Inorg. Chem. 2002, 41, 844-855

Bis{(2-diphenylphosphino)phenyl}mercury: A P-Donor Ligand and Precursor to Mixed Metal–Mercury (d^8-d^{10}) Cyclometalated Complexes Containing 2-C₆H₄PPh₂

Martin A. Bennett,* Maria Contel, David C. R. Hockless, Lee L. Welling, and Anthony C. Willis

Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia

Received August 22, 2001

Treatment of HgCl₂ with 2-LiC₆H₄PPh₂ gives [Hg(2-C₆H₄PPh₂)₂] (1), whose phosphorus atoms take up oxygen, sulfur, and borane to give the compounds $[Hg\{2-C_6H_4P(X)Ph_2\}_2]$ [X = O (3), S (4), and BH₃ (5)], respectively. Compound 1 functions as a bidentate ligand of wide, variable bite angle that can span either *cis* or *trans* coordination sites in a planar complex. Representative complexes include [HgX₂•1] [X = CI (6a), Br (6b)], cis-[PtX₂•1] [X = CI (*cis*-7), Me (9), Ph (10)], and *trans*-[MX₂•1] [X = CI, M = Pt (*trans*-7), Pd (8), Ni (11); X = NCS, M = Ni (13)] in which the central metal ions are in either tetrahedral (6a,b) or planar (7-11, 13) coordination. The trans disposition of 1 in complexes trans-7, 8, and 11 imposes close metal-mercury contacts [2.8339(7), 2.8797(8), and 2.756(8) Å, respectively] that are suggestive of a donor-acceptor interaction, M \rightarrow Hg. Prolonged heating of 1 with [PtCl₂(cod)] gives the binuclear cyclometalated complex $[(\eta^2-2-C_6H_4PPh_2)Pt(\mu-2-C_6H_4PPh_2)_2HgCl]$ (14) from which the salt $[(\eta^2-2+C_6H_4PPh_2)Pt(\mu-2+C_6H_4PPh_2)_2HgCl]$ $2-C_6H_4PPh_2$)Pt(μ -2-C₆H₄PPh₂)₂Hq]PF₆ (15) is derived by treatment with AqPF₆. In 14 and 15, the μ -C₆H₄PPh₂ groups adopt a head-to-tail arrangement, and the Pt-Hg separation in 14, 3.1335(5) Å, is in the range expected for a weak metallophilic interaction. A similar arrangement of bridging groups is found in $[Cl(^nBu_3P)Pd(\mu_2 C_6H_4PPh_2$, Ph_2Ph_2 , $Ph_2Ph_2Ph_2$, Ph_2Ph_2 dibenzylideneacetone] at room temperature gives [Pd(1)₂] (19) which, in air, forms a trigonal planar palladium(0) complex 20 containing bidentate 1 and the monodentate phosphine-phosphine oxide ligand $[Hg(2-C_6H_4PPh_2)]$ C₆H₄P(O)Ph₂]. On heating, **19** eliminates Pd and Hq, and the C–C coupled product 2-Ph₂PC₆H₄C₆H₄PPh₂-2 (**18**) is formed by reductive elimination. In contrast, 1 reacts with platinum(0) complexes to give a bis(aryl)platinum(II) species formulated as $[Pt(\eta^{1}-C-2-C_{6}H_{4}PPh_{2})(\eta^{2}-2-C_{6}H_{4}PPh_{2})(\eta^{1}-P-1)]$. Crystal data are as follows. Compound 3: monoclinic, $P2_1/n$, with a = 11.331(3) Å, b = 9.381(2) Å, c = 14.516 Å, $\beta = 98.30(2)^{\circ}$, and Z = 2. Compound **6b**•2CH₂Cl₂: triclinic, P_1^{-1} , with a = 12.720(3) Å, b = 13.154(3) Å, c = 12.724(2) Å, $\alpha = 92.01(2)^{\circ}$, $\beta = 109.19(2)^{\circ}$, $\gamma = 90.82(2)^{\circ}$, and Z = 2. Compound *trans*-**7**·2CH₂Cl₂: orthorhombic, *Pbca*, with a = 19.805(3) Å, b = 8.532(4)Å, c = 23.076(2) Å, and Z = 4. Compound **11**·2CH₂Cl₂: orthorhombic, *Pbca*, with a = 19.455(3) Å, b = 8.496(5)Å, c = 22.858(3) Å, and Z = 4. Compound 14: monoclinic, $P2_1/c$, with a = 13.150(3) Å, b = 12.912(6) Å, c = 12.912(6)26.724(2) Å, $\beta = 94.09(1)^{\circ}$, and Z = 4. Compound **20**·C₆H₅CH₃.0.5CH₂Cl₂: triclinic, $P\overline{1}$, with a = 13.199(1) Å, b = 15.273(2) Å, c = 17.850(1) Å, $\alpha = 93.830(7)$, $\beta = 93.664(6)$, $\gamma = 104.378(7)^{\circ}$, and Z = 2.

Introduction

Although cyclometalated complexes containing (2-diphenylphosphino)phenyl (2-C₆H₄PPh₂) are commonly formed by reductive elimination from triphenylphosphine complexes,^{1,2} there are few systematic studies of their chemistry, and alternative synthetic procedures are desirable to extend the range of complexes available for study. We have shown that the organolithium reagent 2-LiC₆H₄PPh₂, which is readily obtained by treatment of 2-BrC₆H₄PPh₂ with *n*-butyllithium,^{3,4} can be used to prepare chelate σ -aryl complexes of platinum,^{5,6} gold,⁷ rhodium,⁶ and iridium.⁶ The M(2-C₆H₄PPh₂) unit can be present either as a chelate, four-membered ring in mononuclear complexes, for example,

Omae, I. Organometallic Intramolecular Coordination Compounds; Organometallic Chemistry Library, No. 18; Elsevier: Amsterdam, 1986.

⁸⁴⁴ Inorganic Chemistry, Vol. 41, No. 4, 2002

⁽²⁾ Klein, H.-F.; Schneider, S.; He, M.; Floerke, U.; Haupt, H.-J. Eur. J. Inorg. Chem. 2000, 2295 and references therein.

Bis{(2-diphenylphosphino)phenyl}mercury

[Pt^{II}(η^2 -2-C₆H₄PPh₂)₂]^{5,6} and [Rh^{III}(η^2 -2-C₆H₄PPh₂)₃],⁶ or as a bridging bidentate ligand, for example, [Au^I₂(μ -2-C₆H₄PPh₂)₂] and [Au^{II}₂I₂(μ -2-C₆H₄PPh₂)₂].⁷ Lahuerta et al.^{8,9} have made complexes of palladium(II) and rhodium(III) containing η^2 or μ -2-C₆H₄PPh₂ by oxidative addition of (2-halophenyl)diphenylphosphines, 2-XC₆H₄PPh₂ (X = Cl, Br) to palladium(0) and rhodium(I) precursors.

Aryl groups can often be transferred from mercury to transition metals under mild conditions, and a variety of functional groups can be tolerated. For example, aryls of planar palladium(II) and platinum(II) have been prepared by the reaction of bis(aryl)mercury(II) compounds with $[Pd_2Cl_6]^{2-,2-10}$ $[Pd_2Cl_4L_2]$, $[MCl_2L_2]$ (M = Pd, Pt; L = various tertiary phosphines),^{11,12} [PtCl₂(CO)(L)],¹³ and [PtCl₂-(cod)].^{14,15} Monoaryls of ruthenium(II), [RuCl(Ar)(CO)₂L₂] $(Ar = Ph, 4-MeC_6H_4; L = PMe_2Ph, PMePh_2)$, have been made similarly from all *cis*- or all *trans*-[RuCl₂(CO)₂L₂].¹⁶ Zerovalent metal complexes, such as $[M(PPh_3)_3]$ (M = Pd, Pt) or $[M(dba)_n]$ (M = Pd, Pt; n = 1.5 or 2) in the presence of other ligands,17 and transition metal hydrides, such as $[MHCl(CO)(PPh_3)_3]$ (M = Ru, Os),^{18,19} also react with arylmercury(II) compounds to eliminate mercury and form aryl complexes. Arylmercury(II) compounds have been used widely in the synthesis of cyclometalated N- and O-donor complexes.²⁰⁻²⁴

- (3) Hartley, J. G.; Venanzi, L. M.; Goodall, D. C. J. Chem. Soc. 1963, 3930.
- (4) Harder, S.; Brandsma, L.; Kanters, J. A.; Duisenberg, A.; van Lenthe, J. H. J. Organomet. Chem. 1991, 420, 143.
- (5) Bennett, M. A.; Berry, D. E.; Bhargava, S. K.; Ditzel, E. J.; Robertson, G. B.; Willis, A. C. J. Chem. Soc., Chem. Commun. 1987, 1613.
- (6) Bennett, M. A.; Bhargava, S. K.; Ke, M.; Willis, A. C. J. Chem. Soc., Dalton Trans. 2000, 3537.
- (7) Bennett, M. A.; Bhargava, S. K.; Hockless, D. C. R.; Welling, L. L.; Willis, A. C. J. Am. Chem. Soc. 1996, 118, 10469.
- (8) Aarif, A. M.; Estevan, F.; García-Bernabé, A.; Lahuerta, P.; Sanaú, M.; Ubeda, M. A. *Inorg. Chem.* **1997**, *36*, 6472.
- (9) Lahuerta, P.; LaTorre, J.; Martínez-Máñez, R.; Sanz, F. J. Organomet. Chem. 1988, 356, 355.
- (10) Vicente, J.; Arcas, A.; Borrachero, M. V.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1987, 1655.
- (11) Cross, R. J.; Wardle, R. J. Chem. Soc. A 1970, 840.
- (12) Anderson, G. K. Organometallics 1983, 2, 665.
- (13) Anderson, G. K.; Cross, R. J. J. Chem. Soc., Dalton Trans. 1979, 1246.
- (14) Vicente, J.; Abad, J. A.; Teruel, F.; García, J. J. Organomet. Chem. 1988, 345, 233.
- (15) Abbreviations: cod = 1,5-cyclooctadiene(C₈H₁₂); dba = dibenzylideneacetone(PhCH=CHCOCH=CHPh); dppm = bis(diphenylphosphino)methane(Ph₂PCH₂PPh₂); dppp = 1,3-bis(diphenylphosphino)propane, Ph₂P(CH₂)₃PPh₂; dipp = 1,2-bis(diisopropylphosphino)ethane, Pr₂PCH₂CH₂PiPr₂; 4,2,1-PPBN = 9-phenyl-9-phosphabicyclo-[4, 2, 1]-nonane.
- (16) Barnard, C. F. J.; Daniels, J. A.; Mawby, R. J. J. Chem. Soc., Dalton Trans. 1976, 961.
- (17) Sokolov, V. I.; Reutov, O. A. Coord. Chem. Rev. 1978, 27, 89 and references therein.
- (18) Roper, W. R.; Wright, L. J. J. Organomet. Chem. 1977, 142, C1.
- (19) Rickard, C. E. F.; Roper, W. R.; Taylor, G. E.; Waters, J. M.; Wright, L. J. J. Organomet. Chem. 1990, 389, 375.
- (20) Cross, R. J.; Tennent, N. H. J. Organomet. Chem. 1974, 72, 21.
- (21) van der Ploeg, A. F. M. J.; van Koten, G.; Vrieze, K. J. Organomet. Chem. 1981, 222, 155.
- (22) Wehman, E.; van Koten, G.; Jastrzelski, J. H.; Ossor, H.; Pfeffer, M. J. Chem. Soc., Dalton Trans. 1988, 2975.
- (23) Vicente, J.; Teresa-Chicote, M.; Martín, J.; Jones, P. G.; Fittschen, C.; Sheldrick, G. M. J. Chem. Soc., Dalton Trans. 1986, 2215.
- (24) Constable, E. C.; Cargill Thompson, A. M. W.; Leese, T. A.; Reese, D. G. F.; Tocher, D. A. *Inorg. Chim. Acta* **1991**, *182*, 93.

