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ABSTRACT: We report the shortest synthesis of glycosidase inhibitor (+)-hyacin-
thacine A1 using a highly chemoselective N-heterocyclic carbene-catalyzed cross-
benzoin reaction as well as a furan photooxygenation−amine cyclization strategy.
This is the first such cyclization on a furylic alcohol, an unprecedented reaction due
to the notorious instability of the formed intermediates. The photooxygenation
strategy was eventually incorporated into a three-step one-pot process that formed
the requisite pyrrolizidine framework of (+)-hyacinthacine A1.

(+)-Hyacinthacine A1 [7 (Figure 1)] is a member of a large
class of polyhydroxylated pyrrolizidine and indolizidine
structures that act as glycosidase inhibitors.1 These belong to
the broader class of amino sugars, a group of compounds that

have found significant use in glycobiology as tools and as
frameworks for potential pharmaceuticals.1,2 Important amino
sugars include the various deoxynojirimycin derivatives,3

Celgosivir,4 and other neuraminidase inhibitors such as
zanamivir.5 (+)-Hyacinthacine A1 (7) is especially interesting
due to its low micromolar range inhibition, making it an
important target for further study.6 It is also one of the more
challenging hyacinthacine derivatives to access, highlighting
the need to develop more efficient methods for its
preparation.6,7

Previously, in attempting to solve the chemoselectivity issues
that plagued cross-benzoin reactions,8 our group discovered
that two aldehydes could be coupled catalytically with N-
heterocyclic carbenes (NHCs) when one of the reactants was a
protected amino aldehyde.9,10 The reaction generates an α-
hydroxy-β-aminoketone [3 (Figure 1)] with good yields and
diastereoselectivities. We believed that incorporating a furan
ring into this structure would make it more amenable to useful
transformations,11 thereby allowing us to target a variety of
natural products.12−15 The high availability and versatility of
furans from biomass emphasize the importance of furthering
our understanding of these transformations.16
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Figure 1. Strategy toward (+)-hyacinthacine A1 (7).
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In our search of potential reactions, we were pleased to
discover a recent elegant methodology developed by
Vassilikogiannakis and co-workers that transformed furanylal-
kylamines into pyrrolizidine and indolizidine frameworks with
singlet oxygen.17 The oxidation was highly selective for the
furan ring despite using unprotected amines. Unfortunately,
these oxidations were exclusively performed on nonhydroxy-
lated furanylalkylamines, likely due to the known degradation
pathways during photooxygenations of furyl alcohols.18

Despite these reported failures using furyl alcohols, we were
hoping the problem could be overcome.
A photooxygenation−amine cyclization strategy was then

envisioned to be used in conjunction with the chemoselective
cross-benzoin reaction to produce oxopyrrole 5 (Figure 1),
which we believed could be transformed into (+)-hyacintha-
cine A1 [(+)-7]. Indeed, the route was successful, and we are
delighted to report the shortest total synthesis of (+)-7,
demonstrating the immense potential of both the cross-
benzoin reaction and photooxygenation methodologies.
The synthesis began from the commercially available D-

serine methyl ester [8 (Scheme 1)] that could be converted to
amino alcohol 9 in four steps with only one purification.
Iodoxybenzoic acid (IBX) oxidation followed to generate the
corresponding amino aldehyde 1a, setting the stage for the first
key step. The doubly protected amine was required for the
polar Felkin−Anh selectivity in the cross-benzoin reaction
(TS-1).9b The reaction proceeded smoothly to generate α-
hydroxy-β-aminoketone 3a, which could be isolated from the
furfural dimer side product (S4) in 71% yield and with a 10:1
dr. Notably, the reaction could be performed on a multigram
(>7 g) scale with no loss of yield or selectivity.
To reach the second checkpoint, the furyl ketone (3a)

needed to be reduced and both nitrogen protecting groups
(Boc and PMB) had to be removed. While furan rings can be
quite robust, their reactivity is highly dependent on adjacent
functionalities. As such, it is useful to comment on the
difficulties we encountered during this stage of the synthesis.
Removal of the PMB group could not be achieved by
heterogeneous hydrogenation without affecting the furan ring.
Additionally, oxidative PMB deprotection methods (DDQ and
CAN) necessitated the presence of a furylic ketone as the

lower ionization energies of furyl alcohols increase the ring’s
susceptibility to oxidation.19

