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Abstract: Panaxatriol, a triterpene bearing a steroid-like structure similar to cardiac 

glycosides, was presumed to share the same bioactivity with cardiac glycosides, and 

may be a potential Na+, K+-ATPase inhibitor. In this paper, a series of panaxtriol 

derivatives were synthesized and evaluated for Na+, K+-ATPase inhibitory activities. 

The results of biological tests showed that more than half of the synthesized derivatives 

presented increased inhibitory activities compared with panaxatriol. Of these 

compounds, 13a with a 3, 4-seco skeleton showed the most potent inhibitory activity, 

which was equal to that of the standard drug digoxin. To understand the binding mode 

of the most active compound, molecular docking study of 13a with Na+, K+-ATPase 

was conducted. Therefore, 13a may serve as a new lead compound for the development 

of novel Na+, K+-ATPase inhibitors. 

 

 

 

 

 

 

Heart failure (HF) is a serious condition characterized by the incapability of the heart 

to supply sufficient blood flow to meet the body’s needs.1 Across the globe, about 26 

million adults worldwide are living with HF.2 However, survival rates remain poor and 

the five-year mortality rate for HF is nearly 50%.3 Digitalis cardiac glycosides, such as 

digoxin, have been used as positive inotrope for the treatment of HF for more than 200 

years. Their mechanism of action is digitalis reversibly inhibits the membrane bound 

alpha subunits of the Na+, K+-ATPase in cardiomyocytes.4 Cardiac glycosides’ 

aglycones, the steroidal structures, are considered to be responsible for their inhibitory 

activities. 5 Despite cardiac glycosides are extensively used in clinical therapy, its safety 



  

is still a big problem due to the life-threatening cardiac arrhythmias toxicity and the 

narrow therapeutic index. 6  

Panax ginsing has been widely used in Chinese medicine for the promotion of 

physical strength and resistance to diseases for thousands of years. 7 In addition, ginseng 

has been used for the treatment of HF, 8 and generally has a good safety profile and low 

adverse effects. 9, 10 Ginsenosides are the main components of ginseng, 11 and have been 

reported to inhibit Na+, K+-ATPase. 12 However, ginsenosides were poorly absorbed in 

the gastrointestinal tract, 13 and were tend to be metabolized to their final aglycones by 

intestinal bacterial deglycosylation after oral administration. 14 The main aglycones of 

ginsenosides, such as protopanaxatriol (PPT) and protopanaxadiol, are dammarane-

type tetracyclic triterpenes. 

20(R)-panaxatriol (PT) is a pseudo-aglycone of PPT-type ginsenosides, and can be 

obtained by conversion of PPT during the acid hydrolysis. 15 PT was similar structurally 

to uzarigenin, which was a potent NKA inhibitor and 5αH-cardiotonic steroid 16, 17. 

Thus, we presumed that PT may share the same inhibitory activity towards Na+, K+-

ATPase. To our best knowledge, the inhibitory activities of PT and its derivatives on 

Na+, K+-ATPase have not been reported yet. With the aim to search for novel Na+, K+-

ATPase inhibitors with low toxicity and high affinity from natural resources, a series 

of PT derivatives were synthesized for Na+, K+-ATPase inhibitory activities evaluation.   

 

Figure 1. Structures and stereo 3D stick model of the superposition of uzarigenin (red) and PT 

(blue). 

 

Panaxtriol was prepared by acid hydrolysis of total ginsenosides derived from the 

stem and leaf of panax ginseng. Whereas PT has three hydroxyl groups at C-3, C-6 and 

C-12, oxidation and etherification reactions were introduced to evaluate the role of 

hydroxyl groups as showed in Scheme 1. PT 1 was oxidized by equivalent Dess-Martin 

periodinane to produce 6-keto-PT 2 and 3-keto-PT 3, which were further etherified by 

different haloalkanes to give the ethers 4a-4d and 5a-5d, respectively. Besides, 

treatment of 2 with ethoxycarbonyl isothiocyanate resulted in 4e, which was followed 

by a ring closure reaction to afford 4f. 18 The 3-keto-PT 3 was converted to 3, 12-keto-

PT 6 in three steps (see supporting information). Oxidized compounds 7 and 8 were 

accomplished by reacting 1 with Jones reagent and pyridinium chlorochromate, 

respectively. To explore the role of A-ring, lactones 9, 10 and 11 were synthesized by 

Baeyer–Villiger reaction of 6, 7 and 8 using 3-chloroperoxybenzoic acid, respectively. 