These reports suggested that the mercury compound [Hg(2- $C_6H_4PPh_2$)₂] (1) might be a useful precursor to other M(2- $C_6H_4PPh_2$) complexes. Here, we expand on our preliminary communication²⁵ reporting the synthesis of 1 and its reactions with compounds of palladium and platinum. A paper dealing with the reaction of 1 with [MHCl(CO)(PPh_3)_3] (M = Ru, Os) to give cyclometalated complexes [MCl(CO)($\eta^{2-2-}C_6H_4PPh_2$)(PPh_3)_2] has also appeared.²⁶

Experimental Section

All manipulations involving organolithium reagents were performed under an inert atmosphere of dried nitrogen with use of Schlenk techniques, and all solvents were dried and degassed before use. Neoprene rubber gloves, goggles, and face-shield were worn when preparing or handling toxic organomercury compounds, especially dimethylmercury. NMR spectra were recorded on a Varian Gemini-300 BB spectrometer (¹H at 300 MHz, ³¹P NMR at 121.4 MHz) at 295 K with tetramethylsilane and H₃PO₄ as references. The ¹⁹⁹Hg{¹H} NMR spectra were recorded on a Varian VXR-500 spectrometer at 295 K with neat dimethylmercury as reference (**Caution:** extremely toxic and volatile!). The numbering of the phosphorus atoms in complexes 14-17 and 20 is shown in the text. Elemental analyses were performed in-house. Mass spectra (FAB+, nitrobenzyl alcohol as matrix) were obtained on a Fisons Instruments VG Autospec spectrometer.

The carbon analyses for the Pt-Hg complexes **14**, **15**, and **20** were consistently and inexplicably low. The characterization of these compounds therefore rests on the spectroscopic data and, in the case of **14**, X-ray structural analysis.

The compounds 2-BrC₆H₄PPh₂,⁴ 2-LiC₆H₄PPh₂,⁴ [NiCl₂(PPh₃)₂],²⁷ [Ni(NCS)₂(PPh₃)₂],²⁸ [PdCl₂(SEt₂)₂],²⁹ [PtCl₂(SEt₂)₂],³⁰ [Pt₂Me₄(μ -SEt₂)₂],³¹ [PtCl₂(cod)],³² [PdCl₂(PⁿBu₃)₂],³³ [Pd₂Cl₄(PⁿBu₃)₂],³⁴ [Pd(dba)₂],³⁵ [Pt(dba)₂],^{36,37} and [Pt(C₂H₄)(PPh₃)₂]³⁸ were prepared by literature procedures. The compound [Pt₂Ph₄(SEt₂)₂] was prepared similarly to [Pt₂Me₄(SEt₂)₂] by use of phenyllithium in place of methyllithium. All other chemicals used were commercially available and were not purified further.

Preparation of Compounds. [Hg(2-C₆H₄PPh₂)₂] (1). (a) To 2-LiC₆H₄PPh₂(0.685 g, 2.56 mmol) in ether (60 mL) was added HgCl₂ (0.277 g, 1.02 mmol). After the mixture had been stirred for 60 h at room temperature, the solvent was removed, and the residue was treated with toluene (50 mL). The LiCl was removed by filtration through Celite. Concentration of the clear solution to \sim 5 mL and addition of hexane (20 mL) gave 1 as a white solid. Yield: 0.569 g (77%).

- (25) Bennett, M. A.; Contel, M.; Hockless, D. C. R.; Welling, L. L. Chem. Commun. 1998, 2401.
- (26) Bennett, M. A.; Clark, A. M.; Contel, M.; Rickard, C. E. F.; Roper, W. R.; Wright, L. J. J. Organomet. Chem. 2000, 601, 299.
- (27) Itatani, H.; Bailar, J. C. J. Am. Chem. Soc. 1967, 89, 1600.
- (28) Venanzi, L. M. J. Chem. Soc. 1958, 719
- (29) Mann, F. G.; Purdie, D. J. Chem. Soc. 1935, 1549.
- (30) Kauffmann, G. B.; Cowan, D. O. Inorg. Synth. 1960, 6, 211.
- (31) Kuyper, J.; van der Laan, R.; Jeanneaus, F.; Vrieze, K. Transition Met. Chem. (Weinheim, Ger.) 1976, 1, 199.
- (32) McDermott, J. X.; White, J. F.; Whitesides, G. M. J. Am. Chem. Soc. 1976, 98, 6521.
- (33) Saito, T.; Munakata, H.; Imoto, H. Inorg. Synth. 1977, 17, 83.
- (34) Chatt, J.; Venanzi, L. M. J. Chem. Soc. 1957, 2351.
- (35) Takahashi, Y.; Ho, T.; Sakai, S.; Ishii, Y. J. Chem. Soc., Chem. Commun. 1970, 1065.
- (36) Moseley, K.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1974, 169.
- (37) Cherwinski, W. J.; Johnson, B. F. G.; Lewis, J. J. Chem Soc., Dalton Trans. 1974, 1405.
- (38) Nagel, U. Chem. Ber. 1982, 115, 1998.

(b) A suspension of the complex [HgCl(2-C₆H₄PPh₂)]_n (2) (0.050 g, 0.1 mmol) (see below) in EtOH (40 mL) was treated with an excess of KCN (0.032 g, 0.5 mmol). After being heated under reflux for 2 h, the solution had become clearer. The solvent was removed under reduced pressure, affording the crude product as a white solid. The product was extracted with CH₂Cl₂ (20 mL), and the solution was filtered through Celite. Concentration to ~1 mL, addition of hexane (10 mL), and cooling gave **1** as a white solid. Yield: 0.054 g (75%). ³¹P{¹H} NMR (CD₂Cl₂): δ 0.38 (s, ³J_{Hg-P} = 212 Hz). ¹⁹⁹Hg{¹H} NMR (CD₂Cl₂): δ 470 (t, ³J_{Hg-P} = 214 Hz). Anal. Calcd for C₃₆H₂₈HgP₂: C, 59.80; H, 3.90; Hg, 27.75. Found: C, 59.50; H, 3.60; Hg, 27.47. FAB-MS: *m/z* 723.2 (29%, M⁺).

[HgCl(2-C₆H₄PPh₂)]_n (2). To 2-LiC₆H₄PPh₂ (0.359 g, 1.34 mmol) in ether (40 mL) was added HgCl₂ (0.330 g, 1.22 mmol). After the mixture had been stirred for 36 h at room temperature, the solvent was removed, and the residue was treated with CH₂Cl₂ (70 mL). The LiCl was removed by filtration through Celite. Concentration of the clear solution to ~5 mL and addition of hexane (30 mL) gave **2** as a white solid. Yield: 0.315 g (52%). ³¹P{¹H} NMR (CD₂Cl₂): δ 29.7 (br s, ¹J_{Hg-P} = 4798 Hz, ³J_{Hg-P} = 517 Hz). Anal. Calcd for C₁₈H₁₄ClHgP: C, 43.50; H, 2.85; Hg, 40.35. Found: C, 43.20; H, 2.70; Hg, 39.90. FAB-MS: *m/z* 959 (11%, M⁺ - Cl).

[Hg{2-C₆H₄P(O)Ph₂}] (3). To a solution of 1 (0.108 g, 0.15 mmol) in CH₂Cl₂ was added an excess of 30% aq H₂O₂, and the mixture was stirred for 0.5 h. The organic layer was decanted and dried (MgSO₄). Removal of the solvent to ~5 mL and addition of *n*-hexane (30 mL) gave **3** as a white solid. Recrystallization from CH₂Cl₂/Et₂O afforded single crystals of **3** (colorless prisms) suitable for X-ray diffraction. Yield: 0.050 g, 44%. ³¹P{¹H} NMR (CD₂Cl₂): δ 31.7 (s, ³J_{Hg-P} 149 Hz). ¹⁹⁹Hg{¹H} NMR (CD₂Cl₂): δ -750 [t, ³J_{Hg-P} = 147 Hz]. Anal. Calcd for C₃₆H₂₈HgP₂O₂: C, 57.25; H, 3.75; Hg, 26.55. Found: C, 56.90; H, 3.55; Hg, 25.95. FAB-MS: *m*/*z* 757 (75%, M⁺).

[Hg{2-C₆H₄P(E)Ph₂}₂] (E = S (4), BH₃ (5)]. To separate solutions of **1** (0.108 g, 0.15 mmol) in toluene (20 mL) were added sulfur (0.011 g, 0.35 mmol) and BH₃·SMe₂ (0.032 mL, 0.32 mmol), respectively. After refluxing for 18 h in the first case, or stirring at room temperature overnight in the second case, the toluene was removed in vacuo, and the white residues were dried in a vacuum. Extraction of the residues with toluene/*n*-hexane gave **4** (0.114 g, 97%) and **5** (0.045 g, 40%) as white solids. Compound **4**. ³¹P{¹H} NMR (CD₂Cl₂): δ 47.7 (s, ³J_{Hg-P} 259 Hz). ¹⁹⁹Hg{¹H} NMR (CD₂Cl₂): δ -483.3 (t, ³J_{Hg-P} 259 Hz). Anal. Calcd for C₃₆H₂₈-HgP₂S₂: C, 54.90; H, 3.60; Hg, 25.50. Found: C, 54.35; H, 3.46; Hg, 24.83. FAB-MS: *m*/*z* 787 (100%, M⁺). Compound **5**. ³¹P{¹H} NMR (CD₂Cl₂): δ 22.1 (br s). Anal. Calcd for C₃₆H₃₄HgB₂P₂: C, 57.60; H, 4.60; Hg, 26.70. Found: C, 57.15; H, 4.45; Hg, 26.15.

[HgX₂{(2-Ph₂PC₆H₄)₂Hg}] [X = Cl (6a), Br (6b)]. To separate, stirred solutions of 1 (0.072 g, 0.1 mmol) in CH₂Cl₂ were added HgCl₂ (0.027 g, 0.1 mmol) and HgBr₂ (0.032 g, 0.1 mmol), respectively. The products began to precipitate after 30 min. Concentration of the solutions to 5 mL and addition of ether (20 mL) afforded **6a** and **6b** as white solids. Recrystallization from CH₂Cl₂/Et₂O afforded colorless, X-ray quality prisms of **6b**.

(6a). Yield: 0.050 g (51%). ${}^{31}P{}^{1}H$ NMR (DMSO): δ 30.5 (br s, ${}^{1}J_{Hg-P} = 4835$ Hz, ${}^{3}J_{Hg-P} = 554$ Hz). Anal. Calcd for C₃₆H₂₈-Cl₂Hg₂P₂: C, 43.50; H, 2.85; Hg, 40.35. Found: C, 43.04; H, 2.68; Hg, 39.80. FAB-MS: *m*/*z* 959 (56%, M⁺ - Cl). (6b). Yield: 0.078 g (81%). ${}^{31}P{}^{1}H$ NMR (DMSO): δ 25.0 (br s, ${}^{1}J_{Hg-P} = 4335$ Hz, ${}^{3}J_{Hg-P} = 537$ Hz). Anal. Calcd for C₃₆H₂₈Br₂Hg₂P₂: C, 39.90; H, 2.60; Hg, 37.03. Found: C, 39.65; H, 2.45; Hg, 36.80. FAB-MS: *m*/*z* 1003.0 (100%, M⁺ - Br).

trans-[PtCl₂{(2-Ph₂PC₆H₄)₂Hg}] *(trans*-7). A solution of 1 (0.108 g, 0.15 mmol) in CH₂Cl₂ (20 mL) was treated with [PtCl₂-(SEt₂)₂] (0.056 g, 0.13 mmol), and the mixture was stirred for 1 h at room temperature. The pale yellow solution was concentrated to ~5 mL, and hexane (20 mL) was added, giving 7a as a pale yellow solid. Pale yellow prisms suitable for X-ray diffraction studies were obtained from CH₂Cl₂/ether. ³¹P{¹H} NMR (DMSO): δ 15.2 (s, ¹J_{Pt-P} = 2525 Hz, ³J_{Hg-P} = 249 Hz). ¹⁹⁹Hg{¹H} NMR (CD₂Cl₂): δ -536 (7-line m, ³J_{Hg-P} = 244 Hz, ⁴J_{Hg-Pt} = 244 Hz). Anal. Calcd for C₃₆H₂₈Cl₂HgP₂Pt: C, 43.70; H, 2.85. Found: C, 43.15; H, 2.60. FAB-MS: *m*/z 953 (5%, M⁺ - Cl).

cis-[PtCl₂{(2-Ph₂PC₆H₄)₂Hg}] (*cis*-7) was obtained similarly as a white solid in 70% yield from **1** (0.108 g, 0.15 mmol) and [PtCl₂(cod)] (0.056 g, 0.15 mmol) in CH₂Cl₂ (20 mL). ³¹P{¹H} NMR (DMSO): δ 15.5 (s, ¹J_{Pt-P} = 3624 Hz, ³J_{Hg-P} = 320 Hz). Anal. Calcd for C₃₆H₂₈Cl₂HgP₂Pt: C, 43.70; H, 2.85; Hg, 20.30. Found: C, 41.90; H, 2.30; 19.48. FAB-MS: *m*/*z* 953 (32%, M⁺ − Cl).

trans-[PdCl₂{(2-Ph₂PC₆H₄)₂Hg}] (8). To a solution of 1 (0.108 g, 0.15 mmol) in CH₂Cl₂ (20 mL) was added [PdCl₂(SEt₂)₂] (0.045 g, 0.15 mmol). The mixture was stirred for 40 min at room temperature, and the bright yellow solution was concentrated under reduced pressure to ~5 mL. Addition of hexane gave 8 as a yellow solid. Yield: 0.092 g (68%). Recrystallization from CH₂Cl₂/ether gave X-ray quality yellow needles whose structure has been reported.^{25 31}P{¹H} NMR (CD₂Cl₂): δ 19.1 (s, ³J_{Hg-P} = 260 Hz). ¹⁹⁹Hg{¹H} NMR (CD₂Cl₂): δ -619 (t, ³J_{Hg-P} = 259 Hz). Anal. Calcd for C₃₆H₂₈Cl₂HgP₂Pd.CH₂Cl₂: C, 45.10; H, 3.10; Hg, 20.36. Found: C, 45.10; H, 3.05; Hg, 20.75. FAB-MS: *m/z* 900 (12%, M⁺ - Cl).

