

Subscriber access provided by The Chinese University of Hong Kong

Oxygen Reduction Catalysis at a Dicobalt Center: The Relation of Faradaic Efficiency to Overpotential

Guillaume Passard, Andrew M. Ullman, Casey N Brodsky, and Daniel G. Nocera

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.5b12828 • Publication Date (Web): 13 Feb 2016

Downloaded from http://pubs.acs.org on February 14, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Oxygen Reduction Catalysis at a Dicobalt Center: The Relation of Faradaic Efficiency to Overpotential

Guillaume Passard, Andrew M. Ullman, Casey N. Brodsky, Daniel G. Nocera*

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States

Supporting Information Placeholder

ABSTRACT: The selective four electron, four proton, electrochemical reduction of O_2 to H_2O in the presence of a strong acid (TFA) is catalyzed at a dicobalt center. The faradaic efficiency of the oxygen reduction reaction (ORR) is furnished from a systematic electrochemical study by using rotating ring disk electrode (RRDE) methods over a wide potential range. We derive a thermodynamic cycle that gives access to the standard potential of O_2 reduction to H_2O in organic solvents, taking into account the presence of an exogenous proton donor. The difference in ORR selectivity for H_2O vs. H_2O_2 depends on the thermodynamic standard potential as dictated by the pK_a of the proton donor. The model is general and rationalizes the faradaic efficiencies reported for many ORR catalytic systems.

Renewable energy resources have the potential to impact climate change by mitigating carbon emissions attendant to a fossil based fuel infrastructure.^{1,2} Solar energy may be stored in the form of chemical bonds and subsequently recovered on demand in the form of electricity by using fuel cells.^{3,4} The cathodic 4e⁻, 4H⁺ oxygen reduction reaction (ORR) of hydrogen-based fuel cells is kinetically challenging and overall energy conversion efficiencies depend on the selective production of H₂O. Platinum can meet the demanding criteria of efficient ORR^{3,5} but the metal is critical, spurring efforts to develop catalysts based on earth abundant transition metals such as cobalt⁶⁻¹⁰ and iron.¹¹⁻¹⁸ ORR in such systems is often performed in nonaqueous solution using a strong acid (e.g., trifluoroacetic acid (TFA), protonated N,N-dimethylformamide (DMF) or perchloric acid) as the proton donor.^{14,15,19,20} In assessing activity, we and others often employ the faradaic efficiency for H₂O production as a performance benchmark.^{14,19,20} However, faradaic efficiency is difficult to interpret in the absence of a thermodynamic potential that correctly accounts for the activity of the proton in nonaqueous solution.

Dicobalt complexes in acetonitrile (MeCN) and in the presence of O_2 and strong acid demonstrate excellent faradaic efficiencies for H_2O production.²¹ We have prepared the pair of dicobalt complexes shown in Scheme 1 wherein a diamond $Co(III)_2(OH)_2$ core is stabilized by the six coordinate ligand, dipyridylethane naphthyridine (DPEN). The complex is similar to the first row metal complexes of DPEN (and its fluorinated analog, DPFN) prepared by Tilley and coworkers^{22–24} excepting the anionic bridging ligand.

Scheme 1. Dicobalt complexes composed a $Co(III)_2(OH)_2$ diamond core stabilized by a DPEN ligand with anionic acetamidate (1) and acetate (2) bridging ligands.

This dicobalt motif is useful for ORR because it is soluble in water and nonaqueous solutions and affords access to a wide range of overpotentials and faradaic efficiencies for ORR. We now develop a general framework to shed light on (a) how solvent and acid strength affect the overpotential of ORR catalysis and (b) the correlation between ORR overpotential and faradaic efficiency.

Complex 1 was prepared by the addition of the DPEN ligand to $Co(NO_3)_2$ in a 1:1 water:acetone mixture. Air oxidation to furnish the two Co(III) centers is slow, thus H_2O_2 was used to drive the oxidation. The bridging acetamidate ligand was furnished by heating MeCN solutions of the PF₆ salt of the dicobalt complex. Complex 2 was prepared in a similar fashion, except using a $Co(OAc)_2$ precursor salt to furnish the bridging acetate ligand. The compounds were characterized by NMR, mass spectrometry, and elemental analysis (see SI for details).

