finally, late-stage trifluoromethylation of natural product derivatives was achieved to install tethered trifluoromethylated alkene units to the estrone (2ae), umbelliferone (2af), flavone (2ag), and quinine (2ah) cores.²¹ This strategy allows the selective placement of the CF₃ group in bioactive molecules in the last step which will be highly attractive for medicinal chemistry research.

Mechanistic studies were subsequently carried out to gain more insights into the reaction. Subjecting **1a** to preformed $AgCF_3^{22}$ in the presence of NIS with irradiation did not afford any product **2a** (eq 1), thus ruling out the presence of $AgCF_3$ in the reaction mixture.

Using a deuterium-labeled substrate 3 in standard conditions (cf. Scheme 2) gave the desired product 4 with one retained deuterium (eq 2). No significant amount of deuterated succinimide 5 was observed thus suggesting that succinimide may not be the base for D-I elimination.

Cyclohexene also reacted under standard conditions to form the trisubstituted alkenyl-CF₃ product **6a**, while at the same time producing the *anti*-iodotrifluoromethyl product **6b**, which could not undergo HI elimination for alkene formation (eq 3).^{10a}

Furthermore, we employed substrate 7, a radical clock^{4a} in the reaction to probe the radical mechanism (eq 4). Cyclopentane derivatives 8a and 8b were obtained mainly, which can be explained by the 5-*exo-trig* cyclization of the radical species 7' after the C–CF₃ bond-forming event. Ultimately an alkyl iodide should be formed at a primary carbon, which either underwent $S_N 2$ displacement with succinimide to give 8a or HI elimination to give alkene 8b.¹⁶ Another radical clock cyclopropane 9 was also used providing exclusively the ring-opened products 10a (HI elimination product) and 10b ($S_N 2$ displacement product) (eq 5), which should derive from the initial radical intermediate 9'.¹⁶ These studies strongly support the addition of a CF₃ radical to the alkene resulting in a carbon-based radical species such as 7' or 9'.²³

Based on these studies and literature examples, we propose the following mechanism to rationalize product formation (Scheme 3). Light promotes the cleavage of the N-I bond of

Scheme 3. A Plausible Mechanism

NIS resulting in an iodine radical.¹⁵ This process is further enhanced synergistically by the complexation of NIS (complex A) with a silver(I) salt which acts as a Lewis acid.^{17a,16} The optimization studies clearly showed the benefits of adding AgOAc and using light (cf. Table 1, entries 1, 8, and 15). Meanwhile, a CF₃ anion is generated from Me₃SiCF₃ and NaOAc, which is effectively oxidized to the CF₃ radical. Such type of oxidation has been described using a strong oxidant PhI(OAc)₂;^{14b,c} however in our case, the N–I bond cleavage process couples with this oxidation step conveniently resulting in the formation of a succinimide anion.²⁴ No extra oxidant is required. Addition of the electron-deficient CF₃ radical to alkene 1 affords the trifluoromethylated secondary carbon radical B.^{10a,d} Radical clock experiments supported the existence of this radical intermediate (cf. eqs 4-5). Rapid recombination of radical B with the iodine radical leads to the iodotrifluoromethyl intermediate C_r^{25} as evidenced by the detection of compound **6b** (cf. eq 3). The displacement products 8a and 10b also provided support for the presence of alkyl iodides (cf. eqs 4-5). Finally, intermediate C undergoes E2 elimination of HI to predominantly generate the E-alkene product 2.^{10a} Here we propose acetate acting as the base, instead of succinimide, due to its higher concentration in the reaction system (large excess of NaOAc) and the absence of significant amounts of deuterated succinimide 5 (cf. eq 2). A stronger base DBU has been employed for such elimination;^{10a} in our case, the silver(I) salt can facilitate the dehydrohalogenation process forming less soluble AgI and driving the reaction forward, which also explains why stoichiometric amounts of silver are required (cf. Table 1, entries 5–6) and a weaker base acetate is equally effective. The *dual roles* of the reagents in this system are most intriguing: (1) acetate acting as both an initiator for Me₃SiCF₃ and a base for HI elimination; (2) NIS acting as both an oxidant for CF₃ anion and an iodine radical source; (3) silver(I) salt acting as both an activator for NIS and a facilitator for dehydrohalogenation. The impact of such a multifunctional system is a highly streamlined process without the need for an extra oxidant/reductant.