  

In addition, lactam 12 was synthesized from 8 in two steps by first treating with 

hydroxylammonium chloride and subsequent with SOCl2 through Beckmann 

rearrangement reaction.  

 

Scheme 1. Reagents and conditions: (a) Dess-Martin Periodinane, DCM, rt, 3 h; (b) (i) NaH, THF, 

rt, 0.5 h; (ii) RBr, 70℃, 12 h; (c) (i) Ac2O, pyridine, reflux, 12 h; (ii) Jones reagent, 3 h; (iii) KOH, 

MeOH/H2O, 1 h; (d) Jones reagent, rt, 12 h; (e) PCC, rt, 6 h; (f) m-CPBA, Li2CO3, DCM, 12 h; (g) 

(i) NH2OH·HCl, NaHCO3, reflux, 8 h; (ii) SOCl2, DCM, 0℃, 1 h; (h) ethoxycarbonyl isothiocyanate, 

CHCl3, 60℃, 13 h; (i) NH2OH·HCl, LiOH, EtOH, rt, 5 h. 

 

Considering that a seco-A ring structure may provide an altered pattern of 

functionalities and new scaffold with conformational flexibility, 19 a group of A-ring 

opening analogs were synthesized as presented in Scheme 2. Hydrolysis of lactone 11 

with p-toluenesulfonic acid in MeOH gave 3, 4-seco methyl ester 13a and 13b, while 

treatment of 11 with KOH in MeOH/H2O generated 14, which was further esterified to 

give ester 15. 14 was supposed to be a carboxylic acid similar to 13a, however it lost 

C-4, C-28 and C-29, which was abnormal. The fact is that a retro aldol reaction took 

place during the hydrolysis with the presence of KOH (mechanism was showed in 

Figure 2). Indole has been known to be a very important segment in biologically active 

molecules, thus was incorporated at A-ring of 8 to afford 16a-16c by Fischer indole 

synthesis using different phenyldrazines. The structures of all synthesized compounds 

were elucidated by 1H NMR, 13C NMR and MS (see supporting information). 



  

 

 

Scheme 2. Reagents and conditions: (j) p-toluenesulfonic acid, MeOH, rt, 2 h; (k) KOH, 

MeOH/H2O, rt, 1 h; (l) DCM/MeOH, H2SO4, 3 h; (m) phenylhydrazine derivatives, AcOH, reflux, 

3 h. 

 

Figure 2. Mechanism for the retro aldol reaction of 11 to 14. 

 

All the synthetic derivatives were evaluated in the enzyme inhibition assay against 

Na+, K+-ATPase by using a known colorimetric method. 20, 21 Digoxin was chosen as 

reference compound because it is the most common drug for the treatment of HF. As 

can be seen in Table 1, more than half of tested PT derivatives showed increased 

inhibitory activities. Oxidation of hydroxyl groups of 1 on C-3 or C-6 exhibited no 

enhancement of inhibitory activity, while oxidation of hydroxyl group on C-12 slightly 

increase the inhibitory activity (6 vs 3). As to ethers 4a-4d and 5a-5d, only the mono-

benzyl ether derivatives, such as 4c, 4d and 5d, significantly improved the inhibition. 



  

These results revealed that ethyl ether and allyl ether were not preferable substitutions. 

Among them, the most potent compound (4d) was about 3.6-fold more potent than 1. 

Compared with 4d, 4c with a trifluoromethoxy group substituted on its C-4 position of 

the benzene ring showed a decrease of the potency. In addition, 4f containing an 

oxadiazolone group showed a slight improvement of activity (4f vs 2). Besides, the 

benzyl ether group at C-12 in 5c decreased the inhibitory on Na+, K+-ATPase compared 

with 5d, suggesting that benzyl ether group at C-12 is not beneficial to the affinity to 

certain enzyme site.  

 

Table 1 

Inhibitory activities of PT derivatives against Na+, K+- ATPase 

 

Compound R1 R2 R3 R4 R5 R6 X IC50 (μM) 

