Downloaded viaINST FED EDU CIENCIA E TECH CEARA on May 14, 2021 at 21:39:43 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

OL ‘ Organic
Letters ,

pubs.acs.org/OrgLett

Synthesis of C3,C4-Disubstituted Indoles via the Palladium/
Norbornene-Catalyzed ortho-Amination/ipso-Heck Cyclization

Alexander J. Rago and Guangbin Dong*

Cite This: Org. Lett. 2021, 23, 3755-3760 I: I Read Online

ACCESS | m Metrics & More | Article Recommendations ‘ @ Supporting Information

ABSTRACT: Herein, we report the synthesis of C3,C4-disubsti-
tuted indoles via the palladium/norbornene cooperative catalysis.
Utilizing N-benzoyloxy allylamines as the coupling partner, a cascade
process involving ortho-amination and ipso-Heck cyclization takes
place with ortho-substituted aryl iodides to afford diverse indole
products. The reaction exhibits good functional group tolerance, in
addition to tolerating a removable protecting group on the indole
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« Divergent reactivity for internal olefins +Yields up to 83%

nitrogen. Divergent reactivity has been observed using the allylamine coupling partner containing more substituted olefins.
Construction of the core framework of mitomycin has also been attempted with this strategy.

Indole and its closely related heterocycles are highly
revalent in natural products and drug molecules (Figure
1)." Consequently, they have been attractive scaffolds for
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Figure 1. Indoles and their derivatives in natural products and
pharmaceuticals

preparation and derivation." While numerous effective indole
synthesis methods have been developed to date, it remains
nontrivial to prepare C3,C4-disubstituted indoles in a modular
manner.” On the other hand, the palladium/norbornene
cooperative catalysis, first reported by Catellani,” represents
an emerging useful tool for modular synthesis of polysub-
stituted arenes.® In this transformation, an electrophile and a
nucleophile are coupled at the arene ortho and ipso positions,
respectively (Scheme 1a). Seminal work by Lautens in 2010
described a novel preparation of C2,C7-disubstituted indoles
through an ortho-alkylation/ipso-amination cascade of aryl
iodides with highly strained 2H-azirines (Scheme 1b).” In
2018, the Liang group devised an elegant approach to
synthesize indolines using widely available aziridines as the
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reagent.” The development of coupling with N-benzoyloxy
amines as electrophiles in 2013 allows convenient installation
of various amine moieties at the arene ortho position via the
Pd/NBE catalysis.” Recently, the Liang group disclosed an
ortho-amination of 2-iodoanilines followed by ipso-cyclization
with norbornadiene and then a retro-Diels—Alder reaction to
access 4-aminoindoles.” More recently, an ortho-amination
followed by demethylative annulation with internal alkynes was
reported for indole synthesis with moderate efficiency (Scheme
1c).9

In this communication, we describe a convenient method for
preparing C3,C4-disubstituted indoles via an ortho-amination/
Heck cyclization cascade' between common 2-substituted aryl
iodides and readily available N-benzoyloxy allylamines
(Scheme 1d). It can be envisioned that, upon forming the
key aryl-norbornyl-palladacycle (ANP), the reaction with the
electrophile should install an allylamine moiety at the ortho
position of the arene. Upon NBE extrusion, an ipso-Heck is
expected to take place; the resulting exocyclic alkene then
isomerizes to the more stable internal position to deliver the
indole product."’

The investigation started with 2-iodoanisole (1a) and an N-
methyl-allylamine derived coupling partner (2a) as the model
substrates (Table 1). After careful evaluation of various
reaction parameters, the desired indole product (3aa) was
ultimately formed in 71% yield using Pd(OAc), and tri(4-
methoxyphenyl)phosphine as the optimal metal/ligand combi-
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Scheme 1. Indole Synthesis via the Pd/NBE Catalysis
(a) Pd/NBE cooperative catalysis
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(c) Indole synthesis via ortho-amination/demethylative coupling (2020)
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nation with Cs,COj as the base (Table 1, entry 1). A 1:4 ratio
between Pd and the phosphine was found to be necessary to
promote reproducibility of the reaction (Table 1, entries 2 and
3), though the exact reason is unclear (vide infra). Other
monodentate phosphine ligands that are less electron-rich than
tri(4-methoxyphenyl)phosphine or bidentate phosphine li-
gands proved to less efficient and generated more four-
membered side-product 4a (Table 1, entries 4—6 and
Supporting Information, Schemes S1 and S2). It is likely that
tri(4-methoxyphenyl)phosphine can significantly suppress
undesired off-cycle reactivity observed when using the less
electron-rich triarylphosphine ligands. Use of a 5,6-disubsti-
tuted norbornene (N4) was found to deliver similar results as
simple NBE (entry 9).'* Other structurally modified NBEs,"”
such as C2-ester-'* and amide-substituted"> NBEs, showed
much lower reactivity, likely due to their steric hindrance when
reacting with bulky electrophile 2a (entries 7 and 8). Reducing
the NBE loading to 50 mol % only gave slightly lower yield and
selectivity (entry 10). Toluene was found to be the best
solvent, which is also consistent with our prior observation
with ortho-amination.”® Increasing the polarity of the solvent
by using a mixture of 1,4-dioxane and toluene or 1,4-dioxane
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Table 1. Selected Optimization of the Reaction Conditions”
Pd(OAc); (10 mol%)