In conclusion, we have developed a new approach toward trifluoromethylation of unactivated alkenes, which allows the rapid generation of a wide array of synthetically useful and pharmaceutically important trifluoromethylated alkenes with high *E*-selectivities. Compared to other methods,^{10,14} this protocol has the following advantages: (1) using easy-to-handle Me₃SiCF₃ instead of gaseous CF₃I as the CF₃ source; (2) using NIS as a mild oxidant instead of PhI(OAc)₂; (3) direct access of the alkenyl product **2** from **1** without separately adding a base to the iodotrifluoromethyl intermediate **C**; (4) using a visible light source (commonly available and cheap blue LED) without precious metal photocatalysts. Further investigation of the combination of NIS and light for alkene activation is ongoing in our laboratory.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.9b00332.

Experimental procedures and characterization data for all new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: gctsui@cuhk.edu.hk.

ORCID [®]

Gavin Chit Tsui: 0000-0003-4824-8745

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Research Grants Council of Hong Kong (CUHK 24301217) and the Chinese University of Hong Kong (the Faculty Strategic Fund for Research from the Faculty of Science and the Direct Grant for Research). We also thank the Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences for funding.

REFERENCES

(1) The Chemistry of Double Bonded Functional Groups; Patai, S., Ed.; Wiley: Chichester, U.K., 1997.

(2) For reviews on the functionalization of unactivated alkenes, see: (a) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. *Chem. Rev.* **1993**, *93*, 1307. (b) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. *Chem. Rev.* **1994**, *94*, 2483. (c) Beller, M.; Seayad, M. J.; Tillack, A.; Jiao, H. *Angew. Chem., Int. Ed.* **2004**, *43*, 3368. (d) McDonald, R. I.; Liu, G.; Stahl, S. S. *Chem. Rev.* **2011**, *111*, 2981. (e) Shimizu, Y.; Kanai, M.

Organic Letters

Tetrahedron Lett. 2014, 55, 3727. (f) Coombs, J. R.; Morken, J. P. Angew. Chem., Int. Ed. 2016, 55, 2636. (g) Xu, S.; Negishi, E.-I. Acc. Chem. Res. 2016, 49, 2158. (h) Derosa, J.; Tran, V. T.; van der Puyl, V. A.; Engle, K. M. Aldrichimica Acta 2018, 51, 21.

(3) For reviews on various trifluoromethylation methods, see:
(a) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
(b) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
(c) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.
(d) Alonso, C.; Martínez de Marigorta, E.; Rubiales, G.; Palacios, F. Chem. Rev. 2015, 115, 1847.
(e) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765.
(f) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 115, 826.
(g) Chatterjee, T.; Iqbal, N.; You, Y.; Cho, E. J. Acc. Chem. Res. 2016, 49, 2284.

(4) (a) Parsons, A. T.; Buchwald, S. L. Angew. Chem. 2011, 123, 9286. (b) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410. (c) Xu, J.; Fu, Y.; Luo, D.-F.; Jiang, Y.-Y.; Xiao, B.; Liu, Z.-J.; Gong, T.-J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 15300.

(5) (a) Mizuta, S.; Verhoog, S.; Engle, K. M.; Khotavivattana, T.;
O'Duill, M.; Wheelhouse, K.; Rassias, G.; Médebielle, M.;
Gouverneur, V. J. Am. Chem. Soc. 2013, 135, 2505. (b) Wilger, D.
J.; Gesmundo, N. J.; Nicewicz, D. A. Chem. Sci. 2013, 4, 3160.
(c) Ren, Y.-Y.; Zheng, X.; Zhang, X. Synlett 2018, 29, 1028. (d) Pitre,
S. P.; McTiernan, C. D.; Ismaili, H.; Scaiano, J. C. ACS Catal. 2014, 4,
2530. (e) Egami, H.; Usui, Y.; Kawamura, S.; Nagashima, S.; Sodeoka,
M. Chem. - Asian J. 2015, 10, 2190. (f) Yu, P.; Zheng, S.-C.; Yang, N.-Y.; Tan, B.; Liu, X.-Y. Angew. Chem., Int. Ed. 2015, 54, 4041.
(g) Cheng, Y.; Yu, S. Org. Lett. 2016, 18, 2962.

