Effects of haloniums on gold-catalyzed ring expansion of 1-oxiranyl-1-alkynylcyclopropanes[†]

Hsuan-Hung Liao and Rai-Shung Liu*

Received 17th August 2010, Accepted 3rd November 2010 DOI: 10.1039/c0cc03309j

We observed distinct chemoselectivities for the gold-catalyzed transformation of *cis*-1-oxiranyl-1-alkynylcyclopropanes 1 into various halogenated products in the presence of suitable Au(III) catalysts and *N*-halosuccinimide (halo = chloro, bromo and iodo).

Formation of a carbo- or heterocyclic ring is an important topic in organic synthesis. Among various ring sizes, four-membered^{1,2} and medium ring sizes³ (seven to nine members) are particularly notable because many natural products possess these structural units. However, few practical methods are available for these cyclic rings; among them, ring closure metathesis is a powerful tool for medium-sized rings.⁴

We reported a gold-catalyzed hydrative ring-expansion of *cis*-1-oxiranyl-1-alkynylcyclopropanes **1**, giving 3-oxabicyclo-[4.2.0]oct-4-en-6-ols **2** stereoselectively (dr > 10 : 1) *via* a hypothetic tertiary cation **A**.⁵ Notably, their *trans* analogues failed to undergo stereoselective ring expansions because of a staggered orientation between the alkyne and epoxide groups. In the presence of PPh₃AuSbF₆ (5 mol%),⁵ alcohols **2** form 1-oxyallyl cations that undergo [4+2]-cycloaddition with butadienes or enones to give polycyclic products **3** and **4** with excellent diastereoselectivities.³ Alkenyl halides are important functionalities for various metal-catalyzed carbon–carbon coupling reactions.⁶ We sought to prepare halogen-containing bicyclic derivatives **5** *via* this hydrative ring expansion, in which X⁺ replaces the gold fragment in intermediate **A**.⁷

Table 1 shows our catalyst screening using common π -alkyne activators,⁸ with which starting *cis*-epoxide **1a** was completely consumed for all cases. In a standard operation, cis-epoxide 1a was treated with PPh₃AuCl/AgSbF₆ (5 mol%) in wet CH₂Cl₂ (DCM, 25 °C) for a short period (2-3 min), followed by an addition of N-chlorosuccinimide (NCS, 1.0 equiv.), giving a complex mixture of products (entry 1). Although AuCl₃ (10 mol%) enabled a hydrative cyclization of intermediate A derived from 1a (Scheme 1), its subsequent treatment with NCS (1 equiv.) gave 3-chloro-4,5-dihydro-2Hoxocin-6(3H)-one 6a, an eight-membered ether bearing a cis-configuration, albeit in 15% yield (entry 2); the cis-geometry was determined by ¹H NOE spectra. PtCl₂/CO and AuBr₃ failed to give 6a in a tractable amount (entries 3 and 4). Stable Au(III) species such as AuCl₂Pic (Pic = picolate, 10 mol%) greatly improved the yield of the desired 6a to 49% (entry 5), and further to 61% in the presence of PPh₃PO (10 mol%, entry 6)

	H, O, H nC ₅ H	(1) cata solvent/ additive (2) NCS	lyst H ₂ O (2 e e, 25 °C S (1 equ		CI rc_5H_{11} rc_7H_{11}
	1a (Ar = 4-MeC ₆ H ₄)			6a (Ar = 4	1-MeC ₆ H ₄)
Entry	Catalyst ^a /mol%	Solvent	t/h	Additive/ mol%	6a (yield [%]) ^b
1	PPh ₃ AuCl (5)/ AgSbF ₆ (5)	DCM	7		Complex mixture
2	AuCl ₃ (10)	DCM	0.5	_	15%
3	AuBr ₃ (10)	DCM	7	_	Complex mixture
4	$PtCl_2/CO$ (10)	DCM	7	_	Complex mixture
5	AuClPic (10)	DCM	0.16	_	49%
6	$AuCl_2Pic$ (10)	DCM	0.16	PPh ₃ O (10)	61%
7	$AuCl_2Pic$ (5)	DCM	0.16	PPh ₃ O (10)	60%
8	$AuCl_2Pic$ (5)	MeCN	0.5	PPh ₃ O (10)	25%
9	AuCl ₂ Pic (5)	MeCN	0.5	PPh ₃ O (10)	35%

 Table 1
 Gold-catalyzed oxacyclization/ring expansions using NCS

^{*a*} [Substrate] = 0.1 M. ^{*b*} Yields are reported after elution from a silica column.

