### Bioorganic & Medicinal Chemistry Letters 23 (2013) 6269-6273





**Bioorganic & Medicinal Chemistry Letters** 

journal homepage: www.elsevier.com/locate/bmcl



# Identification and profiling of 3,5-dimethyl-isoxazole-4-carboxylic acid [2-methyl-4-((2*S*,3'*S*)-2-methyl-[1,3']bipyrrolidinyl-1'-yl)phenyl] amide as histamine H<sub>3</sub> receptor antagonist for the treatment of depression

CrossMark

Zhongli Gao<sup>a,\*</sup>, William J. Hurst<sup>b,†</sup>, Werngard Czechtizky<sup>d</sup>, Daniel Hall<sup>b</sup>, Nicolas Moindrot<sup>c</sup>, Raisa Nagorny<sup>b</sup>, Philippe Pichat<sup>c</sup>, David Stefany<sup>b</sup>, James A. Hendrix<sup>b,‡</sup>, Pascal G. George<sup>c</sup>

<sup>a</sup> LGCR SMRPD Chemical Research, Sanofi US, 153-1-122, 153 2nd Ave, Waltham, MA 02451, USA

<sup>b</sup> Sanofi US, Route 202-206, PO Box 6800, Bridgewater, NJ 08807, USA

<sup>c</sup> Sanofi R&D, 1 Avenue Pierre Brossolette, Chilly-Mazarin, France

<sup>d</sup> Sanofi R&D, Deutschland GmbH, Industriepark Hoechst, Frankfurt, Germany

## ARTICLE INFO

Article history: Received 20 August 2013 Revised 24 September 2013 Accepted 25 September 2013 Available online 3 October 2013

Keywords: Histamine H<sub>3</sub> receptor antagonist/inverse agonist Forced swimming test Experimental models of anxiety and depression Anxiety Depression

## ABSTRACT

Lead optimization guided by histamine  $H_3$  receptor ( $H_3R$ ) affinity and calculated physico-chemical properties enabled simultaneous improvement in potency and PK properties leading to the identification of a potent, selective, devoid of hERG issues, orally bioavailable, and CNS penetrable  $H_3R$  antagonist/inverse agonist **3h**. The compound was active in forced-swimming tests suggesting its potential therapeutic utility as an anti-depressive agent. This Letter further includes its cardiovascular and neuropsychological/behavioral safety assessments.

© 2013 Elsevier Ltd. All rights reserved.

The histamine  $H_3$  receptor  $(H_3R)$ ,<sup>1</sup> a G-protein coupled receptor, is largely expressed in the anterior part of the cortex, in the hippocampus, striatum, and to a lesser extent in the hypothalamus and spinal cord. It is a pivotal presynaptic autoreceptor and heteroreceptor modulating the synthesis and release of histamine and other neurotransmitters, including acetylcholine (ACh), dopamine (DA), and norepinephrine (NE). Cloning of  $H_3R$  uncovered the existence of isoforms, inter-species pharmacological differences and a high constitutive (spontaneous) activity of the receptor.<sup>2–5</sup> Many isoforms of human  $H_3R$  have been identified.<sup>6–8</sup> The full length 445aa configuration appears to be the most functionally dominant and abundantly expressed. In addition, at least another 19 isoforms have been reported for the human  $H_3R$ . Several additional isoforms have also been identified in rat, guinea pig, and mouse. Not surprisingly, this level of complexity of expression and isoforms of H<sub>3</sub>R have invoked more complexity in in vivo H<sub>3</sub>R biology and interesting therapeutic applications,<sup>9–14</sup> such as Alzheimer's disease,<sup>15,16</sup> attention deficit hyperactivity disorder,<sup>17</sup> schizophrenia,<sup>18–20</sup> sleep disorder,<sup>21</sup> neuropathic pain,<sup>22</sup> and obesity.<sup>23</sup> Many structurally diverse H<sub>3</sub>R antagonists have been reported and a few have advanced into development (for review articles, see Refs. 24,25). In this Letter, we will describe our continued lead optimization effort which led to the identification of a novel, potent, selective and orally efficacious H<sub>3</sub>R antagonist/ inverse agonist as one of several pre-development candidates.

Previous work<sup>26,27</sup> from our group revealed a series of compounds, represented by 5-fluoro-2-methyl-*N*-[2-methyl-4-(2-methyl[1,3']bipyrrolidinyl-1'-yl)phenyl] benzamide (**1**), that displayed oral activity in a mouse food intake inhibition model. However, the compound exhibited unacceptably high affinity towards the hERG channel ( $IC_{50} = 0.48 \mu$ M). Furthermore, the four stereoisomers of **1** were synthesized and evaluated<sup>28</sup> hoping that one specific stereoisomer retained high H<sub>3</sub>R affinity while devoid of hERG channel inhibition. Interestingly, the *S*,*S* diastereomer (**2**)

<sup>\*</sup> Corresponding author. Tel.: +1 781 434 3635.

