

ScienceDirect

Mendeleev Commun., 2020, 30, 567-568

Mendeleev Communications

1,1'-Diphenyl-bis-germatrane with persistent radical cation

Vitalijs Romanovs,^{*a} Daria M. Vakhrusheva,^{b,c} Irina V. Krylova,^b Badma N. Mankaev,^d Anna Ya. Kozmenkova,^b Mikhail A. Syroeshkin,^{*b} Mikhail P. Egorov^b and Viatcheslav V. Jouikov^{*e}

^a Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia. E-mail: vitalijs.romanovs@inbox.lv

^b N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation. E-mail: syroeshkin@ioc.ac.ru

- ^c Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russian Federation
- ^d Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
- ^e University of Rennes, 35042 Rennes, France. E-mail: vjouikov@univ-rennes1.fr

DOI: 10.1016/j.mencom.2020.09.004

Bis-phenyl derivative of a novel family of bis-metallatranes, 1,1'-diphenyl-bis-germatrane, was synthesized and characterized. One-electron oxidation of this compound is electrochemically and chemically reversible providing a persistent radical cation.

Keywords: organogermanium compounds, metallatranes, redox properties, radical cations, cyclic voltammetry, actuator systems.

Germatranes, cage compounds with trigonal bipyramid coordination of Ge and an intramolecular 3c-4e bonding, are known for half a century.¹ Redox reactions of metallatranes and the products of their one-electron oxidation, radical cations, attract attention for surface modification, spin writing and as possible actuator systems.^{2,3} With this, redox-related experimental and theoretical properties of germatranes are contradictory,³ so correct description of the type and localization of HOMO in such systems requires a special attention.^{4,5} In view of development of hyperbonded systems beyond 3c-4e and the perspectives of their applications, germatranes and recently prepared bis-germatranes⁵ are of an acute interest from both theoretical and experimental points of view; stabilizing their radical cations being another special issue. In this preliminary report, we present synthesis of 1,1'-diphenyl-bis-germatrane and generation of its persistent radical cation.

The title compound was synthesized by ethoxylation of (trichloro)phenylgermane **1** followed by reaction of thus formed (triethoxy)phenylgermane with tris(1,3-dihydroxyprop-2-yl)amine (Scheme 1, for the preparation of the polyol amine see ref. 6).[†]

The obtained 1,1'-diphenyl-bis-germatrane **1** was characterized by several instrumental techniques (for details, see Online Supplementary Materials). In particular, Figure 1 shows the polyisotopic HRMS (ESI-MS) spectrum with a specific isotope cluster for compounds containing two germanium atoms.

Redox properties of bis-germatrane 1 were assessed using cyclic voltammetry at a glassy carbon (GC) disc electrode in a 0.1 M $Bu_4NPF_6/MeCN$ solution. The voltammograms recorded at the scan rates from 0.05 to 1 V s⁻¹ (Figure 2) demonstrated a reversible one-electron oxidation leading to formation of radical

Figure 1 HRMS (ESI-MS) spectrum of 1,1'-diphenyl-bis-germatrane 1 (the molecular ion formation upon H⁺-ionization): (*a*) experimental and (*b*) calculated.

[†] Triethylamine (0.43 g, 4.3 mmol) and EtOH (0.14 g, 4.3 mmol) were added to a solution of PhGeCl₃ (0.30 g, 1.16 mmol) in light petroleum (10 ml) at 0 °C. The mixture was stirred at 0 °C for 30 min, and then at 40–45 °C for 2 h. After cooling to room temperature, Et₃N·HCl was filtered off and washed with light petroleum. Tris(1,3-dihydroxyprop-2-yl)amine (0.14 g, 0.58 mmol) in MeOH (5 ml) was added to the combined filtrate at 0 °C; the mixture was stirred for 30 min and then at room temperature for 8 h. The solvent was evaporated to a half, the solution was cooled to 0 °C, and the precipitated 1,1'-diphenyl-bis-germatrane **1** was filtered off as amorphous white solid (yield, 0.14 g, 45%).

Figure 2 Cyclic voltammograms of 3×10^{-3} M 1,1'-diphenyl-bisgermatrane **1** at a GC disc electrode (1.7 mm) in 0.1 M Bu₄NPF₆/MeCN at scan rates of (1) 0.05, (2) 0.1, (3) 0.2, (4) 0.5 and (5) 1.0 V s⁻¹. Temperature 298 K.

cation 1^{++} (see Scheme 1). Within the given scan rate range, the behaviour of this reversible one-electron system is comparable to that of a standard ferrocene solution under the same conditions, showing similar forward and reverse peak currents with the 1:1 ratio. Extrapolating $E_{\rm p}$'s to zero peak currents allows one to estimate the formal potential of this bis-germatrane 1 as $E^{0'}$ = 1.506 V. The separation of anodic and cathodic peak potentials is $\Delta E_{\rm p} = 0.063$ V, which is very close to 0.059 V, a theoretical value for electrochemically reversible reactions.^{‡,7–9} The data on electrooxidation of phenylgermanium derivatives are quite scarce, but from few electrochemical studies on phenyl mono-germane derivatives, their chemically irreversible oxidation occurs at 1.16-1.24 V vs. Fc⁺/Fc¹⁰ (ca 1.4 V vs. Ag/AgCl). On the other hand, chemically reversible oxidation at $E_{1/2} = 0.88 \text{ V}^{\$} \text{ vs. Ag/AgCl}^6$ was reported for the precursor of bis-germatrane, tris(1,3-dihydroxyisopropyl)amine. Reversibility of oxidation of the bis-germatrane can then be considered as an argument that the center of electron withdrawal (HOMO) in this molecule does not locate on the Ph substituent but is rather bisatrane nitrogen-located. Consequently, the resulting radical cation center is sterically protected inside the bis-atrane cage providing the remarkable stability to the whole system.