Figure 1 shows CVs of 1 and 2 in MeCN in the absence of O2 (red trace). The reversible CV wave corresponds to the Co₂(III,III)/Co₂(III,II) couple; redox processes of the DPEN ligand occur at a very negative potential (Figure S1). Consistent with the poorer electron-donating property of the acetate bridge, the Co₂(III,III)/Co₂(III,II) couple for **2** is shifted anodically by 250 mV as compared to that of 1. The presence of O_2 (8.1 mM) causes a loss of reversibility for the Co₂(III,III)/Co₂(III,II) wave (blue trace, Figure 1) and concomitant slight increase in current. This loss of reversibility is a clear indication that O2 binds to complexes 1 and 2 following the one-electron reduction of the dicobalt core. Whereas 1 exhibits a single reduction wave, 2 exhibits a small second wave that becomes more pronounced upon O2 binding. In contrast to these small current-voltage perturbations of the complexes in the presence of O₂, addition of acetic acid (AcOH) to 1 and 2 in the presence of O_2 results in a single large reduction wave. Such a significant increase in current is consistent with a catalytic ORR process. The need for both AcOH and O₂ to engender the

Figure 1. Cyclic voltammetry of (a) **1** and (b) **2** in MeCN (0.1 M *n*-Bu₄NPF₆) under Ar (\longrightarrow) and O₂ (\longrightarrow), and in the presence of 50 mM AcOH (\longrightarrow); $\nu = 0.1$ V s⁻¹.

large current indicates that protons are necessary for catalytic ORR turnover. Moreover, the current increase exhibits a dependence on the amount of AcOH (Figure S2), which confirms the implication of protons in the mechanism of ORR. At the highest acid concentrations, the foot of the catalytic wave shifts towards less negative potentials, demonstrating that the kinetics of the catalytic reaction improve with increasing acid concentration. With [AcOH] concentration in excess of 50 mM (Figure S2), the current decreases due to deactivation of the catalyst *via* acidolysis.

The products of ORR are typically water and hydrogen peroxide with the latter being the undesirable product owing to its lower cell voltage. Consequently, the design of ORR catalysts typically emphasizes the selectivity of H_2O vs H_2O_2 production. The commonly used metric for this selectivity is faradaic efficiency, as measured by RRDE for which the theory is very well defined.²⁵ The faradaic yield is often determined arbitrarily at the potential for which the disk current is highest, though it is more representative to take into account the average yield throughout the entire catalytic region. The faradaic efficiency for H_2O_2 production as a function of potential may be determined by using:

$$\% H_2 O_2(E) = \frac{2i_r(E)/N}{i_d(E) + i_r(E)/N}$$
(1)

where $i_r(E)$ and $i_d(E)$ are the ring and the disk current, respectively, at potential *E* and *N* is the collection efficiency of the rotating ring disk electrode,²⁵ which was experimentally determined to be 0.26. The potential at the disk was scanned through the appropriate catalytic region while the potential at the ring was held at 1.17 V (all potentials are reported vs. NHE) to ensure complete oxidization of H₂O₂. Figure 2a presents a representative experiment showing the ring and disk currents resulting from ORR of 1 in MeCN acidified with AcOH. Figure 2b shows the corresponding faradaic yield for H₂O₂ production across the potential range of ORR catalysis, obtained by application of eq 1 at different rotation rates. In applying eq 1, the average was taken over a potential range that gave a reliable measure of the current at the disk ($i_d > 0.05$ mA). Control experiments in the absence of catalyst show that there is no current on the ring regardless of the acid and its concentration within the limits of our potential window. Current from direct reduction of O2 at the disk in the absence of catalyst occurs at more negative potentials ($E_{disk} < -0.3$ V vs NHE with strong acid to $E_{disk} < -0.64$ V vs NHE in the absence of acid). The faradaic efficiency should be the same at different rotation rates, unless hydrogen peroxide is an intermediate in the reaction leading to water. In this case, a de-

Figure 2. (a) **1** (0.5 mM) in MeCN (0.1 M *n*-Bu₄PF₆) and AcOH (50 mM) under O₂ at different rotation rates: 100 (—), 250 (—), 500 (—), 750 (—) and 1000 rpm (—). $\nu = 0.02$ V s⁻¹. Ring potential: 1.17 V. Disk current is positive and ring current is negative. (b) Faradaic yield for H₂O₂ production obtained by application of eq 1 at different rotation rates.