Conversely, Boc deprotection could not be performed on
the more stable furyl ketone due to retro-Mannich reactions of
the formed product. Furylic alcohols would also not be tolerant
to excessively acidic (Brønsted or Lewis) conditions due to
probable Piancatelli rearrangements. These restrictions proved
to be challenging, but ultimately not intractable as a route
could be mapped.
The deprotection sequence began with a CAN-mediated

PMB group removal (3a to 3b). The product (3b) could then
be converted to the furylic alcohol (10) via a Zn(II)
borohydride reduction, to afford the product predicted by
the Cram-chelate model with >19:1 diastereoselectivity.20

The final Boc deprotection proved to be the most
challenging step as strong Brønsted and Lewis acids caused
the degradation of the furylic alcohol (10). After significant
optimization, a mild protocol using ZnBr2 in an Et2O/CH2Cl2
solvent with m-cresol as an additive was found to be most
effective in producing aminodiol 4a.21 Our arrival at the
second checkpoint allowed us to finally survey the chemical
space of the photooxygenation.
There were some tactical choices to be made as the

methodologies explicated by Vassilikogiannakis allowed for the
formation of two products (Scheme 2, 12 and 13). Typical
photosensitizers such as rose bengal (RB) and tetraphenylpor-
phyrin (TPP) produce enamides such as 12, while methylene

Scheme 1. Synthesis of Aminodiol (4a)

Scheme 2. Possible Products after Photooxygenation
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blue (MB) catalyzes a subsequent reaction with oxygen to
form hemiaminals such as 13.17a It was presumed that 13
would be difficult to reduce due to the necessity for iminium
ion formation in the presence of multiple hydroxyl
functionalities. Similar iminiums have been shown to
tautomerize rapidly, resulting in a loss of stereochemical
information about the adjacent stereocenter (Scheme 3a).22

Thus, enamides of type 5 were targeted as it was expected that
isomerization to the presumed thermodynamically favored
amide 17 (Scheme 3b) could be achieved if traditional
hydrogenations failed.
Initial photooxygenation experiments used conditions

slightly modified from those reported by Vassilikogiannakis
and co-workers.17a Methanol was chosen for the photo-
oxygenation as it was postulated that the highly unstable
endoperoxide intermediate [18 (Scheme 4)] could be rapidly

transformed into the more kinetically stable hydroperoxide
(21), which would lead to the desired lactam 5a (Scheme 2).
Unfortunately, initial experiments (Table 1, entry 1) led to
very poor yields (<5%). Various solvents, light sources, and
photosensitizers were tested to no avail. It was believed that 18
was problematic in the photooxygenation as endoperoxides of
furylic alcohols are well-known to degrade via fragmentation to
hydroxybutenolides [20 (Scheme 4)].18a We thought this
degradation may be further accelerated by an intramolecular
N−H−O hydrogen bond between the basic amine and the
furylic alcohol.
To test this hypothesis, the photooxygenation of 4a was

completed at −78 °C in deuterated methanol. When the
reaction mixture was heated to −10 °C, a considerable amount

of hydroxybutenolide (20) was observed by 1H NMR
spectroscopy,18a indicating that its formation is more favorable
than that of the desired hydroperoxide (21). Notably,
quenching this crude material with dimethyl sulfide and
triethylamine failed to afford any desired product and resulted
in the disappearance of the hydroxybutenolide (Figure S2).
These results suggested that no productive intermediates were
present after the reaction mixture had been heated to −10
°C.23

To circumvent the fragmentation (18 to 20), we decided to
reduce the endoperoxide directly at low temperatures (Scheme
5, 18 to 22). Accordingly, performing the photooxygenation at
−78 °C and directly adding a reductant resulted in an
immediate improvement in yield (Table 1, entries 1−3).