Scheme 1 Reaction pathways for gold-catalyzed cyclizations.

that could inhibit the protodeauration.^{7a} The yield of **6a** was kept at 60% even with a small loading (5 mol%) of AuCl₂Pic. This catalysis is greatly affected by solvents in that THF and nitromethane gave poor yields (25–35%) of the desired ether **6a** (entries 8 and 9). Interestingly, naturally occurring compounds such as laurencin^{3a-c} and laurenyne^{3d,e} have similar structural skeletons.

Stereoselective formation of the eight-membered ether **6a** from starting *cis*-epoxide **1a** is mechanistically appealing because this process involves two consecutive openings of a starting cyclopropyl ring. We prepared *cis*-epoxides **1b–1j** to

Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, ROC. E-mail: rsliu@mx.nthu.edu.tw

[†] Electronic supplementary information (ESI) available: Experimental details and characterization data and ¹H and ¹³C NMR spectra of new compounds. See DOI: 10.1039/c0cc03309j

 Table 2
 Scope for the synthesis of eight-membered ring ethers

	H, Q,	(1) PicA R ² H ₂ C R ¹ PPh ₃ DCM	uCl ₂ (3 mc) (2 equiv) O (5 mol% I, rt, 1 min))	
	1b-1j A	· (2) NCS	(1.0 eq), 1	0 min	6b-6j Ar
Entry	Epoxide ^a	Ar	\mathbf{R}^1	\mathbb{R}^2	Product (yield [%]) ^b
1	1b	C ₆ H ₅	<i>n</i> -Pentyl	Н	6b (81%)
2	1c	p-MeOC ₆ H ₄	n-Pentyl	Н	6c (56%)
3	1d	p-CNC ₆ H ₄	n-Pentyl	Н	6d (69%)
4	1e	p-FC ₆ H ₄	n-Pentyl	Н	6e (58%)
5	1f	p-ClC ₆ H ₄	n-Pentyl	Н	6f (53%)
6	1g	-re- S	<i>n</i> -Pentyl	Н	6g (79%)
7	1h	ĩ \ĭ	n-Pentyl	Н	6h (77%)
8	1i	The second second	<i>n</i> -Pentyl	Н	6i (82%)
9	1j		<i>n</i> -Pentyl	Н	6j (47%)
10	1k	C ₆ H ₅	Methvl	Н	6k (83%)
11	11	35 S	Methyl	Н	61 (80%)
12	1m	C_6H_5	Methyl	Methyl	6m (57%)
^{<i>a</i>} [Ep metha	oxide] = 0. ane. ^b Yield	1 M, NCS = 1 s are reported	N-chlorosi after elut	accinimic ion from	le, DCM = dichloro- a silica column.

assess the generality of this catalysis. For 1.2-disubstituted epoxides 1b-f bearing variable para-substituents at the alkynylphenyl (Ar = $4-XC_6H_4$) positions, we obtained good yields (>69%) of compounds 62b (X = H) and 6d (X = CN) and moderate yields (53-58%) of compounds **6c** (X = MeO), **6e** (X = F) and **6f** (X = CI). This new catalysis is particularly suitable for epoxides 1g-i bearing Ar = 2-, 3-thienyl and 2-benzothienyl; resulting ether products 6g-i were obtained in 77-82% yields (entries 6-8) (Table 2). The same reaction appears to be less efficient for the 2-furanyl derivative 1j that gave the expected product 6j in 47% yield (entry 9). This ether synthesis is also applicable for distinct 1,2-disubstituted epoxides **1k** and **1l** bearing $\mathbf{R}^1 = \mathbf{M}\mathbf{e}$, giving resulting products 6k and 6l in 80-83% yields (entries 10-11). We obtained a similar ether 6m in 57% yield from the trisubstituted epoxide substrate 1m (entry 12). Among these cases, low product yields of ethers **6c** and **6j**, bearing an electron-rich 4-MeOC₆H₄ and 2-furanyl, respectively, were presumably due to the occurrence of side products such as 2 and 5 (Scheme 1).