Figure 3. (a) Faradaic efficiency of **1** towards H_2O production as a function of acid pK_a of different acids listed in Table 1 in MeCN (•) and DMF (•). (b) Faradaic efficiency of **1** towards H_2O production as a function of solution pH adjusted by aqueous phosphate buffer.

crease of the ring current would be observed with an increase in rotation rate. At a given potential, the ring and disk currents at various rotation rates show a variance of ~10%, however with no trend in rotation rate (Figure 2b). We attribute this variance ($\pm 10\%$) in the collection efficiency. The average faradaic efficiency of H₂O production of 44% in Figure 2b was determined by taking 1 – [faradaic efficiency H₂O₂], which was determined as the average value across the entire trace for all rotation rates.

This RRDE study of ORR by 1 was expanded to include proton donors of different strength in MeCN (Figures S5-S8) and DMF (Figures S9 and S10) at different acid concentrations. The pK_a of the acids used in these studies are given in Table 1 in DMF and MeCN.²⁶⁻²⁹ For a given acid, the current increases and the foot of the wave shifts slightly to more positive potentials with acid concentration (e.g., Figure S2). These observations indicate that the effect of acid concentration is rooted in the kinetics of ORR. Most significantly, the H₂O yield in organic solvents increases with increasing acid strength. Figure 3a plots the average faradaic efficiency of H₂O for the different acids using eq 1. We note that the faradaic efficiency changed minimally with acid concentration (Table S1) over a range where acidolysis of the compound was minimal (\leq 50 mM acid concentration). As shown in Figure 3a, the faradaic efficiency varies substantially with pK_a (e.g., 1 with TFA in MeCN gives an average faradaic efficiency for H₂O production of 96% as compared to 33% for the more weakly acidic phenol).

The dependence of ORR faradaic yield on the different acids can be explained by considering the thermodynamic standard potential of the reduction of O₂ to H₂O as a function of acid pK_a (Table 1). We have developed a thermodynamic cycle akin to that developed

Table 1. pKa of different acids and thermodynamic standard potential of O2 reduction to H2O in MeCN and DMF.

Acid, HA ^a ·	MeCN			DMF		
	$pK_{a HA}$	E^0/V vs. NHE	I	$pK_{a HA}$	E^0/V vs. NHE	
PhOH	27.2	0.430		18.8	-0.301	
AcOH	22.3	0.720		13.3	0.020	
ClAcOH	15.3	1.133		10.0	0.213	
TFA	12.6	1.293		4.8	0.518	

^{*a*} phenol (PhOH), acetic acid (AcOH), chloroacetic acid (ClAcOH) and trifluoroacetic acid (TFA).

by Costentin *et al.* for CO₂ reduction to CO (Scheme S1).³⁰ Using this cycle, the standard potential is given by:

$$E_{O_{2}/2H_{2}O,HA,S}^{0} = E_{J,S} + E_{O_{2}/2H_{2}O,aq}^{0} - \frac{4\Delta G_{H^{+},S\rightarrow aq}^{0} - 2\Delta G_{H_{2}O,S\rightarrow aq}^{0}}{2F} - \frac{RT \ln 10}{F} pK_{a HA,S}$$
(2)

where eq 2 accounts for the standard potential of ORR to furnish H₂O in solvent S and in the presence of HA ($E_{O_2/2H_2O,HA,S}^0$) to that in aqueous solution $E_{O_2/2H_2O,aq}^0$, corrected for the interliquid junction potential, $E_{J,S}$, between water and solvent S. The terms in eq 2 are defined within Scheme S1. Substituting the constants in eq 2 for MeCN and DMF, respectively, yields:

$$E_{O_2/2H_2O,MeCN}^0 = 2.038 - \frac{RT\ln 10}{F} pK_{a,HA,MeCN}$$
(3)

$$E_{O_2/2H_2O,DMF}^0 = 0.799 - \frac{RT \ln 10}{F} p K_{a,HA,DMF}$$
(4)