The involvement of $(N)p_z$ electrons into the 3c–4e system in germatranes increases their oxidation potentials by 400–500 mV compared to E_p of triethanolamine.^{3,11} The same shift observed

for bis-germatrane 1 might reflect similar intramolecular interactions, supposedly corresponding to a 5c-6e system, though a more detailed analysis is complicated by the absence of $E_{\rm p}$ of phenyl germatrane so far. Nevertheless, some estimation can be done using the E_p^{ox} of phenyl silatrane, which is reported to be the same as that of 3-thienyl silatrane and approximately 100 mV more positive than E_p of methyl silatrane.⁹ By analogy, from $E_{\rm p}$ of 3-thienyl and methyl germatranes (1.65 and 1.5 V, respectively), the E_p of phenyl germatrane is expected to be about 1.6–1.65 V. The E_p 's of other aryl germatranes also conform this value.³ In this rough estimation, $E_{\rm p}$ of the new bisgermatrane 1 is slightly lower than expected. Furthermore, $E_{\rm p}$ of 2-(3-bromothienyl)-bis-germatrane (1.975 V vs. SCE, ref. 5) is also slightly lower (applying -0.31 V reference electrode conversion) than that of its germatrane analogue (1.705 vs. Ag/AgNO₃, ref. 3). With a substituent-located HOMO in these compounds, the formal electron-donor effect of bis-atrane cage appears stronger than that of a simple atrane, albeit an opposite trend would be expected supposing the participation of N lone pair in two N \rightarrow Ge dative interactions in bis-germatranes. Further work on structural characterization and electronic properties of this new class of carcass systems and of their radical cations is forthcoming.

Russian co-authors acknowledge the support by the Russian Science Foundation (grant no. 18-73-10180). V. R. and V. J. are grateful for the support from European Regional Development Fund ERDF – Latvia (no. 1.1.1.2/VIAA/3/19/577).

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.1016/j.mencom.2020.09.004.

References

- (a) J. G. Verkade, *Coord. Chem. Rev.*, 1994, **137**, 233; (b) Y. I. Baukov and S. N. Tandura, in *The Chemistry of Organic Germanium, Tin and Lead Compounds*, ed. Z. Rappoport, Wiley, 2002, vol. 2, ch. 16, pp. 1061–1071.
- 2 C. Pereux and V. Jouikov, Chem. Eur. J., 2014, 20, 9290.
- 3 L. Ignatovich and V. Jouikov, J. Organomet. Chem., 2014, 751, 546.
- 4 V. F. Sidorkin, E. F. Belogolova, Y. Wang, V. Jouikov and E. P. Doronina, *Chem. – Eur. J.*, 2017, 23, 1910.
- 5 V. Romanovs, J. Spura and V. Jouikov, *Synthesis*, 2018, **50**, 3679.
- 6 Y. Jie, P. Livant, H. Li, M. Yang, W. Zhu, V. Cammarata, P. Almond,
- T. Sullens, Y. Qin and E. Bakker, *J. Org. Chem.*, 2010, **75**, 4472.
- 7 A. J. Bard and L. R. Faulkner, *Electrochemical Methods: Fundamentals and Applications*, 2nd edn., Wiley, New York, 2001.
- 8 A. S. Mendkovich, V. B. Luzhkov, M. A. Syroeshkin, V. D. Sen, D. I. Khartsii and A. I. Rusakov, *Russ. Chem. Bull., Int. Ed.*, 2017, 66, 683 (*Izv. Akad. Nauk, Ser. Khim.*, 2017, 683).
- 9 M. A. Syroeshkin, M. N. Mikhailov, A. S. Mendkovich and A. I. Rusakov, *Russ. Chem. Bull.*, *Int. Ed.*, 2009, **58**, 41 (*Izv. Akad. Nauk, Ser. Khim.*, 2009, 41).
- 10 M. Okano and K. Mochida, Bull. Chem. Soc. Jpn., 1991, 64, 1381.
- 11 K. Broka, J. Stradins, V. Glezer, G. Zelcans and E. Lukevics, J. Electroanal. Chem., 1993, 351, 199.

Received: 30th April 2020; Com. 20/6211

[‡] It is worth noting that the increase in the value of ΔE_p with potential sweep rate fully correlates with uncompensated resistance that was evaluated from the cyclic voltammograms recorded for a ferrocene solution under similar conditions in the same range of potential sweep rates. Peak potential *vs*. peak current plots are linear for both **1** and ferrocene solution, their slopes are identical and correspond to uncompensated resistance in Ohm (thus, this indicates high chemical and electrochemical reversibility of oxidation of **1**). Extrapolation of the linear plot to zero current makes it possible to obtain potential values independent of uncompensated resistance. This approach allows one to get the values of $E^{0'}$ and ΔE_p with good reproducibility (~1 mV).

[§] Apparently, there is confusion between $E_{1/2}$ and $E_{p/2}$ in ref. 6; allowing 57 mV for $E_p - E_{p/2}$ separation (ref. 7), one comes up with 0.94 V vs. Ag/AgCl.