(6) For reviews on trifluoromethylation of alkenes and alkynes, see:
(a) Egami, H.; Sodeoka, M. Angew. Chem., Int. Ed. 2014, 53, 8294.
(b) Merino, E. X. B.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598.
(c) Gao, P.; Song, X.-R.; Liu, X.-Y.; Liang, Y.-M. Chem. - Eur. J. 2015, 21, 7648.
(d) Besset, T.; Poisson, T.; Pannecoucke, X. Chem. - Eur. J. 2014, 20, 16830.
(e) Koike, T.; Akita, M. Chem. 2018, 4, 409.

(7) For reviews, see: (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (c) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308. (d) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470. (e) Wang, J.; Sánchez-Roselló, M.; Aceña, C.; del Pozo, J. L.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.

(8) For selected examples, see: (a) Huang, Y.; Hayashi, T. J. Am. Chem. Soc. 2016, 138, 12340. (b) Kojima, R.; Akiyama, S.; Ito, H. Angew. Chem., Int. Ed. 2018, 57, 7196. (c) Gao, P.; Yuan, C.; Zhao, Y.; Shi, Z. Chem. 2018, 4, 2201. (d) Fujita, T.; Fuchibe, T. K.; Ichikawa, J. Angew. Chem., Int. Ed. 2019, 58, 390.

(9) For selected examples, see: (a) Liu, T.; Shen, Q. Org. Lett. 2011, 13, 2342. (b) Cho, E. J.; Buchwald, S. L. Org. Lett. 2011, 13, 6552. (c) Parsons, A. T.; Senecal, T. D.; Buchwald, S. L. Angew. Chem., Int. Ed. 2012, 51, 2947. (d) He, Z.; Luo, T.; Hu, M.; Cao, Y.; Hu, J. Angew. Chem., Int. Ed. 2012, 51, 3944.

(10) (a) Iqbal, N.; Choi, S.; Kim, E.; Cho, E. J. J. Org. Chem. 2012, 77, 11383. (b) Choi, W. J.; Choi, S.; Ohkubo, K.; Fukuzumi, S.; Cho, E. J.; You, Y. Chem. Sci. 2015, 6, 1454. (c) Kim, S.; Park, G.; Cho, E. J.; You, Y. J. Org. Chem. 2016, 81, 7072. (d) Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J. J. Am. Chem. Soc. 2011, 133, 4160. (e) Wallentin, C.-J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875. (f) Du, Y.; Pearson, R. M.; Lim, C.-H.; Sartor, S. M.; Ryan, M. D.; Yang, H.; Damrauer, N. H.; Miyake, G. M. Chem. - Eur. J. 2017, 23, 10962.

(11) Besides alkene trifluoromethylation, CF₃I is also commonly used for trifluoromethylation of heterocycles and α -trifluoromethylation of carbonyl compounds under photoredox catalysis; see: (a) Iqbal, N.; Choi, S.; Ko, E.; Cho, E. J. *Tetrahedron Lett.* **2012**, 53, 2005. (b) Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. *Chem. Soc.* **2009**, 131, 10875. (c) Pham, P. V.; Nagib, D. A.; MacMillan, D. W. C. *Angew. Chem., Int. Ed.* **2011**, 50, 6119 For a recent example of iodotrifluoromethylation of unactivated alkenes using CF₃I and catalyzed by chloride ions, see: . (d) Beniazza, R.; Remisse, L.; Jardel, D.; Lastécouères, D.; Vincent, J.-M. Chem. Commun. 2018, 54, 7451.

(12) For a report on a liquid-phase, halogen-bonded adduct of CF_{3I} in alkene trifluoromethylation, see: Sladojevich, F.; McNeill, E.; Börgel, J.; Zheng, S.-L.; Ritter, T. *Angew. Chem., Int. Ed.* **2015**, *54*, 3712.