We note that these equations contain no term for acid concentration, which is reflected in the lack of a noticeable concentration effect on selectivity (Table S1). For the case of water, the standard potential evolves with pH in the standard fashion,

$$E_{O_2/2H_2O,aq}^{0'} = E_{O_2/2H_2O,aq}^0 - \frac{RT\ln 10}{F} pH = 1.23 - \frac{RT\ln 10}{F} pH \quad (5)$$

From eqs 3 and 4, we obtain the E^0 values presented in Table 1. These data reveal that the improved selectivity for H₂O production with increasing acid strength (Figure 3a) scales with the increasing standard potential of the ORR reaction for the different acids. Inasmuch as the applied potential to drive the ORR is defined by the reduction potential of the catalyst,

$$\Delta E_{\rm ORR} = E_{\rm O_2/2H_2O, HA, S}^0 - E_{\rm Co_2(III, III)/Co_2(II, III)}^0$$
(6)

the faradaic efficiency scales with ΔE_{ORR} , which is the effective overpotential. Thus the ORR pathway leading to the O–O bond cleavage needed to produce H₂O becomes favored in strong acid where there is a high effective overpotential. Conversely, with weak acids, the effective overpotential for ORR to H₂O is small, and the pathway leading to H₂O production is disfavored relative to H₂O₂.

The same trend of improved H_2O selectivity with stronger acid is observed in DMF solution (Figure 3a, navy circles). Whereas the faradaic efficiency for H_2O production in DMF and MeCN are similar, ORR may be driven at much lower effective overpotential in DMF owing to the significantly reduced value of $E_{O_2/2H_2O,HA}^0$ (arising from a difference in $G_{H^+,S\to aq}^0$, Table S2). Indeed, Figure S3 shows the typical catalytic CVs of **1** in MeCN and DMF. A shift of 650 mV is observed at the foot of the catalytic wave caused by the difference of 779 mV between the two standard potentials (see Table 1). Nonetheless this gain in terms of thermodynamics is somewhat offset in terms of kinetics, as the catalytic current at the in DMF is significantly reduced as compared to MeCN.

Experiments performed on 1 in water at different pHs lead to the results (Figure S11) that are similar to that observed for ORR in nonaqueous solutions. The apparent standard potential decreases with pH according to eq 5, and accordingly ΔE_{ORR} decreases with increasing pH. Concomitant with his lowering in the effective overpotential, the faradaic efficiency for H₂O production decreases (Figure 3b).

Changing the bridging anion from the acetamidate in **1** to acetate in **2** yields similar RRDE results in MeCN (Figures S12 and S13) and water (Figure S14). The trend of the average faradaic efficiency with pK_a in MeCN (Figure S15) and pH in water (Figure S16) is similar to that observed for ORR catalyst **1**. A positive shift of the catalytic wave is observed for **2** resulting in a decrease in ΔE_{ORR} and an attendant decrease in the effective ORR overpotential (Figure S4). This gain in terms of thermodynamics is offset in terms of kinetics, as the current at the maximum of the catalytic wave is smaller in **2** than **1** (Figure S14a).

Our studies establish that an increase in the effective overpotential of ORR (i.e., increased ΔE_{ORR}) is accompanied by an increase in faradic efficiency. Our model is general and it applies to previously published ORR catalysts. Figure 4 shows a plot of reported faradaic efficiencies versus effective overpotential for 1 and 2 together with selected ORR catalysts operating in organic solvents.^{14,15,21} As conveyed by eq 6, the effective overpotential, ΔE_{ORR} , is obtained by subtracting the standard reduction potential of each catalyst from the standard potential of O2 reduction in a given solvent as determined from eq 2. We note the value of $\Delta G^0_{\mathrm{H}^+, \mathrm{S} \to \mathrm{aq}}$ used in eq 2 has recently been re-examined;³¹ whereas the various values of $\Delta G^0_{\mathrm{H}^+,\mathrm{S}\to\mathrm{aq}}$ (Table S3) alter the absolute value of ΔE_{ORR} , the trend in Figure 4 is maintained. We have confined our analysis to ORR catalysts operating in DMF and MeCN, as the thermodynamic parameters needed for other solvent systems are unknown or poorly defined; thus literature examples such as those in acetone²⁰ and benzonitrile¹⁹ are not included in our analysis. Additionally, the standard potential for solid state catalysts is unknown; hence Figure 4 does not include solid state catalyst in the comparison.