oM OM
OMe | || P(p-OMe-Ph)s (40 mol%) € Me °H
NBE (75 mol%) @ [ jj E]
_N. Cs,CO3 (2.5 equiv.) N K
BzO™ 'Me toluene (0.1 M) Me H
1a 2a 100 °C, 18 h 3aa 4a
1.0 equiv. 2.0 equiv.  ‘standard’ conditions
change from the “standard” yield of 3aa yield of 4a
entry condition (%)° (%)
1 none 71 (67)° 7
2 25 mol% ligand S1 14
3 30 mol% ligand 65 12
4 PPh; as the ligand 64 1S
S P(p-CF;-Ph); as the ligand 56 13
6 P(2-furyl); as the ligand 38 22
7 N2 instead of NBE 17 -
8 N3 instead of NBE n.d. -
9 N4 instead of NBE 67 -
10 50 mol% NBE 69 9
11 1:1 1,4-dioxane/toluene as 62 15
solvent
12 1,4-dioxane as solvent 52 19

“Unless otherwise noted, all reactions were carried out with 1a (0.1
mmol) and 2a (0.2 mmol), in 1.0 mL of toluene for 18 h. *NMR
yields determined using 1,1,2,2-tetrachloroethane as the internal
standard; n.d. = not detected; — = not determined. “Isolated yield on
a 0.2 mmol scale.

alone resulted in reduced yield and more side-product
formation (entries 11 and 12).

Meanwhile, the kinetic profile of the reaction was measured
(Figure 2). First, the reaction did not show any induction

OMe \e OMe

200 OMe J [ H
I A 25 g\

e Y Cod )
1 4 \M N N N
% 150 BzO e Me H
£ 125 1a 2a 3aa 4a
o [ ]
* 100 *
5
s 75
K9]
> 50
O\O »

25 S

—
0 ¢ 4 v v
0 50 100 150 200 250 300 350
Time (min)

Figure 2. Kinetic profile of the reaction. NBE (1 equiv) was used.

period, which likely benefited from the excess phosphine ligand
to enable rapid reduction of Pd(II) to Pd(0). The side-product
4a was formed from the beginning of the reaction, alongside
the desired product 3aa, which suggests competing pathways
with the ANP intermediate: oxidative addition with N-
benzoyloxy amine 2a versus direct reductive elimination to
give 4a. The reaction was nearly completed within 1 h,
indicating a rapid reaction rate. Afterward, the coupling partner
2a slowly decomposed, possibly due to the basic reaction
condition and elevated reaction temperature.

With these results in hand, we sought to explore the scope of
the indole-forming reaction (Scheme 2). First, the isolated
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Scheme 2. Substrate Scope of the ortho-Amination/Heck
Cyclization Cascade”
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“Unless otherwise noted, all reactions were carried out with 1 (0.2
mmol) and 2 (0.4 mmol) in 2.0 mL of toluene for 18 h; all yields are
isolated yields. “Carried out with Pd(TFA), instead of Pd(OAc),, 1a
(1.0 mmol), and 2a (2.0 mmol) in toluene (10.0 mL). “Carried out
with 40 mol % of P(p-OMe-Ph); as the ligand. 9Carried out with 2a-2
(see the Supporting Information) instead of 2a and with PPh; as the
ligand at 120 °C. “Run at 80 °C.