 $cis-[PtMe_2\{(2-Ph_2PC_6H_4)_2Hg\}]$ (9) and $cis-[PtPh_2\{(2-Ph_2-PC_6H_4)_2Hg\}]$ $PC_6H_4_2Hg$ (10) were obtained similarly as white solids by adding either [PtMe₂(µ-SEt₂)]₂ (0.050 g, 0.079 mmol) or [PtPh₂(µ-SEt₂)]₂ (0.131 g, 0.16 mmol) to a solution of 1 (0.108 g, 0.15 mmol) in CH₂Cl₂ (20 mL) and stirring for 1 h at room temperature. The yields of 8 and 9 were 0.120 g (85%) and 0.104 g (65%), respectively. Compound 9. ¹H NMR (CD₂Cl₂): δ 8.8–6.6 (m, 14 H, Ph), 0.47 (t, 3 H, ${}^{3}J_{P-H} = 14$ Hz, ${}^{2}J_{Pt-H} = 35$ Hz). ${}^{31}P{}^{1}H}$ NMR (CD₂Cl₂): δ 24.6 (s, ${}^{1}J_{Pt-P} = 1802$ Hz, ${}^{3}J_{Hg-P} = 241$ Hz). 199 Hg{ 1 H} NMR (CD₂Cl₂): δ -418.7 (7-line m, ${}^{3}J_{Hg-P} = 244$ Hz, ${}^{4}J_{Hg-Pt} = 220$ Hz). Anal. Calcd for C₃₈H₃₄HgP₂Pt: C, 48.15; H, 3.60; Hg, 21.15. Found: C, 47.65; H, 3.60; Hg, 20.80. FAB-MS: *m*/*z* 933.1 (36%, M^+ – Me). Compound 10. ³¹P{¹H} NMR (CD₂Cl₂): δ 18.1 (s, ${}^{1}J_{Pt-P} = 1592 \text{ Hz}, {}^{3}J_{Hg-P} = 264 \text{ Hz}). {}^{199}\text{Hg}\{{}^{1}\text{H}\} \text{ NMR (CD}_{2}\text{Cl}_{2}):$ δ -400.0 (7-line m, ${}^{3}J_{\text{Hg}-\text{P}} = 268$ Hz, ${}^{4}J_{\text{Hg}-\text{Pt}} = 280$ Hz). FAB-MS: m/z 995 (13%, M⁺ – Ph). The compound decomposed on attempted recrystallization, and elemental analyses were not satisfactory.

Reaction of 1 with [NiCl₂(PPh₃)₂]. A solution of 1 (0.072 g, 0.1 mmol) in CH₂Cl₂ (20 mL) was treated with [NiCl₂(PPh₃)₂] (0.065 g, 0.1 mmol), and the mixture was stirred for 1 h at room temperature. The bright red solution was concentrated under reduced pressure to ~5 mL, and hexane (10 mL) was added to precipitate a red solid. This was redissolved in CH₂Cl₂, and the solution, cooled to -20 °C, was filtered through Celite. Layering with ether gave, after 24 h, a mixture of red and pale green prisms, the latter predominating. They were separated by hand and used for X-ray crystallography (see below). The red crystals were identified as *trans*-[NiCl₂{(2-Ph₂PC₆H₄)₂Hg}] (11); the nature of the pale green crystals (12) has not been established conclusively.

 $[Ni(NCS)_2\{(2-Ph_2PC_6H_4)_2Hg\}]$ (13). A solution of 1 (0.108 g, 0.15 mmol) in CH₂Cl₂ (20 mL) was treated with $[Ni(NCS)_2(PPh_3)_2]$ (0.104 g, 0.15 mmol), and the mixture was stirred for 40 min at

room temperature. The bright red solution was concentrated under reduced pressure to ~5 mL. Addition of hexane (30 mL) precipitated complex **13** as a red solid. Yield: 0.098 g (73%). ³¹P{¹H} NMR (CD₂Cl₂): δ 9.1 (s, ³J_{Hg-P} = 278 Hz). ¹⁹⁹Hg{¹H} NMR (CD₂Cl₂): δ -610 (t, ³J_{Hg-P} = 280 Hz). Anal. Calcd for C₃₈H₂₈-HgN₂NiP₂S₂: C, 50.82; H, 3.14; Hg, 22.34; N, 3.12. Found: C, 50.80; H, 3.06; Hg, 21.41; N, 3.08.

[(η²-2-C₆H₄PPh₂)Pt(μ-2-C₆H₄PPh₂)₂HgCl] (14). A solution of **1** (0.144 g, 0.20 mmol) in toluene (30 mL) was treated with [PtCl₂(cod)] (0.051 g, 0.13 mmol), and the mixture was heated under reflux for 40 h to give a colorless suspension. The solvent was removed in vacuo, and the residue was extracted with acetone (20 mL). The extract was filtered through Celite to remove HgCl₂ and concentrated in vacuo to ~1 mL. Addition of hexane (10 mL) gave complex **14** as a white solid. Yield: 0.100 g (62%). ³¹P{¹H} NMR (DMSO): δ 37.7 (dd, P_C, ²J_{Pc}-P_a = 12 Hz, ⁴J_{Pc}-P_b = 2.5 Hz, ¹J_{Hg}-P_c = 3224 Hz, ³J_{Pt}-P_c = 441 Hz), 15.3 (dd, P_b, ²J_{Pb}-P_a = 13 Hz, ⁴J_{Pb}-P_c = 2.5 Hz, ¹J_{Pt}-P_b = 2052 Hz, ³J_{Hg}-P_b = 238 Hz), -64.5 (dd, P_a, ²J_{Pa}-P_b = 13 Hz, ²J_{Pa}-P_c = 12 Hz, ¹J_{Pt}-P_a = 1198 Hz). ¹⁹⁹Hg{¹H} NMR (CD₂Cl₂): δ -392 (dd, ³J_{Hg}-P_b = 232 Hz, ¹J_{Hg}-P_c = 3219 Hz). Anal. Calcd for C₅₄H₄₂ClHgP₃Pt: C, 53.38; H, 3.48. Found: C, 50.13; H, 3.30. FAB-MS: *m*/z 1178.9 (27%, M⁺).

[(η²-2-C₆H₄PPh₂)Pt(μ-2-C₆H₄PPh₂)Hg]PF₆ (15). A solution of $AgPF_6$ (0.030 g, 0.11 mmol) in ether (5 mL) was added to a solution of 14 (0.121 g, 0.1 mmol) in CH_2Cl_2 (30 mL), and the mixture was stirred for 35 min at room temperature. The solution was filtered through Celite to remove AgCl and concentrated under reduced pressure to ~ 1 mL. Addition of ether/hexane (1:1, 15 mL) gave 15 as a white solid. Yield: 0.080 g (61%). ${}^{31}P{}^{1}H{}$ NMR (CD₂Cl₂): δ 49.3 (approx d, P_C, ² $J_{P_c-P_a}$ = 13 Hz, ⁴ $J_{P_c-P_b} \approx 0$ Hz, ${}^{1}J_{\text{Hg}-P_{c}} = 2610 \text{ Hz}, \, {}^{3}J_{\text{Pt}-P_{c}} = 404 \text{ Hz}), \, 17.3 \text{ (br d, } P_{b}, \, {}^{2}J_{P_{b}-P_{a}} = 12$ Hz, ${}^{4}J_{P_{b}-P_{c}} \approx 0$ Hz, ${}^{1}J_{P_{t}-P_{b}} = 1814$ Hz, ${}^{3}J_{H_{g}-P_{b}} = 198$ Hz), -63.6 (approx t, P_a , ${}^2J_{P_a-P_b} = 12$ Hz, ${}^2J_{P_a-P_c} = 13$ Hz, ${}^1J_{Pt-P_a} = 1187$ Hz), -146.7 (sept, PF₆, ${}^{1}J_{P-F} = 708$ Hz). 199 Hg{ 1 H} NMR (CD₂Cl₂): $\delta - 515 \text{ (dd, } {}^{3}J_{\text{Hg}-\text{P}_{b}} = 200 \text{ Hz}, {}^{1}J_{\text{Hg}-\text{P}_{c}} = 2615 \text{ Hz}). {}^{195}\text{Pt}\{{}^{1}\text{H}\} \text{ NMR}$ (DMSO): $\delta -3752$ (ddd, sepns 437, 1205, and 2023 Hz). Anal. Calcd for C₅₄H₄₂F₆HgP₄Pt: C, 48.97; H, 3.20. Found: C, 46.07; H, 3.17. FAB-MS: *m*/*z* 1178.9 (100%, M⁺).

 $[Cl(^{n}Bu_{3}P)Pd(\mu-2-C_{6}H_{4}PPh_{2})_{2}HgCl]$ (16). A solution of 1 (0.144 g, 0.20 mmol) in toluene (30 mL) was treated with [PdCl₂(PⁿBu₃)₂] (0.058 g, 0.10 mmol). The yellow solution was heated under reflux for 14 h to give a pale yellow suspension containing a white precipitate and a small amount of metallic mercury. The solid was removed by filtration and identified as $[HgCl(C_6H_4PPh_2)]_n$ (2) by ³¹P{¹H} NMR spectroscopy. Concentration of the filtrate to ~ 1 mL under reduced pressure and addition of hexane (10 mL) gave 16 as a pale yellow solid. Yield: 0.100 g (59%). ³¹P{¹H} NMR (CD₂Cl₂): δ 46.7 (s, P_a, ¹*J*_{Hg-P_a} = 2668 Hz), 30.2 (d, part of ABq, P_b, ${}^{2}J_{P_{b}-P_{c}} = 411$ Hz, ${}^{3}J_{Hg-P_{b}} = 191$ Hz), 11.9 (d, part of ABq, P_c, ${}^{2}J_{P_{c}-P_{b}} = 411$ Hz). ${}^{199}Hg\{{}^{1}H\}$ NMR (CD₂Cl₂): δ -376 (dd, ${}^{1}J_{Hg-P_{a}} = 2661$ Hz, ${}^{3}J_{Hg-P_{h}} = 183$ Hz). Anal. Calcd for C₄₈H₄₉Cl₂HgP₃Pd: C, 52.57; H, 4.50; Hg, 18.29. Found: C, 51.86; H, 4.61; Hg, 19.83. FAB-MS: m/z 1067.4 (M⁺, 18%).

Reaction of 1 with [Pd₂Cl₄(PⁿBu₃)₂]. The reaction was carried out as described above. Concentration of the filtrate and addition of hexane gave a 1:1 mixture of **16** and [PdCl(η^{1} -2-C₆H₄PPh₂){(2-Ph₂PC₆H₄)₂Hg}] (**17**), which could not be separated by fractional crystallization. Compound **17**. ³¹P{¹H} NMR (CD₂Cl₂): δ 18.6 (d, P_a, ⁴*J*_{Pa-Pb} = 36 Hz, ³*J*_{Hg-Pa} = 272 Hz), -7.9 (t, P_b, ⁴*J*_{Pb-Pa} = 36 Hz). ¹⁹⁹Hg{¹H} NMR (CD₂Cl₂): δ -535 (t, ³*J*_{Hg-Pa} = 280 Hz). FAB-MS: *m*/*z* 1091.2 (M⁺, 16%).