We examined this gold catalysis using a brominum source, *N*-bromosuccinimide (NBS); the results appear in Table 3. In a standard operation, epoxide **1a** was treated with a gold catalyst, H_2O (2 equiv.) and NBS (1.2 equiv.) in DCM simultaneously. Among three Au(III) catalysts, AuCl₃ gave the best yield (68%) for the resulting 5-bromo-3-oxabicyclo-[4.2.0]oct-4-en-6-ol **5b** whereas PicAuCl₂ produced 2,2-dibromo-1-phenylethanone **7** in 45% yield (entry 1). Compound **5b** was the target in our original proposal (Scheme 1).

We find an intriguing observation that NCS and NBS exhibited distinct behaviors in the ring expansions of the same epoxide **1b**. We examined the generality of the 3-oxabicyclo-[4.2.0]oct-4-en-6-ol synthesis using AuCl₃ (5 mol%), NBS and

 Table 4
 Product yields for ring expansions with NBS and NIS

	$Ar = \frac{1}{R_1}$	AuCl ₃ (5 mo H ₂ O(2 eq. PPh ₃ O(5 mo NBS or NIS (1.2 eqiv.) DCM rt	1%))) 6 5	x Ar	H R1	5 (X = Br) 5' (X = I)	
Entry	Epoxide ^a	Ar	R ¹	R ²	Product	(yield [%]) ^b	
1	1a	<i>p</i> -MeOC ₆ H ₄	Pentyl	Н	5a (X =	Br, 56%)	
2	1g	$\mathcal{F}_{\mathcal{S}}$	Pentyl	Н	5 g (X =	Br, 63%)	
3	1i	r KS	Pentyl	Н	5i (X =	Br, 70%)	
4	1k	C_6H_5	Methyl	Н	5k (X =	Br, 63%)	
5	1m	C_6H_5	Methyl	Pethyl	5m (X =	Br, 61%)	
6	1a	<i>p</i> -MeOC ₆ H ₄	Pentyl	Н	5a' (X =	= I, 60%)	
7	1b	C_6H_5	Pentyl	Н	5b' (X =	= I, 75%)	
8	1g	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Pentyl	Н	5g' (X =	= I, 72%)	
9	1h	7 S	Pentyl	Н	5h'(X =	= I, 70%)	
10	1i	rt S	Pentyl	Н	5i' (X =	I, 73%)	
11	1k	C ₆ H ₅	Methyl	Н	5k'(X =	= I, 72%)	
12	1m	C_6H_5	Methyl	Methyl	5m' (X =	= Í, 70%)	
a reub	stratal -	01 M NIS	- N	-	inimida b	Vialda ana	
[Substrate] = 0.1 M, MIS = N-1000 succinimide. Yields are							
reported after elution from a silica column.							

NIS (N-iodosuccinimide) for several *cis*-epoxides, as depicted in Table 4. This synthesis is extensible for *cis*-epoxides **1a**, **1g**, **1i**, and **1k** bearing alterable alkynylaryl (Ar = 4MePh, 2-thienyl, 2-benzothienyl) and epoxyalkyl (R = *n*-pentyl, methyl) groups; their resulting products **5a**, **5g**, **5i** and **5k** were obtained in 56–70% yields (entries 1–4). The reaction works also for the trisubstituted epoxide **1m** that gave the expected product **5m** in 61% yield (entry 5). The use of NIS for the same epoxides **1a,b**, **1g–i**, **1k** and **1m** not only gave products of the same type, including **5a',b'**, **5g'–I'**, **5k'** and **5m'** with high diastereoselectivity, but also produced them in yields (60–75%, entries 6–12) greater than those cases from the NBS sources.