Interestingly, yields improved further with the addition of 1
equiv of p-toluenesulfonic acid (p-TSA) (entry 4), which was
thought to either neutralize the basic amine or accelerate the
final step (23 to 5a). Various solvents were then explored
(entries 5−8). Replacing methanol with chlorinated solvents
produced the highest yields, with trichloroethylene (entry 8) as
the best solvent. Acid additives in chlorinated solvents (entry

Scheme 3. (a) Scrambling of the Adjacent Stereocenter
during Reduction and (b) Proposed Base-Catalyzed
Isomerization

Scheme 4. Reactivity of Endoperoxide 18 in MeOH

Table 1. Optimization of the Photooxygenation

entry
photooxygenation conditionsa (photosensitizer/

solvent/temp/additive) quench
yieldb

(%)

1 MB or RBc/MeOH/0 °C/none DMS <5
2 MB/MeOH/−78 °C/none DMS 16
3 MB/MeOH/−78 °C/none PPh3 25
4 MB/MeOH/−78 °C/p-TSA (1 equiv) PPh3 39
5 TPP/THF:MeOH/−78 °C/none PPh3 15
6 TPP/CH2Cl2/−78 °C/none PPh3 44
7 TPP/CH2Cl2 (10% MeOH)/−78 °C/TFA

(1 equiv)
PPh3 45

8 TPP/trichloroethylene/−78 °C/none PPh3 53
aEntry 1 was done with a 1000 W arc lamp. Entries 2−6 were done
with a 300 W halogen lamp. Entries 7 and 8 were done with 6000 K
LED strip lights. bYields were determined by 1H NMR analysis of
crude mixtures with trichloroethylene as an internal standard. cSee ref
24.

Scheme 5. Mechanism of the Photooxygenation
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7) resulted in no further improvements. Nevertheless, an
overall yield of 53% for such a complex sequence was
considered excellent and allowed us to move forward with the
synthesis.
With a reliable method for producing enamide 5a (Scheme

5), we proceeded to the final stages of the synthesis. Attempts
to effect reduction of the enamide using standard methods22,25

(Et3SiH/TFA, NaBH4/AcOH, and Pd/H2) were met with
failure. This outcome was not unexpected as it was presumed
that the iminium generated by protonating the enamine in 5a
would be highly unstable. Additionally, the instability of 5a to
silica or aqueous conditions prevented purification, rendering
other transition metal-mediated reductions troublesome.
Eventually, an isomerization of the double bond was sought.26

Unfortunately, all attempts to induce isomerization to 17a in
CH2Cl2 or other chlorinated solvents resulted in poor yields
despite the use of stronger bases such as DBU. The best results
were eventually obtained when the solvent was removed in
vacuo and methanol was added directly to the reaction mixture
with additional Et3N (Scheme 6).
We were delighted to find that this treatment resulted in the

formation of α,β-unsaturated lactam 17a as a single
diastereomer. The hydrogenation and hydrogenolysis of this
compound were utlimately completed by adding PtO2 and a
hydrogen atmosphere (3 psi) directly to the crude methanol
solution. Thus, the formal total synthesis of (+)-hyacinthacine
A1 [(+)-7] could be completed with an overall one-pot process
yield of 27%. A final LiAlH4 reduction7b,27 produced
(+)-hyacinthacine A1 to complete the total synthesis in 11
steps.
In conclusion, we have developed a novel route toward

(+)-hyacinthacine A1. Key features of the synthesis include the
use of a diastereoselective intermolecular aldehyde−aldehyde
cross-benzoin reaction and a highly complex photooxygena-
tion−amine cyclization cascade. Although protecting groups
are required to obtain the desired selectivity in the benzoin
reaction, deprotection was shown to be possible without
perturbing the sensitive furan ring. Furthermore, the nature of
the photooxygenation substrate (4a) suggests the method may
be adaptable to other diastereomers or similarly complex
substrates, potentially opening up the scope of the photo-
oxygenation cascade considerably.
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