[Pd{(2-Ph₂PC₆H₄)₂Hg]₂] (19). A solution of 1 (0.217 g, 0.30 mmol) in toluene (20 mL) was treated with [Pd(dba)₂] (0.086 g, 0.15 mmol). After 5 min at room temperature, the solution changed in color from deep red to yellow-orange. The mixture was stirred for 24 h at room temperature, and the solution was concentrated under reduced pressure to ~5 mL. Addition of hexane and cooling gave complex 18 as orange crystals (0.121 g, 52%). ³¹P{¹H} NMR (C₆D₆): δ 14.5 (br s). Anal. Calcd for C₇₂H₅₆Hg₂P₄Pd: C, 55.70; H, 3.64; Hg, 25.84. Found: C, 55.42; H, 3.74; Hg, 26.10. FAB-MS: *m*/*z* 1552 (M⁺, 17%).

Orange X-ray quality crystals that deposited from a solution of **19** in toluene/CH₂Cl₂ layered with ether proved to be the monooxide $[Pd{\eta^2-(2-Ph_2PC_6H_4)_2Hg}{\eta^1-(2-Ph_2PC_6H_4)(2-Ph_2P(O)C_6H_4)-Hg}$ **(20)**.

When the mixture of $[Pd(dba)_2]$ and **1** was heated for 30 min, a black deposit (presumably Pd and Hg) formed in a colorless solution. The mixture was filtered under nitrogen through a silica gel column and washed with toluene (40 mL). Concentration of the filtrate to ~5 mL and addition of hexane (30 mL) gave 2,2'-biphenyldiylbis(diphenylphosphine), **2-Ph_2PC_6H_4C_6H_4PPh_2-2** (**18**), as a white solid. Yield: 0.099 g (60%). ³¹P{¹H} NMR (C₆D₆): δ -13.0 (s) [lit. -15.0 (CD₂Cl₂),⁷ -14.1 (d_8 -THF)³⁹]. Anal. Calcd for C₃₆H₂₈P₂: C, 82.74; H, 5.40. Found: C, 82.45; H, 5.42. FAB-MS: m/z 555 (M⁺ + 2O, 100%).

The same compound was isolated in 19% yield by a similar procedure from $[Ni(cod)_2]$ and **1**.

[Pt($\eta^{1-2-}C_6H_4PPh_2$)($\eta^{2-2-}C_6H_4PPh_2$){ $\eta^{1-}P-(2-Ph_2PC_6H_4)_2-$ Hg}] (21). A solution of 1 (0.145 g, 0.20 mmol) in toluene (20 mL) was treated with [Pt(dba)_2] (0.066 g, 0.10 mmol) and heated under reflux for 3 h. The dark violet suspension was filtered through a silica gel column and washed with toluene (30 mL). The resulting pale yellow solution was concentrated in vacuo to ~5 mL, and the crude product, containing unchanged 1, was precipitated by addition of hexane (20 mL). Recrystallization from toluene/ether gave a colorless solid that was judged to be pure 20 by ³¹P{¹H} NMR spectroscopy. Yield: 0.040 g (28%).

Complex **20** was also isolated from the reaction of **1** (0.108 g, 0.15 mmol) and [Pt(C₂H₄)(PPh₃)₂] (0.056 g, 0.075 mmol) in refluxing toluene for 12 h. Workup as described above and recrystallization of the crude product to remove **1** and PPh₃ gave **20** (0.022 g, 20%). ³¹P{¹H} NMR: δ 22.8 (dd, P_b, sepn = 12.3, 4.6 Hz, ¹J_{Pt-Pb} = 2045 Hz, ³J_{Hg-Pb} = 148 Hz), 0.24 (d, Pc, J_{Pc-Pb} = 4.6 Hz, J_{Pt-Pc} = 19.5 Hz, ³J_{Hg-Pc} = 148 Hz), -6.6 (1:2:1:2:1 m, Pd, sepn = 7.5, 4.0 Hz, ³J_{Pt-Pd} = 155 Hz), -59.9 (dd, Pa, sepn 12.3, 6.5 Hz, ¹J_{Pt-Pa} = 1033 Hz). ¹⁹⁵Pt{¹H} NMR (C₆H₆): δ -3914 (dddd, ¹J_{Pt-Pa} = 1033 Hz, ¹J_{Pt-Pb} = 2062 Hz, ³J_{Pt-Pd} = 155 Hz, J_{Pt-Pc} = 20 Hz). ¹⁹⁹Hg{¹H} NMR (CD₂Cl₂): δ -546 (br). Anal. Calcd for C₇₂H₅₆HgP₄Pt: C, 60.02; H, 3.92; Hg, 13.92. Found: C, 54.15; H, 3.76; Hg, 13.87. FAB-MS: *m*/z 1441.2 (M⁺, 15%).

X-ray Crystallography. Crystals of 3, 6b, *trans*-7, 11, 14, and 20 were mounted in an inert oil on glass fibers. X-ray diffraction data for 3 and *trans*-7 were collected on a Rigaku AFC-6S diffractometer with use of graphite-monochromated Mo K α radiation and for 6b, 11, 14, and 20 on a Rigaku AFC-6R diffractometer with use of Cu K α radiation. The data were corrected for Lorentz and polarization effects and, in the cases of 3, 6b, 11, 14, and 20, for absorption by an empirical ψ -scan method;⁴⁰ for *trans*-7, a numerical absorption correction was made. Crystallographic data are summarized in Table 1.

⁽³⁹⁾ Desponds, A.; Schlosser, M. J. Organomet. Chem. 1996, 507, 257.
(40) North, A. C. T.; Phillips, D. C.; Mathews, F. S. Acta Crystallogr., Sect. A 1968, 24, 351.

Table 1. Crystallographic Data for Compounds 3, 6b, trans-7, 11, 14,and 19

	3	6b	trans-7
empirical	$C_{36}H_{28}HgO_2P_2$	C36H28Br2Hg-	C ₃₆ H ₂₈ Cl ₂ HgP ₂ -
formula		P2.2CH2Cl2	Pt.2CH ₂ Cl ₂
fw	755.15	1253.42	1159.02
cryst syst	monoclinic	triclinic	orthorhombic
space group	<i>P</i> 2 ₁ / <i>n</i> (No. 14)	<i>P</i> 1 (No. 2)	Pbca (No. 61)
a (Å)	11.331(3)	12.720(3)	19.805(3)
b (Å)	9.381(2)	13.154(3)	8.532(4)
<i>c</i> (Å)	14.516(4)	12.724(2)	23.076(2)
α (deg)	90	92.01(2)	90
β (deg)	98.30(2)	109.19(2)	90
γ (deg)	90	90.82(2)	90
$V(Å^3)$	1526.8(7)	2008.7(7)	3899(2)
Ζ	2	2	4
D_{calcd} (g cm ⁻³)	1.642	2.072	1.974
$T(\mathbf{K})$	296	193	296
λ (Å)	0.710 69 (Mo Ko	α) 1.541 78 (Cu k	Kα) 0.710 69 (Mo Kα)
$\mu \text{ cm}^{-1}$	51.90	184.21	80.32
R (obsd data) ^a	0.035	0.047	0.034^{c}
$(I > 3\sigma(I))$			
$R_{\rm w}$ (obsd data) ^b	0.037	0.056	0.033^{c}
$(I > 3\sigma(I))$			
	11	14	20
empirical	C36H28Cl2HgNi-	C54H42ClHgP3Pt	C ₇₂ H ₅₆ Hg ₂ OP ₄ Pd·
formula	P2.2CH2Cl2		C ₆ H ₅ CH ₃ .0.5CH ₂ Cl ₂
fw	1022.63	1214.98	1703.32
cryst syst	orthorhombic	monoclinic	triclinic
space group	Pbca (No. 61)	$P2_1/c$ (No. 14)	<i>P</i> 1(No. 2)
a (Å)	19.455(3)	13.150(3)	13.199(1)
b (Å)	8.496(5)	12.912(6)	15.273(2)
<i>c</i> (Å)	22.858(3)	26.724(2)	17.850(1)
α (deg)	90	90	93.830(7)
β (deg)	90	94.09(1)	93.664(6)
γ (deg)	90	90	104.378(7)
$V(Å^3)$	3778(3)	4526(2)	3465.8(5)
Ζ	4	4	2
$D_{\rm calcd}~({\rm g~cm^{-3)}}$	1.798	1.783	1.632
T (K)	183	193	193
λ (Å)	1.541 78 (Cu Kα)	1.54178 (Cu Kα)	1.54178 (Cu Kα)
μ (cm ⁻¹)	122.83	129.29	109.45
R (obsd data) ^a	0.041	0.038	0.031
$(I > 3\sigma(I))$			

^a $R = \sum ||F_0| - |F_c|| / \sum |F_0|^b R_w = [\sum w(|F_0| - |F_c|)^2 / \sum w F_0^2]^{1/2}$. ^c $I > 2\sigma(I)$.

The structures were solved by heavy atom Patterson methods (PATTY for **3**, **6b**, and **14**)⁴¹ or by direct methods (SAPI 91 for *trans*-**7**,⁴² SHELXS 86 for **11**,⁴³ SIR 92 for **20**⁴⁴) and expanded by Fourier techniques (DIRDIF 94 for **3**, **6b**, *trans*-**7**, **11**, and **20**,⁴⁵ DIRDIF 92 for **14**⁴¹). Anomalous dispersion effects were included in F_{calcd} .⁴⁶ Non-hydrogen atoms, except those noted below, were

- (41) Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; Garcia-Granda, S.; Gould, R. O.; Smits, J. M. M.; Smykalla, C. PATTY: The DIRDIF Program System; Technical Report of the Crystallography Laboratory; University of Nijmegen: Nijmegen, The Netherlands, 1992.
- (42) Fan, H.-F. SAPI 91: Structure Analysis Programs with Intelligent Control; Rigaku Corporation, Tokyo, Japan, 1991.
- (43) Sheldrick, G. M. In *Crystallographic Computing 3*; Sheldrick, G. M., Krüger, C., Goddard, R., Eds.; Oxford University Press: Oxford, U.K., 1985; pp 175–189.
- (44) Altomare, A.; Cascarano, M.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Crystallogr. 1994, 27, 435.
- (45) Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M. *The DIRDIF-94 Program System*; Technical Report of the Crystallography Laboratory; University of Nijmegen: Nijmegen, The Netherlands, 1994.
- (46) Ibers, J. A.; Hamilton, W. C. Acta Crystallogr. 1964, 17, 781.

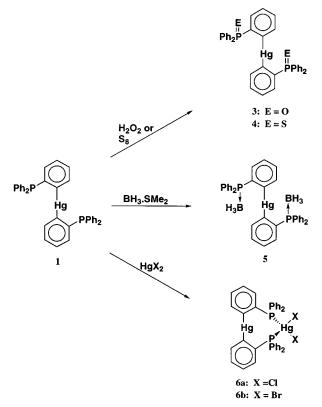
refined anisotropically. Hydrogen atoms were included at geometrically determined positions which were recalculated periodically but not refined. Neutral atom scattering factors,⁴⁷ the values for $\Delta f'$ and $\Delta f''$,⁴⁸ and the values for the mass attentuation coefficients⁴⁸ were taken from standard compilations. All calculations employed the teXsan crystallographic software package.⁴⁹

The P=O distance of 1.600(6) Å obtained from the crystal structure analysis of **3** is significantly greater than that expected (1.47–1.49 Å), and the displacement ellipsoid for the oxygen atom is elongated along the P=O bond. These observations appear to indicate the presence of some cocrystallized impurity, but we have been unable to identify it.