yield of the model product 3aa can reach 72% on the larger 1.0
mmol scale.'® In addition, a diverse range of functional groups,
such as methyl (3ba) and benzyl ethers (3ia), an unprotected
tertiary alcohol (3ca), ester (3ea), bromide (3da), chloride
(3ma), nitro (3fa and 30a), acetal (3ha), and tertiary amine
(3la), were tolerated under the reaction conditions, affording
various C3,C4-disubstituted indoles. Both electron-rich and
-deficient substituents are compatible for this transformation.
Notably, the yields for the highly electron-poor nitro-
substituted aryl iodides (3fa and 30a) can be increased by
changing the phosphine ligand to the electron-deficient tris-(4-
trifluoromethylphenyl)phosphine (see Supporting Information
for more details). Up to 83% yield can be obtained for the 4-
chloroindole product (3ma). A clear trend can be observed:
the yield of the indole product typically decreases if the ortho-
substituent is larger in size, indicating that the reaction is
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sensitive to the steric environment of the Heck cyclization and
subsequent aromatization. Moreover, a number of heteroarene-
derived iodides were competent substrates, including pyridines
(3ja—c), quinoline (3qa), and benzofuran (3ra). Besides
forming N-methyl indoles, by decreasing the reaction temper-
ature to 80 °C, C3,C4-disubstituted indoles with removable
protecting groups on the nitrogen, ie, —Bn'’ (3jb) and
—PMB'® (3jc), can be constructed with this method.

Apart from simple allylamine electrophiles, we questioned
whether N-benzoyloxy amines with a more substituted internal
olefin would react in the same manner. Consequently, the
coupling reagents containing a 1,2-disubstituted alkene (2d)
and a trisubstituted alkene (2e) were prepared. Interestingly,
2d provided a separable mixture of the desired indole product
(3ad) and an indoline isomer (3ad’), resulting in a combined
yield of 65% (Scheme 3). In contrast, sole indoline product
(3ae’) was isolated in good yield when using the amine
coupling partner with a trisubstituted olefin (2e).

Scheme 3. Aminating Reagents with Internal Olefins”
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“All reactions were carried out with 1a (0.2 mmol) and 2 (0.4 mmol)
in 2.0 mL of toluene for 18 h; all yields are isolated yields.

The divergent reactivity with substituted allylamines
provides useful insights into the reaction mechanism and
selectivity, particularly regarding the ipso-Heck cyclization
(Scheme 4). During the Heck coupling, the terminal
monosubstituted alkene moiety undergoes kinetically favorable
S-exo-trig cyclization, followed by B-hydrogen elimination, to
give an exocyclic alkene intermediate, which leads to the
desired indole products. When a 1,2-disubstiuted alkene is
used, the moderate steric hindrance allows the S-hydrogen
elimination to occur at either direction (inward and outward),
resulting in a mixture of indole and indoline products. In
contrast, in the case of the trisubstituted alkene, the inward
elimination would be largely inhibited due to the strong steric
repulsion between the ortho-substituent (i.e., —OMe) and the
nearly coplanar alkene substituent (i.e., —Me). Therefore, high
selectivity toward the indoline formation through a less bulky
outward elimination is observed with the trisubstituted alkene.

Finally, to explore the potential synthetic application of this
method, construction of the core carbon skeleton of the
mitomycin family of natural products has been explored
(Scheme 5)."’ Utilizing a more complex 2-vinylpyrrolidine
derived coupling partner (2f), the desired ortho-amination/
ipso-Heck cyclization can indeed take place under the standard
condition. On the basis of the crude NMR analysis, the
indoline product with an exocyclic olefin was formed in 31%
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Scheme 4. Divergent Reaction Pathways for Substituted
Alkene Coupling Partners
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Scheme S. Attempt to Access the Skeleton of Mitomycin®
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“Conducted with 1a (0.1 mmol) and 2f (0.15 mmol) in 1.0 mL of
toluene for 18 h.

yield. Unsurprisingly, during the chromatography purification
on silica gel, the alkene was fully isomerized to deliver the
more stable tricyclic indole product (3af). Efforts on
systematically optimizing this transformation, trapping the
indoline intermediate, and ultimately applying this method to
mitomycin synthesis are ongoing.

In summary, an ortho-amination, ipso-Heck cyclization
cascade of aryl iodides for the synthesis of C3,C4-disubstituted
indoles has been developed. The reaction appears to be general
for a diverse range of aryl iodides, typically with smaller ortho
substituents delivering the desired indole products in greater
yields than larger substituents. A broad range of functional
groups and heterocycles can be tolerated. Additionally, a steric
effect has been found to be responsible for the divergent
reactivity with more substituted alkene-derived coupling
partners. Currently, expansion of this platform toward
synthesis of other pharmaceutically relevant heterocycles is
underway.
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