(13) (a) Ruppert, I.; Schlich, K.; Volbach, W. Tetrahedron Lett. 1984, 25, 2195. (b) Prakash, G. K. S.; Krishnamurti, R.; Olah, G. A. J. Am. Chem. Soc. 1989, 111, 393. (c) Prakash, G. K. S.; Yudin, A. K. Chem. Rev. 1997, 97, 757. (d) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683.

(14) (a) Chu, L.; Qing, F.-L. Org. Lett. **2012**, *14*, 2106. (b) Wu, X.; Chu, L.; Qing, F.-L. Angew. Chem., Int. Ed. **2013**, *52*, 2198. (c) Yu, W.; Xu, X.-H.; Qing, F.-L. Adv. Synth. Catal. **2015**, 357, 2039.

(15) (a) Beebe, T. R.; Hensley, V. L.; Ng, F. W.; Noe, R. A.; Scott, D. J. J. Org. Chem. 1985, 50, 3015. (b) McDonald, C. E.; Holcomb, H.; Leathers, T.; Ampadu-Nyarko, F.; Frommer, J., Jr Tetrahedron Lett. 1990, 31, 6283. (c) Qian, P.; Du, B.; Song, R.; Wu, X.; Mei, H.; Han, J.; Pan, Y. J. Org. Chem. 2016, 81, 6546. (d) O'Broin, C. Q.; Fernández, P.; Martínez, C.; Muñiz, K. Org. Lett. 2016, 18, 436. (16) See the Supporting Information for details.

(17) (a) Racys, D. T.; Sharif, S. A. I.; Pimlott, S. L.; Sutherland, A. J. Org. Chem. 2016, 81, 772. (b) Racys, D. T.; Warrilow, C. E.; Pimlott, S. L.; Sutherland, A. Org. Lett. 2015, 17, 4782.

(18) We detected smaller amounts of side products by ¹⁹F NMR, resulting from the nucleophilic addition of Me₃SiCF₃ to the aldehyde group of **2p** (28%) and the amide group of **2s** (28%), to give the corresponding TMS-protected trifluoromethylated alcohols.

(19) (a) Seo, S.; Taylor, J. B.; Greaney, M. F. Chem. Commun. 2013, 49, 6385. For related reports, see: (b) Ye, Y.; Lee, S. H.; Sanford, M. S. Org. Lett. 2011, 13, 5464. (c) Hafner, A.; Bräse, S. Angew. Chem., Int. Ed. 2012, 51, 3713. For a review, see: (d) Hafner, A.; Jung, N.; Bräse, S. Synthesis 2014, 46, 1440.

(20) Vinylic trifluoromethylation of styrene derivatives has been described using electrophilic CF₃ sources such as Togni reagent; for representative examples, see: (a) Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. **2014**, 79, 10434. (b) Wang, X.-P.; Lin, J.-H.; Zhang, C.-P.; Xiao, J.-C.; Zheng, X. Beilstein J. Org. Chem. **2013**, 9, 2635.

(21) The lower yield of **2ae** was due to the poorer solubility of the substrate which was recovered from the reaction (94% yield brsm). The moderate E/Z-selectivity of **2ah** was likely due to the steric effect of the adjacent quinuclidine unit in the HI elimination step. However, each *E*- and *Z*-isomer can be isolated by column chromatography on silica gel.

(22) Zeng, Y.; Zhang, L.; Zhao, Y.; Ni, C.; Zhao, J.; Hu, J. J. Am. Chem. Soc. 2013, 135, 2955.

(23) When a known radical scavenger TEMPO (2.0 equiv) was added to the reaction with 1a, no conversion was observed and no significant amount of TEMPO-CF₃ was detected. Separate ¹H NMR studies revealed that NIS was not compatible with TEMPO and underwent decomposition in the presence of TEMPO and, therefore, could not convert 1a to 2a. See the SI for details.

(24) The presence of succinimide is evidenced by products 2w/2x (cf. Scheme 2) and 8a/10b (cf. eqs 4–5) *via* S_N2 displacement of the leaving group by the succinimide nucleophile.

(25) Zhang, Z.; Stateman, L. M.; Nagib, D. A. Chem. Sci. 2019, 10, 1207.