The cell dimensions, space group, and atomic coordinates for trans-7 and 11 are very similar. In both cases, the molecule of complex is disordered about a crystallographic center of symmetry with the metal atom at the inversion center. The two chlorine atoms and the two C₆H₄PPh₂ groups are, separately, related by inversion, and the mercury atom is disordered over two sites of occupancy 0.5. The crystallographic asymmetric unit for the centrosymmetric space group is, therefore, one metal atom on the special position (1/2, 0, 1/2), one mercury atom of occupancy 0.5, one C₆H₄PPh₂ group (two hydrogen atoms with occupancy 0.5), and one Cl atom. There is also a molecule of CH₂Cl₂ of solvation, which preserves the inversion center. In the case of trans-7, the R-factor at this stage was still high (0.084), U_{22} for Pt(1) was large, and the difference electron density revealed a significant peak at (0.50, 0.05, 0.49); 11 behaved similarly. Because these features suggested that the metal atoms do not lie exactly on the inversion center, they were displaced from it, assigned an occupancy of 0.5, and refined with an anisotropic displacement factor; the P and Cl atoms also were each split over sites of half-occupancy. However, although the R-factors were reduced by this procedure, the crystallographic refinement does not distinguish between displacement of the platinum or nickel atom toward or away from the mercury atom, on account of the disordering about the inversion center. To be consistent chemically, the mercury atom at (0.51, 0.26, 0.45) and the platinum atom at (0.48, -0.04, 0.50) (in the case of *trans*-7) or the nickel atom at (0.50, -0.03, 0.50) (in the case of 11) have been listed in the appropriate tables because the resulting Hg-M distances (2.84 Å for *trans*-7, 2.76 Å for 11) appear more reasonable than the alternatives (2.16 and 2.28 Å, respectively). Choices of labeling have also been made for the Cl and P sites so that the lists display the chemically more reasonable metric parameters. It should be noted that the separations of the M, Cl, and P sites challenge the resolution of the data; hence, distances and angles involving these atoms are probably less well determined than indicated by the esds derived from the least squares refinement. The P-C distances are particularly unreliable because they occur at the junction between the ordered and disordered parts of the structure.

Results

Most of the new compounds prepared in this work and the reactions leading to them are outlined in Schemes 1-4.


1. Mercury Compounds. Reaction of $2-\text{LiC}_6\text{H}_4\text{PPh}_2$ with HgCl_2 in a 2:1 molar ratio affords the bis(aryl)mercury

⁽⁴⁷⁾ Cromer, D. T.; Waber, J. T. International Tables for X-ray Crystallography; Kynoch Press: Birmingham, U.K., 1974; Vol. IV.

⁽⁴⁸⁾ International Tables for Crystallography; Wilson, A. J. C., Ed.; Kluwer Academic: Dordrecht, The Netherlands; Vol. C.

⁽⁴⁹⁾ teXsan: Single-Crystal Structure Analysis Software; Molecular Structure Corp.: The Woodlands, TX, 1985, 1992, and 1997.

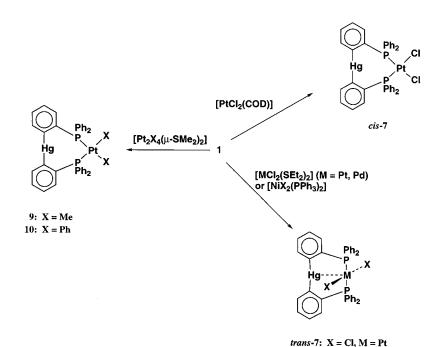
compound [Hg(2-C₆H₄PPh₂)₂] (1) as a colorless solid that is soluble in most organic solvents. The ³¹P chemical shift (δ 0.38) and the small magnitude of $J_{\text{Hg}-P}$ (209 Hz) indicate that the phosphorus atoms do not interact strongly with the metal center⁵⁰ and are consistent with the usual linearcoordinated structure.

If a 1:1 molar ratio of reactants is employed, the main product is a poorly soluble solid whose elemental analysis (C, H, Hg) is consistent with the formulation $[HgCl(C_6H_4-$ PPh₂)] (2). The ${}^{31}P{}^{1}H$ NMR parameters, measured in DMSO (δ 29.7, ${}^{1}J_{\text{Hg}-P}$ 4798 Hz, ${}^{3}J_{\text{Hg}-P}$ 357 Hz), show that the $C_6H_4PPh_2$ phosphorus atom in 2, unlike that in 1, is coordinated to mercury, but unfortunately, the poor solubility precluded the use of ¹⁹⁹Hg{¹H} NMR spectroscopy or of single-crystal X-ray analysis for structure elucidation. The FAB-mass spectrum shows a weak peak assigned to the dinuclear species $[HgCl{(2-Ph_2PC_6H_4)_2Hg}]^+$ at m/z 959, but the differences between 2 and its dinuclear isomer $[HgCl_2](2-$ Ph₂PC₆H₄)₂Hg] (**6a**) discussed in a following paragraph suggest that 2 is a polymer $[HgCl(2-C_6H_4PPh_2)]_n$ (n > 2). Compound 2 resembles typical arylmercuric halides in undergoing symmetrization to 1 on heating with aqueousethanolic KCN.51

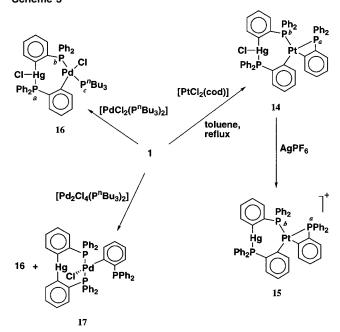
Compound 1 behaves as a typical bis(tertiary phosphine) in its reactions with oxygen, sulfur, and BH_3 ·SMe₂ to give the corresponding dioxide (3), disulfide (4), and bis(borane)

(5) (Scheme 1). The ¹⁹⁹Hg{¹H} NMR spectra of 3 and 4 consist of triplets at δ -750 and -483, these being at lower frequency than that for 1 (δ 470). The relatively small Hg-P coupling constants [148 Hz (3), 259 Hz (4)] are reproduced in the ³¹P{¹H} NMR spectra. The bis(borane) (5) is not sufficiently soluble for NMR measurements and re-forms 1 quantitatively on heating in DMSO.

The molecular structure of compound **3**, determined by single-crystal X-ray diffraction analysis, has a center of symmetry, the diphenylphosphinoyl groups being mutually *trans* (see Figure 1). The Hg–O distance [2.874(5) Å] indicates little or no Hg–O interaction, such distances in the adducts of mercuric halides with neutral O-donors being typically ~2.5 Å;^{52,53} the linearity of the C–Hg–C unit supports this conclusion. The Hg–C distance [2.089(8) Å] is similar to those in other bis(aryl)mercury compounds, for example, [Hg(C₆H₅)₂][2.085(7) Å]⁵⁴ and [Hg(2-CH₃C₆H₄)₂] [2.09(1) Å],⁵⁵ and in derivatives containing additional potential donor atoms, for example, [Hg(C₆H₅)₂·Ph₂P(S)CH₂-CH₂P(S)Ph₂] [2.069(7) Å]⁵⁶ and [Hg(2-C₆H₄CH₂NMe₂)₂] [2.10(2) Å].⁵⁷


Compound **1** behaves as a bidentate bis(tertiary phosphine) in its reactions with mercuric halides, which afford stable, colorless complexes of general formula [HgX₂{2-Ph₂PC₆H₄)₂Hg}] [X = Cl (**6a**), Br (**6b**)] (Scheme 1). Their ³¹P{¹H} NMR spectra in *d*₆-DMSO consist of a singlet with two pairs of satellites arising from coupling with the inequivalent ¹⁹⁹Hg nuclei ($I = \frac{1}{2}$, 16.84% natural abundance), for example, for **6a**, $\delta_P = 30.5$, ¹*J*_{Hg-P} = 4835 Hz, ³*J*_{Hg-P} = 554 Hz). The compounds were insufficiently soluble for ¹⁹⁹Hg NMR spectra to be measured. Compound **6a** is an isomer of the presumed oligomer or polymer **2**, but the NMR parameters of the two compounds differ significantly (for **2** in *d*₆-DMSO, $\delta_P = 29.7$, ¹*J*_{Hg-P} = 4798 Hz, ³*J*_{Hg-P} = 517 Hz).

The single-crystal X-ray structure of **6b** is shown in Figure 2; principal bond lengths and angles are listed in Table 2. The compound consists of the $[Hg(2-C_6H_4PPh_2)_2]$ fragment coordinated via its phosphorus atoms to $HgBr_2$ in a slightly distorted tetrahedral arrangement. The geometry about Hg(1) is close to linear $[C(1)-Hg(1)-C(7) = 175.8(4)^{\circ}]$, and the Hg–C distances [average 2.11(1) Å] are similar to those in **3**. The Hg••••Hg separation of 3.1515(6) Å is less than double the most recently recommended van der Waals radius of mercury, 1.73 Å,⁵⁸ possibly indicative of a weak interaction. In the salt $[Hg_2Cl_2(\mu-Cl)(\mu-dppm)_2]Cl$, in which the mercury atoms are bridged by two dppm ligands and one chloride and exhibit a distorted tetrahedral geometry, the Hg••••Hg


- (52) Dean, P. A. W. Prog. Inorg. Chem. 1978, 24, 109.
- (53) Brodersen, K.; Hummel, H.-U. In Comprehensive Coordination Chemistry; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon: Oxford, 1987; Vol. 5, pp 1065–1070.
- (54) Grdenic, G.; Kamenar, B.; Nagl, A. Acta Crystallogr., Sect. B, **1977**, 33, 587.
- (55) Liptak, D.; Ilsley, W. H.; Glick, M. D.; Oliver, J. P. J. Organomet. Chem. 1980, 191, 339.
- (56) Lobana, T. S.; Sandhu, M. K.; Tiekink, E. R. T. J. Chem. Soc., Dalton Trans. 1988, 1401.
- (57) Atwood, J. L.; Berry, D. E.; Stobart, S. L.; Zaworotko, M. I. Inorg. Chem. 1983, 22, 3480.
- (58) Canty, A. J.; Deacon, G. B. Inorg. Chim. Acta 1980, 45, L225.

⁽⁵⁰⁾ Verkade, J. G.; Mosbo, J. A. In *Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis*; Verkade, J. G., Quin, L. D., Eds.; VCH Publishers: Deerfield Beach, FL, 1987; Chapter 13, p 443.

⁽⁵¹⁾ Wardell, J. L. In *Comprehensive Organometallic Chemistry*; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, 1982; Vol. 2, pp 892–895.

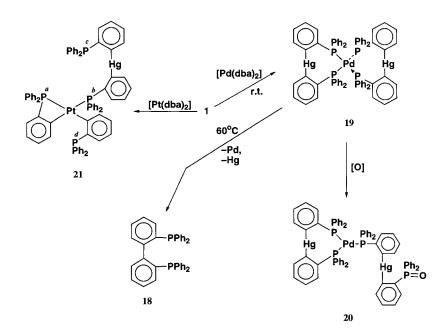
Scheme 3

distance is 3.343(3) Å. The authors claimed that there was a Hg····Hg interaction on the basis of a Raman band at 46 cm⁻¹ assigned to ν (Hg····Hg).⁵⁹

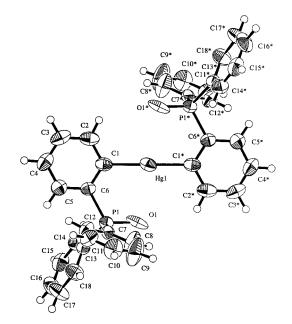
2. Heterobinuclear P-Donor Complexes. Compound **1** also acts as a bidentate ligand toward planar-coordinated divalent d^8 metal ions and can span both *cis*- and *trans*-coordination sites (Scheme 2). Reaction with [PtCl₂(SEt₂)₂] gives *trans*-[PtCl₂{(2-Ph₂PC₆H₄)₂Hg}], *trans*-7, as a pale yellow solid whose ³¹P{¹H} NMR spectrum shows a singlet

at δ 15.2 with satellites due to ¹⁹⁵Pt (¹J_{Pt-P} = 2525 Hz) and ¹⁹⁹Hg (³J_{Hg-P} = 249 Hz). The analogous palladium(II) complex **8** is obtained similarly from *trans*-[PdCl₂(SEt₂)₂]; its structure has been confirmed by X-ray crystallography.²⁵ In contrast, reaction of **1** with [PtCl₂(cod)] gives *cis*-**7** as a colorless solid whose ³¹P chemical shift is similar to that of *trans*-**7**; however, the coupling constants are characteristically different (¹J_{Pt-P} = 3624 Hz, ³J_{Hg-P} = 320 Hz). The Pt-P coupling constants in particular are as expected for *trans*-and *cis*-planar platinum(II) complexes of tertiary phosphines.⁶⁰ We are not aware of a previous example in which the nature of the labile ligands on platinum(II) determines so decisively the configuration of the final product.