Shown in Scheme 2 are control experiments to clarify the possible intermediacy of alcohol 2b in the gold-catalyzed transformation of the starting epoxide 1b into desired halogenated products 6b, 5b and 5b', as depicted in Tables 2–4. Treatment

Scheme 2 Control experiments and the use of chiral epoxide.

of **2b** with 5% AuCl₂(Pic) and NCS (1.2 equiv.) in CH_2Cl_2 led only to its recovery; good recovery yields were also obtained for treatment of **2b** with AuCl₃ with NBS or NIS. We also prepared chiral epoxide **1m** with 67% ee, but its gold-catalyzed reaction with NCS gave the resulting product **6m** with a complete loss of chirality.

As alcohol **2b** is not the intermediate for the generation of halogenated products 6b, 5b and 5b' using epoxide 1a, we propose a mechanism involving metal-containing 3-oxabicyclo-[4.2.0]oct-4-en-6-ol **B** via hydrolysis of the initial carbocation **A**. In the presence of PPh₃PO and NCS, we believe that protodeauration of cation A to form alcohol 2b appears to be slow due to the presence of PPh₃O such that the gold fragment of intermediate B activates the proximate hydroxyl group toward the attack of NCS. This process causes the opening of a cyclobutanol ring to give an eight-membered ether 6b; the proton released from the hydrolysis of cation A, in the form of PPh₃PO-H⁺, assists the liberation of Cl⁺ from NCS.^{9,10} We observed a change in the chemoselectivity for NBS and NIS because soft " Br^+ " and " I^+ " have a high affinity toward the gold fragment to produce a direct replacement (Scheme 3).⁷

In summary, we observed distinct chemoselectivities¹¹ for the gold-catalyzed transformation of *cis*-1-epoxy-1-alkynylcyclopropanes **1** into various halogenated products in the presence of suitable Au(III) catalysts and *N*-halosuccinimide (halo = chloro, bromo and iodo). In the presence of NCS and

Scheme 3 Proposed mechanisms for various haloniums.

AuCl₂(Pic) catalysts, we obtained 3-chloro-4,5-dihydro-2Hoxocin-6(3H)-one **6**, an eight-membered ether, *via* two consecutive ring openings of a starting cyclopropane ring. In the presence of NXS (X = Br and I) and AuCl₃ catalysts, we obtained 5-halo-3-oxabicyclo[4.2.0]oct-4-en-6-ols **5** and **5'** efficiently, *via* a single cyclopropane opening. Both reactions gave one diastereomeric product.

