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Abstract: the synthesis of allylboronates bearing an alkenyl moiety 

appended at a remote position is described for the first time. For that 

aim, the palladium-catalyzed borylation of the corresponding allylic 

alcohols was used as the key step. The required allylic alcohols were 

in turn obtained in 3-4 step sequences. The presence of an extra 

alkenyl moiety at a strategic position allows triggering a tandem 

asymmetric allylation/RCM reaction sequence that efficiently affords 

different sized cycles featuring two consecutive stereocenters and an 

exocyclic alcohol function. Products are obtained in moderate to 

excellent yields and high enantioselectivities, in most of the cases. 

The asymmetric construction of cyclic backbones from acyclic 
precursors represents a longstanding challenge in organic 
synthesis. The simultaneous control over both endo- and 
exocyclic stereocenters results in an especially difficult task. 
Among stereoselective methodologies, the allylboration of 
carbonyl compounds shows a number of interesting features due 
to the highly ordered chair-like transition state that accounts for a 
stereospecific transformation rendering complete control over the 
relative configuration of the two contiguous stereocenters set up 
when the allylborating reagent bears substitution at the γ-
position.1,2 In 2010, Antilla described for the first time the chiral 
Brønsted acid-catalyzed asymmetric allylboration of aldehydes.3,4 
During the following decade, a number of synthetic applications 
were developed by others and us.5 Among them, our first 
contribution in the fied described the tandem allylboration / ring-
closing metathesis (RCM) reaction sequence for the asymmetric 
construction of cyclic homoallylic alcohols (Scheme 1a).5a For that 
aim, an extra alkenyl functionality was introduced in a strategic 
remote position of the aldehyde counterpart. Thus, different sized 
carbocycles bearing one or two endocyclic stereocenters were 
achieved in high yields and excellent diastereo- and 
enantioselectivities, in most cases. The viability of the relay 
catalysis process Brønsted acid catalyzed asymmetric 
allylboration / RCM reaction sequence allowed us to envision a 
new related process, described herein (Scheme 1b).6,7 Following 

this, in 2015, we described for the first time the use of an 
allylboronate bearing an extra functionality pending at the γ 
position.8 Since then, other groups have shown interest in this 
field giving rise to a number of interesting synthetic applications.9 

Herein, the introduction of an extra alkenyl functionality in a 
remote position of the allylboronate instead of the aldehyde 
results in the formation of two contiguous stereocenters, now one 
endocyclic and the second exocyclic. Moreover, for this new 
process the alcohol function would occupy an exocyclic position.  
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Scheme 1. Precedents and new strategy. 

Our first challenge was the synthesis of the hitherto unknown ω-
alkenylallylboronates 1.10 Building upon our own experience,8 we 
decided to rely on an allylic alcohol borylation of commercially 
available (E)-octa-2,7-dien-1-ol 2a (Scheme 2).11 The key allylic 
borylation afforded model substrate 1a in moderate yield 
(Scheme 2). It is worth noting that despite the starting allylic 
alcohol 2a was used as a 6:1 mixture of E/Z isomers product 1a 
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was obtained exclusively as the corresponding E-isomer. This 
result may be explained by the intermediacy of a palladium π-allyl 
complex responsible for the observed stereochemistry 
scrambling.12 
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Scheme 2. Synthesis of model substrate. 

Once the viability of the synthesis of the allyborating agent 1a was 
stablished, we aimed to synthesize other ω-alkenylallylboronates 
1b,c that would afford other ring sizes. First, the synthesis of this 
previously unknown allylboronate class will be outlined (Scheme 
3). The precursors for 5- and 7-membered carbocycles 1b,c were 
both synthesized by allylic borylation of the corresponding known 
ω-alkenylallylic alcohols 2b,c which were in turn prepared from 
commercially available 4-penten-1-ol 3 and propargyl alcohol 4 in 
three and four steps, respectively (Scheme 3  ).14,15 
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Scheme 3. Synthesis of ω-alkenylallylboronates 1b,c. 

Trying to increase the complexity of our tandem process, we 
designed bis ω-alkenylallylboronate 1d (Scheme 4). We 
envisioned that the presence of two alkenyl chains in the open 
chain intermediate may result in a diastereoselective RCM 
subsequent step, that could be regarded as a 
pseudodesymmetrization process. 1d was obtained in moderate 
yield using otherwise identical conditions that for the rest of the 
allylboronates 1a-c using alcohos 2d. 2d was in turn synthesized 
in three simple steps starting from ethyl formate 6 (Scheme 4). 
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Scheme 4. Synthesis of ω-bisalkenylallylboronate 1d. 