8: X = Cl, M = Pd 11: X = Cl, M = Ni 13: X = NCS, M = Ni


Reaction of **1** with [Pt₂R₄(μ -SEt₂)₂] (R = Me, Ph) gives the corresponding complexes *cis*-[PtR₂{(2-Ph₂PC₆H₄)₂Hg}] [R = Me (**9**), Ph (**10**)], the magnitudes of J_{Pt-P} (1802, 1592 Hz, respectively) being as expected for this ligand arrangement.⁶⁰ In confirmation of the proposed structures, the ¹⁹⁹Hg NMR spectra of *trans*-**7**, **9**, and **10** display seven-line multiplets arising from coupling with two equivalent phosphorus atoms (${}^{3}J_{Hg-P} \sim 240-260$ Hz) and with ¹⁹⁵Pt [244 Hz (*trans*-**7**), 220 Hz (**9**), and 280 Hz (**10**)]. Because the values of ${}^{1}J({}^{195}Pt-Hg)$ in directly bonded Pt-Hg compounds are typically ~2800 Hz,⁶¹ the observed values appear to indicate that there is little direct covalent bonding between mercury and platinum in complexes **7**, **9**, and **10**. The poor solubility of *cis*-**7** prevented measurement of the ¹⁹⁹Hg NMR spectrum of this compound.

⁽⁵⁹⁾ Harvey, P. D.; Aye, K. T.; Hierso, K.; Isabel, E.; Lognot, I.; Mugnier, Y.; Rochon, F. D. *Inorg. Chem.* **1994**, *33*, 5981.


⁽⁶⁰⁾ Pregosin, P. S.; Kunz, R. W. ³¹P and ¹³C NMR of Transition Metal Phosphine Complexes; Springer: Berlin, 1979; p 94.

⁶¹⁾ Krumm, M.; Zangrando, E.; Randaccio, L.; Menzer, S.; Danzmann, A., Holthenrich, D.; Lippert, B. *Inorg. Chem.* **1993**, *32*, 2183.

Scheme 4

A single-crystal X-ray diffraction study of *trans*-**7** confirms that it is isostructural, though not isomorphous, with the palladium(II) analogue (**8**)²⁵ and that the coordination geometry about mercury is close to linear. The structure is shown in Figure 3, and selected metrical data are in Table 3. Unfortunately, the structure is disordered in a way that leads to unreasonably long Hg–C distances [2.37(1) Å, cf. 2.095(9) Å in **8**, 2.091(8) Å in **3**] and an apparent Pt–Hg separation of 2.8339(7) Å. Although attempts to model the disorder satisfactorily have not been completely successful, the Pt–Hg distance is at the upper end of the range 2.51–2.83 Å observed in a number of 1:1 adducts of planar

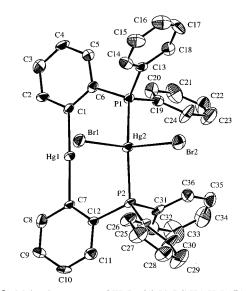

Figure 1. Molecular structure of $[Hg\{2-C_6H_4P(O)Ph_2\}_2]$ (3). Thermal ellipsoids show 30% probability levels; hydrogen atoms are shown as circles of small radius. Selected distances (Å) and angles (deg): Hg(1)-C(1), 2.091(8); Hg(1)-O(1), 2.874(5); P(1)-O(1), 1.600(6); O(1)-Hg-O(1), 180. The P=O distance is probably overestimated (see Experimental Section).

Table 2. Selected Bond Lengths (Å) and Angles (deg) for $[HgBr_2\{(2-Ph_2PC_6H_4)_2Hg\}]$ (6b)

$\begin{array}{l} Hg(1)\cdots Hg(2) \\ Hg(1)-C(1) \\ Hg(2)-P(1) \\ Hg(2)-Br(1) \\ P(1)-C(6) \end{array}$	3.1515(6) 2.10(1) 2.462(3) 2.682(1) 1.79(1)	Hg(1)-C(7) Hg(2)-P(2) Hg(2)-Br(2) P(2)-C(12)	2.12(1) 2.461(3) 2.629(1) 1.81(1)
$\begin{array}{l} C(1)-Hg(1)-C(7)\\ Br(1)-Hg(2)-Br(2)\\ P(1)-Hg(2)-P(2)\\ Br(1)-Hg(2)-P(1)\\ Br(2)-Hg(2)-P(1)\\ Br(2)-Hg(2)-P(2)\\ \end{array}$	175.8(4) 105.71(4) 136.77(9) 104.14(7) 101.87(7) 105.54(7)	$\begin{array}{l} Br(2)-Hg(2)-P(2)\\ Hg(1)-Hg(2)-P(1)\\ Hg(1)-Hg(2)-P(2)\\ Hg(1)-Hg(2)-Br(1)\\ Hg(2)-Hg(1)-C(7)\\ Hg(2)-Hg(1)-C(1)\\ \end{array}$	99.52(7) 78.60(6) 77.58(6) 78.13(3) 91.7(3) 91.8(3)

platinum(II) complexes with mercuric salts that are thought to contain a Pt \rightarrow Hg donor interaction.^{61–64}

Not surprisingly, the P-donor complexes of 1 with nickel(II) are much more labile than those with palladium(II) or platinum(II). Reaction of 1 with [NiCl₂(PPh₃)₂] gives im-

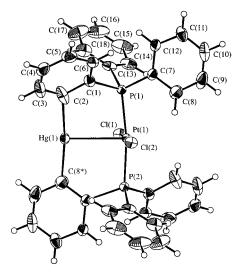


Figure 2. Molecular structure of $[HgBr_2\{(2-Ph_2PC_6H_4)_2Hg]$ (**6b**). Thermal ellipsoids show 50% probability levels. Hydrogen atoms have been deleted for clarity.

Table 3. Selected Bond Lengths (Å) and Angles (deg) for *trans*-[MCl₂{(2-Ph₂PC₆H₄)₂Hg}], Where M = Pt (*trans*-7), Ni (11)^{*a,b*}

		-	-			
	M = Pt	M = Ni		M = Pt	M = Ni	
Hg····M	2.8339(7)	2.756(8)				
M-P(1)	2.310(5)	2.19(2)	M-P(2)	2.301(5)	2.25(2)	
M-Cl(1)	2.31(1)	2.13(3)	M-Cl(2)	2.30(1)	2.19(3)	
$Hg-C(8)^{*a}$	2.37(1)	2.29(1)	Hg-C(2)	2.37(1)	2.32(1)	
P(1) - C(1)	1.949(9)	1.96(1)	P(2)-C(7)*	1.959(9)	1.951(9)	
$C(2) - Hg - C(8)^*$	174.0(3)	174.2(3)	Cl(1) - M - P(1)	93.1(3)	93.8(9)	
Cl(2) - M - P(2)	93.9(3)	93.2(8)	Cl(1)-M-Cl(2)	178.3(3)	179.2(9)	
P(1) - M - P(2)	172.0(2)	176.3(5)	Cl(1) - M - P(2)	85.9(3)	86.6(9)	
Cl(2) - M - P(1)	86.9(3)	86.3(8)	Hg-M-P(1)	84.3(1)	86.6(4)	
Hg-M-P(2)	87.7(1)	89.8(5)	Hg-M-Cl(1)	85.6(2)	85.8(5)	
Hg-M-Cl(2)	92.7(2)	93.4(6)	P(1)-C(1)-C(2)	118.8(7)	118.2(7)	

^{*a*} Asterisk indicates atom generated by symmetry operation (1 - x, -y, 1 - z). ^{*b*} Errors in parameters involving C(2), C(7), C(8), P(1), and P(2) are likely to be underestimated owing to a disorder problem (see text). In particular, Hg–C and P–C distances are, respectively, ~0.17 and 0.12 Å greater than standard values.

Figure 3. Molecular structure of *trans*-[PtCl₂{(2-Ph₂PC₆H₄)₂Hg}] (*trans*-7). Only one image of the disordered molecule is given. Asterisks indicate atoms generated by the symmetry operation (1 - x, -y, 1 - z). Thermal ellipsoids show 30% probability levels. Hydrogen atoms are shown as circles of small radius.

mediately a red solid which changes color to green, gradually in dichloromethane and acetone, more rapidly in benzene, toluene, ether, and DMSO. Elemental analyses of these solids were not consistent with the expected formulation NiCl₂·1, and attempts to record a ³¹P NMR spectrum failed. The color changes are suggestive of the well-known balance in the coordination geometry of nickel(II) between planar and tetrahedral, which is particularly prevalent in [NiX₂(PR₃)₂] complexes.⁶⁵ The green solutions undergo further decomposition on standing, becoming colorless and depositing [HgCl(2-C₆H₄PPh₂)]_n (2) (identified by ³¹P NMR spectroscopy). By layering filtered dichloromethane solutions of the red solid at -20 °C, a few red crystals (11) were obtained and separated by hand from the bulk of green crystals (12).

A single-crystal X-ray diffraction study of one of the red crystals shows that the compound is indeed [NiCl₂{(2-

 $C_{6}H_{4}PPh_{2}H_{2}$ (11), in which 1 behaves as a *trans*-spanning ligand to planar-coordinated nickel(II), thus completing the triad of such complexes formed by 1 with the divalent d^8 elements. The crystal belongs to the same space group as trans-7, has similar cell dimensions, and is subject to a similar disorder that leads to unacceptably long Hg-C distances [2.29(1), 2.32(1) Å]. Selected bond lengths and angles are listed in Table 3. The most reasonable Ni-Hg separation that can be derived from the data is 2.756(8) Å, which is greater than those reported for complexes believed to contain covalent Ni-Hg bonds, such as $[{Ni_2(\mu-CNMe)}-$ (CNMe)₄(dppm)₂}Hg][NiCl₄] [2.617(2)-2.682(2) Å],⁶⁶ [Hg{Ni- $((GePh_3)(HgGePh_3)(\eta^5-C_5H_5))_2$ [2.462(3) Å],⁶⁷ and [Hg{Ni- $(\eta^{5}-C_{5}H_{5})(PEt_{3})_{2}$ [2.468(1) Å].⁶⁸ Thus, as with the analogous platinum and palladium complexes, the metalmercury distance in 11 seems to indicate a weak $Ni \rightarrow Hg$ interaction.

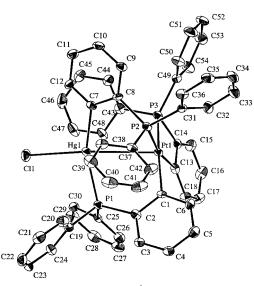
A preliminary X-ray diffraction study of one of the green crystals has shown that it belongs to the same space group as **6b** and has very similar cell dimensions. We suspect that **12** is predominantly **6a** in which some of the mercury in the $HgCl_2$ fragment is replaced by tetrahedrally coordinated nickel(II) but more work is required to establish this point.

A stable complex of planar-coordinated nickel(II) and **1** is obtained by replacing chloride by thiocyanate as the anionic co-ligand. The red solid of formula [Ni(NCS)₂{(2-Ph₂PC₆H₄)₂Hg}] (**13**) isolated by treatment of [Ni(NCS)₂-(PPh₃)₂] with **1** shows a singlet in its ³¹P{¹H} NMR spectrum at δ 9.1 with ¹⁹⁹Hg satellites (³*J*_{Hg-P} = 278 Hz), a corresponding triplet in its ¹⁹⁹Hg NMR spectrum at δ –610, and a single strong band in its IR spectrum at 2089 cm⁻¹, characteristic of N-bonded thiocyanate. This compound is soluble without decomposition in most organic solvents without loss of the red color.

3. Aryl Group Transfer Reactions. We have attempted to transfer the $2-C_6H_4PPh_2$ group from mercury to platinum and palladium by use of both divalent and zerovalent complexes of these elements.

⁽⁶²⁾ van der Ploeg, A. F. M. J.; van Koten, G.; Vrieze, K.; Spek, A. L. Inorg. Chem. 1982, 21, 2014.

⁽⁶³⁾ van der Ploeg, A. F. M. J.; van Koten, G.; Vrieze, K.; Spek, A. L.; Duisenberg, A. J. M. Organometallics 1982, 1, 1066.


⁽⁶⁴⁾ Falvello, L. R.; Forniés, J.; Martín, A.; Navarro, R.; Sicilia, V.; Villarroya, P. Inorg. Chem. 1997, 36, 6166.

⁽⁶⁵⁾ Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed.; Wiley: New York, 1999; pp 837–846.

⁽⁶⁶⁾ Gong, J.; Huang, J.; Fanwick, P. E.; Kubiak, C. P. Angew Chem., Int. Ed. Engl. 1990, 29, 396.

⁽⁶⁷⁾ Zakharov, L. N.; Struchkov, Yu. T.; Titova, S. N.; Bychkov, B. T.; Domrachev, G. A.; Razuvaev, G. A. *Cryst. Struct. Commun.* **1980**, *9*, 549.

⁽⁶⁸⁾ Schneider, J. J.; Denninger, U.; Hagen, J.; Krüger, C.; Blaser, D.; Boese, R. Chem. Ber. 1997, 130, 1433.