Notes and references

- (a) D. I. Schuster, G. Lem and N. A. Kaprinidis, *Chem. Rev.*, 1993,
 93, 3; (b) J. D. Winkler, C. M. Bowen and F. Liotta, *Chem. Rev.*,
 1995, 95, 2003; (c) J. Iriondo-Alberdi and M. F. Greaney, *Eur. J. Org. Chem.*, 2007, 4801; (d) N. Hoffman, *Chem. Rev.*, 2008, 108, 1052.
- For total synthesis of naturally occurring compounds bearing a cyclobutane ring, see selected examples: (a) P. S. Baran, A. L. Zografos and D. P. O'Malley, J. Am. Chem. Soc., 2004, 126, 3726; (b) V. B. Birman and X.-T. Jiang, Org. Lett., 2004, 6, 2369; (c) P. S. Baran, K. Li, D. P. O'Malley and C. Mitsos, Angew. Chem., 2006, 118, 255 (Angew. Chem., Int. Ed., 2006, 45, 249); (d) P. S. Baran and J. M. Richter, J. Am. Chem. Soc., 2005, 127, 15394; (e) S. E. Reisman, J. M. Ready, A. Hasuoka, C. J. Smith and J. L. Wood, J. Am. Chem. Soc., 2006, 128, 1448.
- 3 For total synthesis of natural products Laurencin and Laurenyne bearing an eight-membered ether ring, see: (a) M. T. Crimmins and K. A. Emmitte, Org. Lett., 1999, 1, 2029; (b) J. W. Burton, J. S. Clark, S. Derrer, T. C. Stork, J. G. Bendall and A. B. Holmes, J. Am. Chem. Soc., 1997, 119, 7483; (c) M. Bratz, W. H. Bullock, L. E. Overman and T. Takemoto, J. Am. Chem. Soc., 1995, 117, 5958; (d) R. K. Boeckman Jr, J. Zhang and M. P. Reeder, Org. Lett., 2002, 4, 2002; (e) L. E. Overman and A. S. Thompson, J. Am. Chem. Soc., 1988, 110, 2248.
- 4 (a) R. H. Grubbs, *Adv. Synth. Catal.*, 2007, **349**, 27; (b) T. M. Trnka and R. H. Grubbs, *Acc. Chem. Res.*, 2001, **34**, 18.
- 5 For the synthesis of starting epoxide 1a, see: C.-Y. Yang, M.-S. Lin, H.-H. Liao and R.-S. Liu, *Chem.-Eur. J.*, 2010, 16, 2696 with its ESI.
- 6 (a) N. Miyaura and A. Suzuki, *Chem. Rev.*, 1995, **95**, 2457; (b) E. Negishi and L. Anastasia, *Chem. Rev.*, 2003, **103**, 1979.
- For selected examples, see: (a) L. Ye and L. Zhang, Org. Lett., 2009, 11, 3646; (b) B. Crone and S. F. Kirsch, J. Org. Chem., 2007, 72, 5435; (c) A. Buzas and F. Gagosz, Org. Lett., 2006, 8, 515; (d) A. Buzas, F. Istrate and F. Gagosz, Org. Lett., 2006, 8, 1957; (e) A. Buzas and F. Gagosz, Synlett, 2006, 17, 2727; (f) S. F. Kirsch, J. T. Binder, B. Crone, A. Duschek, T. T. Haug, C. Liebert and H. Menz, Angew. Chem., Int. Ed., 2007, 46, 2310.
- Selected reviews for gold and platinum catalyses, see: (a) A. S. K. Hashmi and M. Rudolph, *Chem. Soc. Rev.*, 2008, **37**, 1766; (b) D. J. Gorin, B. D. Sherry and F. D. Toste, *Chem. Rev.*, 2008, **108**, 3351; (c) N. T. Patil and Y. Yamamoto, *Chem. Rev.*, 2008, **108**, 3395; (d) A. Fürstner and P. W. Davies, *Angew. Chem., Int. Ed.*, 2007, **46**, 3410; (c) S. Md. Abu Sohel and R.-S. Liu, *Chem. Soc. Rev.*, 2009, **38**, 2269.
- 9 (a) R. S. Coleman and E. B. Grant, J. Org. Chem., 1991, 56, 1357; (b) V. Paul, A. Sudalai, T. Daniel and K. V. Srinivasan, Tetrahedron Lett., 1994, 35, 7055; (c) G. A. Olah, Q. Wang, G. Sandford and G. K. S. Prakash, J. Org. Chem., 1993, 58, 3194; (d) G. K. S. Prakash, T. Mathew, D. Hoole, P. M. Esteves, Q. Wang, G. Rasul and G. A. Olah, J. Am. Chem. Soc., 2004, 126, 15770.
- 10 F. Mo, J. M. Yan, D. Qiu, F. Li, Y. Zhang and J. Wang, Angew. Chem., Int. Ed., 2010, 49, 2028 and references therein.
- 11 The two Au(1)-catalyzed halogenation reactions failed to work with epoxide substrates bearing an alkyl-substituted alkyne. Cycloaddition reactions described in Scheme 1 have similar limitations.