The result of Figure 4 is striking inasmuch as very different catalysts with respect to metal and ligand type are undistinguished with regard to ORR faradaic efficiency. High faradaic efficiencies are obtained only at high effective overpotentials. Per the model embodied by eq 2, most studies achieve these high overpotentials by employing strong acids in nonaqueous solutions. In this regard, compound **1** appears to exhibit better performance in DMF but this is not a result of better intrinsic catalyst activity but due to a lowering of the effective overpotential (eq 4 as compared to 3) as a result of greater activity of the proton in DMF (Table S3). It is interesting to note that the reported faradaic efficiencies for most catalysts to date are indifferent to the kinetics of the ORR reaction. For instance, in compounds 4 and 5, a proton relay group is posi-

Figure 4. Faradaic efficiency for H₂O production vs. $\Delta E_{ORR}(= E_{O_2/2H_2O,HA,S}^0 - E_{catalyst}^0)$ for: **1** in MeCN (**•**) with (1a) PhOH, (1b) MeCN, (1c) ClAcOH, (1d) TFA; **1** in DMF with (**•**), (1e) AcOH, (1f) TFA; **2** in MeCN (**•**) with (2a) PhOH, (2b) AcOH; (3) Fe tetraphenylporphyrin in DMF with HClO₄ (**•**), ref 15; (4) Fe *meso*-tetra(2-carboxyphenyl)porphine in MeCN with (HDMF)⁺ (**•**), ref 14; (5) Fe *meso*-tetra(4-carboxyphenyl)porphine in MeCN with (HDMF)⁺ (**•**), ref 14; (**6**) Co^{III}₂(trpy)₂(µ-bpp)(µ-1,2-O₂)]³⁺ (bpp = bis(pyridyl)-pyrazolate, trpy = terpyridine) in MeCN with TFA (**•**), ref 21.

tioned toward and away from a Fe porphyrin ring, respectively. Whereas the kinetics of the ORR are affected by the involvement of the proton relay,¹⁴ the faradaic efficiency for the two compounds is similar as consequence of similar effective overpotentials.

In summary, we have developed a model that shows that ORR selectivity of catalysts is largely dictated by the effective overpotential. Our model reveals that in most systems reported to date, high ORR selectivities for H_2O is a result of large effective overpotentials for the reaction, achieved by the use of strong acids. The challenge to developing better ORR catalysts will be to maintain high catalytic efficiencies under conditions where the overpotential for ORR is greatly reduced.

ASSOCIATED CONTENT

Supporting Information. Full experimental details, additional electrochemical data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

dnocera@fas.harvard.edu

ACKNOWLEDGMENT

This work was supported by the U.S. Department of Energy Office of Science under Award Number DE-SC0009758. We also thank the TomKat Charitable Trust for support of this work. C.N.B. acknowledges the NSF's Graduate Research Fellowship Program. We are grateful to Prof. Cyrille Costentin for helpful discussions.

REFERENCES

(1) Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729.

(2) Lewis, N. S.; Nocera, D. G. The Bridge 2015, 46, 41.

(3) Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y. S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D.; Zelenay, P.; More, K.; Stroh, K.; Zawodzinski, T.; Boncella, J.; McGrath, J. E.; Inaba, M.; Miyatake, K.; Hori, M.; Ota, K.; Ogumi, Z.; Miyata, S.; Nishikata, A.; Siroma, Z.; Uchimoto, Y.; Yasuda, K.; Kimijima, K.; Iwashita, N. *Chem. Rev.* **2007**, *107*, 3904.

(4) Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. *Chem. Rev.* **2010**, *110*, 6474.

(5) Steele, B. C. H.; Heinzel, A. Nature 2001, 414, 345.

(6) Anson, F. C.; Shi, C.; Steiger, B. Acc. Chem. Res. 1997, 30, 437.

(7) Kadish, K. M.; Shen, J.; Frémond, L.; Chen, P.; Ojaimi, M. E.; Chkounda, M.; Gros, C. P.; Barbe, J.-M.; Ohkubo, K.; Fukuzumi, S.; Guilard, R. *Inorg. Chem.* **2008**, *47*, 6726.

(8) Dogutan, D. K.; Stoian, S. A.; McGuire, R.; Schwalbe, M.; Teets, T. S.; Nocera, D. G. *J. Am. Chem. Soc.* **2011**, *133*, 131.