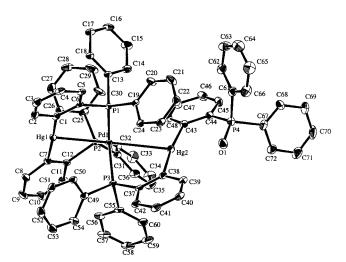
Figure 4. Molecular structure of $[(\eta^2-2-C_6H_4PPh_2)Pt(\mu-2-C_6H_4PPh_2)_2-HgCl]$ (14). Thermal ellipsoids show 30% probability levels. Hydrogen atoms have been deleted for clarity.

(a) Divalent Metals. When a mixture of [PtCl₂(cod)] and 1 is heated in toluene, HgCl₂ is eliminated, and the binuclear cyclometalated Pt(II)-Hg(II) complex $[(\eta^2-2-C_6H_4PPh_2)Pt(\mu 2-C_6H_4PPh_2_2HgCl$ (14) is formed in good yield (Scheme 3). The reaction proceeds via the P-donor complex *cis*-7; remarkably, trans-7 remains unchanged under the same conditions. The chloride ligand can be removed from the mercury atom by treatment of 14 with AgPF₆, which affords the corresponding salt $[(\eta^2-2-C_6H_4PPh_2)Pt(\mu-2 C_6H_4PPh_2$)₂Hg]PF₆ (15). The structures of 14 and 15 have been assigned on the basis of NMR spectroscopy $({}^{31}P{}^{1}H{})$, ¹⁹⁹Hg{¹H}) and confirmed by a single-crystal X-ray diffraction study of 14 (see below). Both compounds show three sets of ³¹P resonances centered at δ ca. -64 (P_a), +15 (P_b), and +38 (P_c), the phosphorus atoms being labeled as shown. The shielding of P_a⁶⁹ and the magnitude of the associated Pt-P coupling constant (~1200 Hz) indicate that Pa belongs to a chelate $Pt(\eta^2-C_6H_4PPh_2)$ group, cf. *cis*-[Pt($\eta^2-C_6H_4$ -PPh₂)₂], which has $\delta_{\rm P}$ -53.0 (¹ $J_{\rm Pt-P}$ = 1348 Hz).^{5,6} The resonance due to P_a shows P–P couplings of ~12 Hz to P_b and P_c but has no ¹⁹⁹Hg satellites. The doublet of doublets in the region of δ 38 shows ¹⁹⁹Hg satellites [${}^{1}J_{\text{Hg}-\text{P}} = 3224$ Hz (14), 2610 Hz (15)] and ¹⁹⁵Pt satellites (${}^{3}J_{Pt-P} = \sim 400$ Hz), suggesting that Pc is directly bound to mercury, not to platinum. In contrast, the resonance due to P_b shows strong coupling to ¹⁹⁵Pt [${}^{1}J_{Pt-P} = 2052 \text{ Hz}$ (14), 1814 Hz (15)] and only weak coupling to 199 Hg (~200 Hz). The Hg-P couplings observed in the ³¹P{¹H} NMR spectrum are reproduced in the ¹⁹⁹Hg NMR spectrum.

Complex 14 shows no tendency to disproportionate, even after overnight heating in DMSO.

The molecular structure of complex **14** is shown in Figure 4. Selected bond lengths and angles are listed in Table 4. Two $2-C_6H_4PPh_2$ groups bridge the platinum and mercury atoms in a head-to-tail arrangement, while the third is coordinated only to platinum to form a four-membered ring.

Table 4. Selected Bond Lengths (Å) and Angles (deg) for $[(\eta^2-C_6H_4PPh_2)Pt(\mu-2-C_6H_4PPh_2)_2HgCl]$ (14)


L()/ 4	· · · · · ·		
Hg···Pt	3.1335(5)	Pt-P(2)	2.329(2)
Hg-C(7)	2.111(8)	Pt-P(3)	2.333(2)
Hg-P(1)	2.414(2)	Pt-C(1)	2.053(8)
Hg-Cl	2.646(2)	Pt-C(13)	2.063(8)
P(1)-Hg-Cl	97.64(7)	Hg-Pt-C(1)	90.5(2)
Cl-Hg-C(7)	102.9(2)	C(1) - Pt - P(2)	94.7(2)
Pt-Hg-P(1)	76.46(5)	P(2) - Pt - P(3)	104.87(8)
Pt-Hg-C(7)	86.5(2)	P(3)-Pt-C(13)	67.9(2)
Pt-Hg-Cl	157.46(6)	C(13) - Pt - C(1)	92.9(3)
P(1)-Hg-C(7)	158.6(2)	Hg-Pt-C(13)	118.8(2)
Hg-Pt-P(2)	70.06(5)	C(1) - Pt - P(3)	160.4(2)
Hg-Pt-P(3)	95.29(5)	P(2) - Pt - C(13)	168.3(2)

In the latter, the Pt–C distance [2.063(8) Å] and the bite angle [67.9(2)°] are similar to the corresponding values in $[Pt(\eta^2-2-C_6H_4PPh_2)_2]$ [2.063(2) Å and 68.73(7)°, respectively],⁵ whereas the Pt-P distance [2.333(2) Å] is significantly greater than that in $[Pt(\eta^2-2-C_6H_4PPh_2)_2]$ [2.297(1) Å] and almost identical with that in the bridging $2-C_6H_4PPh_2$ group. The Pt-C bond in the bridging $2-C_6H_4PPh_2$ group is cis to and slightly shorter [2.053(6) Å] than that in the fourmembered ring. The geometry about the platinum atom can be described as distorted square planar if the mercury atom is ignored or as approximately square-based pyramidal with the mercury atom in the apical site. A similar geometry has been observed in the previously mentioned 1:1 adducts of planar platinum(II) complexes with mercuric salts.⁶¹⁻⁶⁴ However, the Pt-Hg distances in these compounds (2.51-2.84 Å) are considerably shorter than that in complex 14 [3.1335(5) Å], suggesting that, in this compound, any Pt-Hg interaction is weak. The coordination geometry about mercury is approximately trigonal planar (the platinum atom being excluded); the C-Hg-P angle $(158.6(2)^{\circ})$ is distorted markedly from linearity.

We thought that 1 might react with palladium(II) precursors with elimination of $[HgCl(C_6H_4PPh_2)]_n$ to give the chloro analogue of the known cyclopalladated complex $[PdBr(\mu -$ 2-C₆H₄PPh₂)]₄⁸ or a ligand derivative thereof; however, as in the case of platinum, not all the mercury is eliminated. The most definitive result was obtained starting from $[PdCl_2(P^nBu_3)_2]$, which reacts with **1** in a 1:2 molar ratio in refluxing toluene to give $[Cl(^{n}Bu_{3}P)Pd(\mu-2-C_{6}H_{4}PPh_{2})_{2}HgCl]$ (16) as a pale yellow solid, together with $[HgCl(C_6H_4PPh_2)]_n$, metallic mercury, and PⁿBu₃. The NMR (³¹P, ¹⁹⁹Hg) spectroscopic data are consistent with the presence of two bridging C₆H₄PPh₂ groups arranged head-to-tail between palladium and mercury, as shown in Scheme 3. There are three ³¹P resonances of equal intensity: a singlet at δ 46.7 $({}^{1}J_{\rm Hg-P} = 2668 \text{ Hz})$, which must be due to the phosphorus atom (P_a) of a C₆H₄PPh₂ group directly bound to mercury, and an AB pattern centered at δ 30.2 and 11.9 ($^2J_{PP} = 411$ Hz), which arises from mutually *trans*-phosphorus atoms coordinated to palladium(II). Because the former (Pb) has ¹⁹⁹Hg satellites (${}^{3}J_{\text{Hg}-\text{P}} = 191 \text{ Hz}$) while the latter (P_c) does not, these resonances are assigned to the phosphorus atoms of the second 2-C₆H₄PPh₂ group and of PⁿBu₃, respectively.

Reaction of $[Pd_2Cl_4(P^nBu_3)_2]$ with **1** in a 1:2 molar ratio gave an inseparable, ~1:1 mixture of complex **16** with a compound whose ${}^{31}P{}^{1}H$ NMR spectrum showed a pair of

⁽⁶⁹⁾ Garrou, P. E. Chem. Rev. 1981, 81, 229.

Figure 5. Molecular structure of $[Pd\{\eta^{2}-(2-Ph_{2}PC_{6}H_{4})_{2}Hg]\{\eta^{1}-(2-Ph_{2}PC_{6}H_{4})(2-Ph_{2}P(O)C_{6}H_{4})Hg]]$ (20). Thermal ellipsoids show 20% probability levels. Hydrogen atoms have been deleted for clarity.

doublets ($J_{PP} = 36 \text{ Hz}$) at $\delta 18.6$ ($J_{Hg-P} = 272 \text{ Hz}$) and -7.9in a 2:1 intensity ratio. The chemical shift of the latter is suggestive of an uncoordinated PPh₂ group; structure **17**, in which **1** acts as a bidentate chelate group to a PdCl(η^{1} -2-C₆H₄PPh₂) group, is consistent with the data, although the coupling constant between the free and uncoordinated phosphorus atoms seems unusually large.

(b) Zerovalent Metals. These reactions are outlined in Scheme 4. As reported previously,²⁵ complex 1 reacts with [Pd(dba)₂] in a 2:1 molar ratio in refluxing toluene, with elimination of mercury, to give the product of C-C coupling, 2,2'-biphenyldiylbis(diphenylphosphine), 2-Ph₂PC₆H₄C₆H₄-PPh₂-2 (18), which was isolated in 60% yield. At room temperature, an orange, crystalline intermediate, [Pd{(2- $Ph_2PC_6H_4_2Hg_2$ (19) can be isolated, which shows a parention peak in its FAB-mass spectrum. The ³¹P{¹H} NMR spectrum in C₆D₆ at room temperature shows a broad singlet at δ 14.2, which is similar to the value of δ 15 reported for [Pd(PPh₃)₄] under conditions of fast exchange with [Pd(PPh₃)₃] and PPh₃.^{70,71} Attempts to obtain low-temperature spectra were frustrated by poor solubility. It is possible that both $Hg(2-C_6H_4PPh_2)_2$ ligands in 18 are coordinated in a bidentate fashion, presumably tetrahedrally, as observed in [Pd(PPh₃)₄],⁷² [Pd(dppp)₂],⁷³ and [Pd(dipp)₂].⁷⁴

Orange prisms obtained by slow crystallization from a solution of **19** in dichloromethane—ether were shown by X-ray crystallography to be $[Pd{\eta^2-(2-Ph_2PC_6H_4)_2Hg}{\eta^1-(2-Ph_2PC_6H_4)(2-Ph_2P(O)C_6H_4)Hg}$ (**20**), arising from oxidation of one of the phosphorus atoms of **19**, presumably by traces of oxygen. The molecular structure of **20** is shown in Figure 5; selected bond distances and angles are listed in Table 5. The palladium is coordinated in a close to trigonal

- (70) Tolman, C. A.; Seidel, W. C.; Gerlach, D. H. J. Am. Chem. Soc. 1972, 94, 2669.
- (71) Mann, B. E.; Musco, A. J. Chem. Soc., Dalton Trans. 1975, 1673.
- (72) Andrianov, V. G.; Akhrem, I. S.; Christovalova, N. M.; Struchkov, Yu. T. J. Struct. Chem. 1976, 17, 111; Zh. Strukt. Khim. 1976, 17,
- 135. (73) Mason, M. R.; Verkade, J. G. *Organometallics* **1992**, *11*, 2212.
- (74) Portnoy, M.; Milstein, D. Organometallics **1993**, *12*, 1665.