1 H, β OH H, α OH H, β OH     1.09±0.11 

2 H, β OH O H, β OH     1.18±0.11 

3 O H, α OH H, β OH     1.14±0.12 

4a H, β OC2H5 O H, β OH     1.14±0.12 

4b H, β OCH2CH=CH2 O H, β OH     1.05±0.11 

4c H, β O4(CF3O)Bn O H, β OH     0.45±0.03 

4d H, β OBn O H, β OH     0.30±0.03 

4e 
H, β  

O H, β OH     1.38±0.14 

4f 
H, β  

O H, β OH     0.96±0.09 

5a O H, α OCH2CH=CH2 H, β OCH2CH=CH2     0.75±0.08 

5b O H, α OCH2CH=CH2 H, β OH     0.91±0.09 

5c O H, α OBn H, β OBn     0.87±0.08 

5d O H, α OBn H, β OH     0.33±0.03 

6 O H, α OH O     0.70±0.06 

7 O O O     0.76±0.08 

8 O O H, β OH     0.81±0.07 

9  H, α OH O    O 1.23±0.13 

10  O O    O 1.13±0.11 

11  O H, β OH    O 1.18±0.11 

12  O H, β OH    NH 0.41±0.03 



  

13a    C(CH3)2OH Me   0.26±0.03 

13b    CCH3=CH2 Me   1.09±0.08 

14    H H   0.54±0.05 

15    H Me   0.41±0.03 

16a      H  0.77±0.07 

16b      F  0.91±0.08 

16c      OCF3  0.36±0.04 

Digoxin        0.27±0.03 

 

When it comes to the A-ring extended compounds, lactone skeleton and lactam 

skeleton showed different impacts on the inhibitory activities. While lactones (9, 10, 

11) showed no improvement of inhibitory activities compared with 1, lactam (12) 

presented a 2.6-fold inhibitory activity more potent than 1. In addition, the nearly no 

differences of activities between 9, 10 and 11 revealed that ketone group on C-6 and C-

12 had only minimal effect on inhibition. Almost all of the seco-A ring derivatives had 

exhibited more potent inhibition against Na+, K+-ATPase than that of 1 except 13b. 

Among these seco-compounds, 13a is the most potent inhibitor (IC50 = 0.26 μM), about 

4.2-fold more potent than 1. The inhibitory effect of 4-hydroxyl-3-methyl ester 13a was 

much stronger than the 4-methylene-3-methyl ester 13b, indicating that hydroxyl at C-

4 is important for binding to the enzyme in 3, 4-seco derivatives. On the other hand, the 

further cleavage of 3, 4-seco compounds led to a decrease in the inhibitory activity (14, 

15 vs 13a, 13b). Besides, methyl esterification of carboxylic acid 14 to 15 at C-3 

position brought slightly enhanced performance. For indole-fused derivatives, 16c 

exhibited a much better inhibitory activity than 16a and 16b, indicating that 

trifluoromethoxy group substituted on benzene ring is a more preferable substitution 

than fluorine atom and no substitution. 

The arrhythmogenic activity of the most potent compound 13a was determined in 

the isolated rat hearts by using a known method. 22 Digoxin was chosen as reference 

compound. The results showed that no arrhythmia occurred in all 4 isolated rat hearts 

when perfused with 0.26 μmol/L 13a. However, the perfusion of 0.26 μmol/L digoxin 

induced arrhythmias in 2 of 4 isolated rat hearts. All these results indicated that 13a was 

much safer than digoxin (see supporting information).  

To understand the binding mode of the most active compound, molecular docking 

study of 13a with Na+, K+-ATPase (PDB code: 4HYT) was performed with maestro 

v11.1. As showed in Figure 3, 13a has a nice fit in the binding pocket. The methyl 

propionate chain stretched into a specific cavity, and the carbonyl group at C-3 of 13a 

formed hydrogen bonds with THR-797 (2.5 Å) and ASP-121 (2.2 Å), respectively. In 

addition, the hydroxyl group at C-12 formed a hydrogen bond with GLU-116 in a 

distance of 2.2 Å. 



  
 

Figure 3. Predicted binding model of 13a to Na+, K+-ATPase. Key residues are highlighted in green 

and the H-bonds are represented by dashed red lines. 

 

In summary, modification of PT by oxidation, etherification of hydroxyl groups, 

cleavage of A-ring and fusion of indole on A-ring, led to a series of PT derivatives. 

Almost a half of them showed increased inhibitory activities on Na+, K+-ATPase, and 

the most active compound 13a exhibited an inhibitory activity equal to that of the 

standard drug digoxin. Moreover, the molecular docking study illustrated its potential 

binding mode. Thus, 13a containing a 3, 4-seco structure provides a basis for 

developing novel Na+, K+-ATPase inhibitors. 
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Highlights 

• 26 panaxtriol derivatives were synthesized and evaluated for Na+, K+-

ATPase inhibitory activities. 

• Compound 13a showed most inhibitory activity equal to that of the 

standard drug digoxin. 

• Molecular docking predicted the potential binding mode. 

 