(9) Geiger, T.; Anson, F. C. J. Am. Chem. Soc. 1981, 103, 7489.

(10) McGuire Jr, R.; Dogutan, D. K.; Teets, T. S.; Suntivich, J.; Shao-Horn, Y.; Nocera, D. G. *Chem. Sci.* **2010**, *1*, 411.

(11) Collman, J. P.; Devaraj, N. K.; Decréau, R. A.; Yang, Y.; Yan, Y.-L.; Ebina, W.; Eberspacher, T. A.; Chidsey, C. E. D. *Science* **2007**, *315*, 1565.

(12) Collman, J. P.; Decréau, R. A.; Lin, H.; Hosseini, A.; Yang, Y.; Dey, A.; Eberspacher, T. A. *Proc. Natl. Acad. Sci. U. S. A.* **2009**, *106*, 7320.

(13) Collman, J. P.; Ghosh, S.; Dey, A.; Decréau, R. A.; Yang, Y. J. Am. Chem. Soc. **2009**, 131, 5034.

(14) Carver, C. T.; Matson, B. D.; Mayer, J. M. J. Am. Chem. Soc. 2012, 134, 5444.

(15) Wasylenko, D. J.; Rodríguez, C.; Pegis, M. L.; Mayer, J. M. J. Am. Chem. Soc. **2014**, 136, 12544.

(16) Chatterjee, S.; Sengupta, K.; Samanta, S.; Das, P. K.; Dey, A. Inorg. Chem. 2015, 54, 2383.

(17) Samanta, S.; Mittra, K.; Sengupta, K.; Chatterjee, S.; Dey, A. Inorg. Chem. 2013, 52, 1443.

(18) Samanta, S.; Das, P. K.; Chatterjee, S.; Sengupta, K.; Mondal, B.; Dey, A. Inorg. Chem. **2013**, *52*, 12963.

(19) Rosenthal, J.; Nocera, D. G. Acc. Chem. Res. 2007, 40, 543.

(20) Kakuda, S.; Peterson, R. L.; Ohkubo, K.; Karlin, K. D.; Fukuzumi, S. J. Am. Chem. Soc. **2013**, 135, 6513.

(21) Fukuzumi, S.; Mandal, S.; Mase, K.; Ohkubo, K.; Park, H.; Benet-Buchholz, J.; Nam, W.; Llobet, A. J. Am. Chem. Soc. **2012**, 134, 9906.

(22) Davenport, T. C.; Tilley, T. D. Angew. Chem. Int. Ed. Engl. 2011, 50, 12205.

(23) Davenport, T. C.; Tilley, T. D. Dalton Trans. 2015, 44, 12244.

(24) Davenport, T. C.; Ahn, H. S.; Ziegler, M. S.; Tilley, T. D. Chem. Commun. 2014, 50, 6326.

(25) Allen J. Bard, L. R. F. Electrochemical Methods: Fundamentals and Applications, 2nd Edition; Wiley: New York, 2001.

(26) Andrieux, C. P.; Gamby, J.; Hapiot, P.; Savéant, J.-M. J. Am. Chem. Soc. 2003, 125, 10119.

(27) Costentin, C.; Evans, D. H.; Robert, M.; Savéant, J.-M.; Singh, P. S. J. Am. Chem. Soc. **2005**, 127, 12490.

(28) Kütt, A.; Rodima, T.; Saame, J.; Raamat, E.; Mäemets, V.; Kaljurand, I.; Koppel, I. A.; Garlyauskayte, R. Y.; Yagupolskii, Y. L.; Yagupolskii, L. M.; Bernhardt, E.; Willner, H.; Leito, I. *J. Org. Chem.* **2011**, *76*, 391.

(29) Izutsu, K. Acid-Base Dissociation Constants in Dipolar Aprotic Solvents; Blackwell: Boston, 1990.

(30) Costentin, C.; Drouet, S.; Robert, M.; Savéant, J.-M. *Science* **2012**, 338, 90.

(31) Pegis, M. L.; Roberts, J. A. S.; Wasylenko, D. J.; Mader, E. A.; Appel, A. M.; Mayer, J. M. *Inorg. Chem.* **2015**, *54*, 11883.

Journal of the American Chemical Society