Table 5. Selected Bond Lengths (Å) and Angles (deg) for $[Pd\{(2-Ph_2PC_6H_4)_2Hg\}\{(2-Ph_2PC_6H_4)(2-Ph_2P(O)C_6H_4)Hg\}]$ (**20**)

Hg(1)•••Pd(1)	2.8899(4)	Hg(2)••••Pd(1)	3.2207(4)	
Hg(1) - C(1)	2.099(5)	Hg(1) - C(7)	2.088(6)	
Hg(2) - C(38)	2.084(5)	Hg(2) - C(43)	2.093(5)	
Pd(1) - P(1)	2.328(1)	Pd(1) - P(2)	2.356(1)	
Pd(1) - P(3)	2.343(1)	P(4) - O(1)	1.474(4)	
Pd(1)-Hg(1)-C(1)	93.3(1)	Pd(1) - Hg(1) - C(7)	89.5(1)	
C(1) - Hg(1) - C(7)	174.1(2)	Pd(1)-Hg(2)-C(38)	88.4(1)	
Pd(1)-Hg(2)-C(43)	98.9(1)	C(38)-Hg(2)-C(43)	172.4(2)	
Hg(1)-Pd(1)-Hg(2)	166.28(1)	Hg(1) - Pd(1) - P(1)	81.35(3)	
Hg(1) - Pd(1) - P(2)	79.13(4)	Hg(1) - Pd(1) - P(3)	97.70(4)	
Hg(2) - Pd(1) - P(1)	91.04(3)	Hg(2) - Pd(1) - P(2)	114.55(4)	
Hg(2) - Pd(1) - P(3)	76.26(4)	P(1) - Pd(1) - P(2)	123.61(5)	
P(1) - Pd(1) - P(3)	120.44(5)	P(2) - Pd(1) - P(3)	114.33(5)	

planar arrangement by two phosphorus atoms of bidentate 1 and by the phosphorus atom from the phosphine-phosphine oxide ligand. The Pd–P distances (2.33–2.36 Å) are slightly greater than the values of 2.29-2.31 Å usually observed for trigonal palladium(0)-tertiary phosphine complexes, for example, [Pd(PPh₃)₃],⁷⁵ [Pd(Ph₂PC₆H₄SO₃-m)₃],⁷⁶ [Pd(4,2,1-PPBN)₃],⁷⁷ [Pd{N(CH₂CH₂PPh₂)₃}],⁷⁸ and [Pd₂(dippe)₂(μ dippe)].79 The Hg-C distances are in the normal range (2.08-2.10 Å), and the coordination geometry about each mercury atom is only slightly distorted from linearity. The P=O distance [1.474(4) Å] is unexceptional. The Pd-Hg distances are markedly different. The shorter [2.8899(4) Å for bidentate 1] is only slightly greater than the sum of the covalent radii of Pd and Hg (2.77 Å) and is similar to that observed in trans-[PdCl₂·1] containing trans-spanning Hg(2- $C_6H_4PPh_2)_2$ ²⁵ The longer Pd-Hg distance [3.2207(4) Å for the phosphine-phosphine oxide ligand] is similar to that observed in [PdBr(η^2 -S₂COEt){ μ -CH₂C₆H₄P(o-tol)₂}HgBr] [3.098(1) Å],⁶⁴ which also has just one ligand bridging the palladium and mercury atoms.

Reaction of **1** with $[Ni(cod)_2]$ in a 2:1 molar ratio in refluxing toluene also gives 2-Ph₂PC₆H₄C₆H₄PPh₂-2. The ³¹P{¹H} NMR spectrum of the mixture at room temperature shows a broad signal at δ 20.9, which may be due to the nickel(0) analogue of **18**, but attempts to isolate the compound failed.

The behavior of **1** with platinum(0) precursors differs from that with palladium(0) and nickel(0). The only product that could be isolated, in ~20% yield, from reactions with [Pt(dba)₂] or [Pt(C₂H₄)(PPh₃)₂], appears to be a bis(aryl)platinum(II) complex, [Pt(η^{1} -2-C₆H₄PPh₂)(η^{2} -2-C₆H₄PPh₂)-{ η^{1} -*P*-Hg(2-C₆H₄PPh₂)₂}] (**21**), which shows a parent ion peak in the FAB-mass spectrum at m/z 1441. Unfortunately, elemental analyses (especially for carbon) were not wholly satisfactory, and X-ray quality crystals could not be grown, so the formulation rests mainly on the NMR spectroscopic

- (76) Casalnuovo, A. L.; Calabrese, J. C. J. Am. Chem. Soc. 1990, 112, 4324.
- (77) Coles, S. J.; Edwards, P. G.; Hursthourse, M. B.; Abdul Malik, K. M.; Thick, J. L.; Tooze, R. P. J. Chem. Soc., Dalton Trans. 1997, 1821.
- (78) Cecconi, F.; Ghilardi, C. A.; Midollini, S.; Moneti, S.; Orlandini, A.; Scapacci, G. J. Chem. Soc., Dalton Trans. 1989, 211.
- (79) Fryzuk, M. D.; Clentsmith, G. K. B.; Rettig, S. J.; Hägele, G. Organometallics 1996, 15, 2083.

⁽⁷⁵⁾ Sergienko, V. S.; Porai-Koshits, M. A. J. Struct. Chem. 1987, 28, 548; Zh. Strukt. Khim. 1987, 28, 103.

data. The phosphorus atom P_a of the chelate η^2 -C₆H₄PPh₂ group is evident from a doublet of doublets pattern at δ $-59.9 (J_{P-P} = 12.3, 6.5 \text{ Hz}; J_{Pt-P} = 1033 \text{ Hz})$. A doublet of doublets at δ 22.8 ($J_{P-P} = 12.3, 4.6 \text{ Hz}; {}^{1}J_{Pt-P} = 2045 \text{ Hz}$) is clearly due to a phosphorus atom (Pb) attached directly to platinum; because it also shows a small coupling to ¹⁹⁹Hg (148 Hz), we suggest that it belongs to 1 acting as a P-bonded monodentate ligand. The 12.3 Hz coupling is of the magnitude expected for mutually cis-phosphines in planar platinum(II) complexes. The signals due to the remaining phosphorus atoms appear at δ 0.24 (P_c) and -6.6 (P_d). The former shows coupling to ¹⁹⁹Hg ($J_{Hg-P} = 148$ Hz), and the chemical shift is similar to that of 1; hence, it can be reasonably assigned to the uncoordinated phosphorus atom of monodentate 1. It shows a 4.6 Hz coupling to $P_{\rm b}$ and a small coupling of 19.5 Hz to ¹⁹⁵Pt. Finally, the multiplet resonance at δ -6.6 due to P_d shows a Pt-P coupling constant of 155 Hz, both parameters being as expected for a η^1 -C₆H₄PPh₂ group.⁶

Discussion

The main conclusion to be drawn from our results is that, although $[Hg(2-C_6H_4PPh_2)_2]$ (1) can be used to transfer 2-C₆H₄PPh₂ from mercury to palladium or platinum, the products are more complex than originally envisioned. In the first step, the phosphorus atoms bind to the metal centers; thus, 1 behaves as a bidentate ditertiary phosphine of wide but variable bite angle, for example, 105° in the tetrahedral complex 6b, 124° in the trigonal planar complex 19, and 168° in the *trans*-planar complex **11**. The flexibility of its bite angle allows 1 to span both *cis* and *trans* sites in a planar coordination complex. Geometrically, 1 resembles ferrocene-1,1'-diylbis(diphenylphosphine), [Fe(η^5 -C₅H₄PPh₂)₂] (22), which, however, differs in adopting a cis-bidentate mode in its PdCl₂ complex.⁸⁰ Also, when 22 behaves as a transspanning ligand, as in the palladium(II) complex [Pd(PPh₃)- $\{(\eta^5-C_5H_4PPh_2)_2Fe\}](BF_4)_2^{81}$ the iron atom occupies one of the four coordination sites in the planar array. We have not so far observed similar behavior for the mercury atom of **1**. In trans-7, 8, and 11, the mercury atom occupies the axial position of a square-based pyramid; the metal-mercury distances are in the range 2.77–2.88 Å that is consistent with a donor-acceptor $M \rightarrow Hg$ interaction, although the magnitude of J_{Pt-Hg} in trans-7 is much less than expected on this basis. The M-Hg distance in *trans*-7 (M = Pt) is significantly less than that in 8 (M = Pd), which may point to a stronger interaction with the more basic 5d element. The results suggest the possibility of using 1 as a probe of metal-mercury interactions for other d-block elements.

The platinum(II) and palladium(II) complexes of 1 rearrange on heating to give species that frequently contain both the four-membered chelate ring $M(\eta^{2}-2-C_6H_4PPh_2)$ and a binuclear fragment $[M(\mu-2-C_6H_4PPh_2)_2Hg]$ in which the two bridging groups adopt a head-to-tail arrangement. The latter differs from that in the precursors in that one-half of the original bidentate unit has turned through 180°, a process that requires dissociation of the M–P bonds and migration of the aryl group from mercury to the metal. A similar transformation occurs in reverse during the isomerization of the homonuclear digold(II) complex $[Au^{II}_2(C_6F_5)_2(\mu-2-C_6H_4PPh_2)_2]$ to the zwitterionic gold(I)–gold(III) species $[(C_6F_5)_2Au^{II}(\mu-2-C_6H_4PPh_2)_2Au^I].^{82}$

The M-Hg distances in the cyclometalated d^8-d^{10} complexes are ~0.3–0.5 Å longer than those in the precursors containing bidentate **1** and are in the range 2.9–3.5 Å observed for the M-M distances in a number of binuclear gold(III)–gold(I) (d^8-d^{10}) complexes, for example, [(C₆F₅)₂Au^{III}(μ -2-C₆H₄PPh₂)Au^I] [2.931(1) Å],⁸² [Au^I(μ -SPPh₂CH₂)₂Au^{III}[$_2$] [3.050(3) Å],⁸³ [IAu^I(μ -2-Ph₂PC₆H₃-5-Me)Au^{III}[η ²-S₂CNⁿBu₂)] [3.2201(3) Å],⁸⁴ [Me₂(Me₃P)-Au^{III}{ μ -C(CF₃)=C(CF₃)}Au^I(PMe₃)] (3.31 Å),⁸⁵ and [IAu^I(μ -2-Ph₂PC₆H₃-6-Me)Au^{III}[η ²-C₆H₃-2-PPh₂-6-Me)] [3.4692(7) Å].⁸⁶ Such distances are thought to be characteristic of the relatively weak attractive interaction (metallophilic) that can exist between heavy metal ions having an effectively closed shell of electrons.⁸⁷

The only reaction of **1** of those studied in which the 2-C₆H₄PPh₂ group is transferred completely from mercury is that with [Pd(dba)₂], which gives the C–C coupled product **18**. In view of the facile reductive elimination of metal–carbon σ -bonds that is characteristic of bis(alkyl)- and bis(aryl)-palladium(II) complexes,^{88–91} it seems entirely plausible that **18** is formed by such a process, either in a chelate complex [Pd(η^2 -2-C₆H₄PPh₂)₂] or in a palladium(II) analogue of the platinum(II) complex **21**. However, attempts to isolate these intermediates have failed so far.

Acknowledgment. We thank the Universidad Pública de Navarra (Spain) for a postdoctoral grant to M.C. and Mr. Chris Blake for assistance with the ¹⁹⁹Hg measurements.

Supporting Information Available: CIF file containing crystallographic data. This material is available free of charge via the Internet at http://pubs.acs.org.

IC010890Z

- (82) Bennett, M. A.; Hockless, D. C. R.; Rae, A. D.; Welling, L. L.; Willis, A. C. Organometallics 2001, 20, 79.
- (83) Mazany, A. M.; Fackler, J. P., Jr. J. Am. Chem. Soc. 1984, 106, 801.
 (84) Bhargava, S. K.; Mohr, F.; Bennett, M. A.; Welling, L. L.; Willis, A.
- C. Inorg. Chem. 2001, 40, 4271. (85) Jarvis, J. A.; Johnson, A.; Puddephatt, R. J. J. Chem. Soc., Chem.
- Commun. **1973**, 373. (86) Bhargava, S. K.; Mohr, F.; Bennett, M. A.; Welling, L. L.; Willis, A.
- (86) Bhargava, S. K.; Monr, F.; Bennett, M. A.; Welling, L. L.; Willis, A. C. Organometallics 2000, 19, 5628.
- (87) Pyykkö, P. Chem. Rev. 1997, 97, 597.
- (88) Stille, J. K. In *The Chemistry of the Metal-Carbon Bond*; Hartley, F. R., Patai, S., Eds.; Wiley: New York, 1985; Vol. 2, p 625.
- (89) Yamamoto, A. J. Organomet. Chem. **1986**, 300, 347.
- (90) Brown, J. M.; Cooley, N. A. Chem. Rev. **1988**, 88, 1031.
- (91) Canty, A. J. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Puddephatt, R. J., Eds.; Elsevier: Oxford, 1995; Vol. 9, p 266.

⁽⁸⁰⁾ Hayashi, T.; Konishi, M.; Kobori, Y.; Kumada, M.; Higuchi, T.; Hirotsu, K. J. Am. Chem. Soc. 1984, 106, 158.

⁽⁸¹⁾ Sato, M.; Shigeta, H.; Sekino, M.; Akabori, S. J. Organomet. Chem. 1993, 458, 199.