 
With model substrate 1a in our hands, we evaluated the viability 
of our asymmetric allylation / RCM strategy, first in a stepwise 
manner. To our delight, the allylboration step afforded product 8a 
in good chemical yield, as a single diastereoisomer and in high 
enantioselectivity without modifying the standard conditions ((R)-
TRIP, toluene, - 30 ºC).13 Similarly, the RCM using second 

generation Grubbs’ catalyst ([Ru-II]) afforded final product 9a in 
moderate yield and with a minor erosion of the optical purity 
(Scheme 5). Our experience allowed us being optimistic about 
success of the one-pot transformation under relay catalysis 
conditions. Indeed, when the reaction is conducted in the 
presence of both catalysts at -30 ºC in toluene overnight, followed 
by stirring at room temperature for 6 extra hours, product 9a is 
obtained in an improved yield and enantioselectivity (Scheme 5). 
It is worth noting that our methodology gives rise to the threo 
diastereoisomer that is the minor diastereoisomer formed in the 
allylation of carbonyl compounds using either classic cyclic 
allylmetal additions16 or in a more recent photoredox asymmetric 
allylation with cyclic alkanes.17 
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Scheme 5. Validation of both the stepwise and the relay catalysis strategies. 
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Once our relay catalysis strategy has been stablished, we turned 
to study the scope of this new transformation (Scheme 6). 
Aromatic aldehydes bearing both electron-withdrawing (9a,c) and 
electron-donating substituents (9d) afforded the product in good 
yield and high enantioselectivity (Scheme 6). Regarding 
substitution pattern, while the introduction of substituents at the 
para and metha positions did not compromise chemical yield 
neither enantioselectivity (9e,f), the presence of a substituent in 
the ortho position completely inhibited the reaction (9g) (Scheme 
6). Moreover, alkenyl as well as heteroaromatic aldehydes could 
also be succesfully employed (9h,i). While the use of 
cinnamaldehyde resulted in a moderate drop both in chemical 
yield and enantioselectivity (9h), furfuraldehyde behaved very 
well in terms of enantiocontrol, although the yield was also 
moderately lower (9i) (Sheme 6). Finally, aliphatic aldehydes 
were also used affording the corresponding products (9j,k) in 
moderate yields and enantioselectivities (Scheme 6). 
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Scheme 6. Scope for the asymmetric allylation/ RCM tandem process using 1a. 

Next, the extension of the asymmetric allylboration/RCM tandem 
sequence was explored using the new ω-alkenylallylboronates 
1b,c (Scheme 7). Reagent 1b successfully afforded five-
membered products 10a-c in excellent yields and high 
enantioselectivities (Scheme 7). Seven-membered derivative 11a 
was obtained starting from reagent 1c in moderate yield and 
enantioselectivity as mixture of diastereoisomers (Scheme 7). 
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Scheme 7. Use of ω-alkenylallylboronates 1b,c in the asymmetric 
allylboration/RCM tandem sequence.  

We believe that the decreased enantioselectivity observed for 
seven-membered rings may be explained by the higher 
temperature at which the RCM step must be conducted in these 
cases (Scheme 7). The ability of ruthenium species to catalyze 
transfer hydrogenation reactions is well-documented.18 We 
believe that the formation of a ruthenium alcoxyde I may result in 
a reversible β-hydride elimination / migratory insertion sequence, 
accounting for the loss in stereochemical integrity. In order to 
shed some light on this issue, the corresponding ring-opened 
intermediate was isolated. To our delight, intermediate 12a was 
obtained in high yield, as a single diastereoisomer and in an 
excellent 93% ee, showing that the erosion of optical purity 
observed was due to the RCM step, as expected (Scheme 8).   
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Scheme 8. Study of the loss of optical integrity in seven-membered ring 
derivatives 10a,b.  

Finally, we challenged our methodology towards the asymmetric 
allylboration / psudodesymmetring RCM tandem process using 
bisalkenylated allylboronate 1d. Unfortunately, the final product 
13 was obtained in low yield, a moderate 5:1 diastereomeric ratio 
and a poor 36% ee (Scheme 9). Noteworthy, this is one of the 
rare examples of chiral Børnsted acid-catalyzed allylboration 
using a γ,γ-disubstituted boronate.19 This fact may account both 
for the low reactivity and the poor enantioselectivity obtained.  
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Scheme 9. Use of ω-alkenylallylboronate 1d in the asymmetric 
allylboration/RCM tandem sequence.  

In conclusion, allylboronates functionalized at a remote position 
with an extra alkenyl moiety have been synthesized for the first 
time, using a unified strategy based on the borylation of the 
corresponding dienyl allylic alcohols. Their participation in a 
tandem chiral Brønsted acid-catalyzed allylboration / ring-closing 
metathesis tandem process has then been studied affording 
several sized-cyclic alcohols, bearing the hydroxyl group at an 
exocyclic position. The corresponding 5- and 6-membered 
analogs are obtain in good chemical yields, as single 
diastereosimers and in high ee’s. However, 7-membered rings 
are obtained with poorer results, due to the high temperature 
required for RCM in this case that results in partial epimerization. 
The use of a bis alkenylated allylboronate does not allow to carry 
out the pseudo desymmetrization of the two chains efficiently. 
Further efforts aimed at the synthesis of heterocyclic derivatives 
are currently under study and will be reported in due course. 
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acid-catalyzed allylboration / RCM tandem sequence is studied. Hence, cyclic alcohols displaying the hydroxyl functionality at an 
exocyclic position and two consecutive stereocenters are obtained as single diastereoisomers and in high degree of 
enantioselectivity, in most of the cases.   
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