*E-mail addresses:* zhongli.gao@sanofi.com (Z. Gao), william.hurst@sanofi.com (W.J. Hurst), jhendrix@oligomerix.com (J.A. Hendrix).

 $<sup>^\</sup>dagger$  Address: Sanofi US, 55C-420A, 55 Corporate Drive, Bridgewater, NJ 08807, USA. Tel.: +1 908 981 3723.

<sup>&</sup>lt;sup>‡</sup> Current address: Oligomerix Inc., 3960 Broadway, Suite 340D, New York, NY 10032, USA. Tel.: +1 212 568 0365.

<sup>0960-894</sup>X/\$ - see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bmcl.2013.09.081



Figure 1. Lead structures of the  $H_3R$  antagonists/inverse agonists and design strategies.

Het-A

#### Table 1

rh-H<sub>3</sub>R affinity and calculated physico-chemical properties

showed superior in vitro H<sub>3</sub>R affinity. However, all four stereoisomers displayed similar hERG channel affinities indicating that the elevated hERG affinity might be due to the high lipophilicity of **1** (clog P = 3.2). Thus, we focused our attention towards finding a potential drug candidate with similar or better H<sub>3</sub>R activity as **2** but an acceptable hERG profile. Besides the hERG issue, we also set up a criterion to discover an H<sub>3</sub>R antagonist/inverse agonist with low risk of potential phospholipidosis induction, one of the common issues of H<sub>3</sub>R ligands reported in the literature.<sup>29,30</sup>

To address the hERG issue, we used  $c\log P$  and PSA to guide the design of new compounds. This strategy was echoed by Levoin's<sup>31</sup> QSAR in which he stated that the lipophilic character of the molecules (the sum of atomic polarizabilities,  $c\log P$ ,  $c\log D$ ), as well as aromatic tendency reflect most important aspects for hERG affinity.

Phospholipidosis is a storage disorder resulting in excessive accumulation of phospholipids in lysosomes of the tissues. The cause is not well defined. However, an amphiphilic character of molecules displays a high risk of inducing phospholipidosis. In order to increase our odds to identify  $H_3R$  ligands with low risk of phospholipidosis induction potential, we screened compounds using an in silico phospholipidosis model.<sup>32,33</sup> Given the fact that  $H_3R$  is a biogenic amine receptor and our current lead compound possessed a basic amine, it was hypothesized that lowering the  $pK_a$  and increasing the polarity (lowering clogP and increasing polar surface area, PSA) should be the most direct way to bring the

|     |        |                                                     |                                | \/         |                 |     |                       |
|-----|--------|-----------------------------------------------------|--------------------------------|------------|-----------------|-----|-----------------------|
| •   |        |                                                     | н <sub>з</sub> с<br>3          | ,          |                 |     |                       |
| No. | Het-Ar | rh-H <sub>3</sub> R binding <sup>a</sup> $K_i$ (nM) | pK <sub>a</sub> (basic center) | $c \log P$ | $c\log D_{7.4}$ | MW  | PSA (Å <sup>2</sup> ) |
| 2   | _      | 2.5                                                 | 10.1                           | 3.2        | 0.7             | 395 | 36                    |
| 3a  | N      | 1.4                                                 | 10.1                           | 3.3        | 0.8             | 378 | 49                    |
| 3b  | 6      | 1.8                                                 | 10.1                           | 3.0        | 0.5             | 353 | 49                    |
| 3c  | To the | 3.9                                                 | 10.1                           | 2.1        | -0.4            | 353 | 49                    |
| 3d  | N N    | 4.7                                                 | 12.1                           | 1.7        | -0.8            | 367 | 64                    |
| 3e  | N-N    | 10.8                                                | 10.1                           | 1.6        | -0.8            | 381 | 53                    |
| 3f  | N_OH   | 1.1                                                 | 10.1                           | 2.0        | -0.5            | 368 | 62                    |
| 3g  |        | 4.6                                                 | 10.1                           | 2.8        | 0.4             | 368 | 62                    |
| 3h  | N H    | 0.4                                                 | 10.1                           | 2.8        | 0.4             | 382 | 62                    |

<sup>a</sup> Binding assay was performed as in Ref. 26;  $K_i$  data were presented as an average of multiple experiments ( $n \ge 3$ ). Standard deviation <50%; ND = not determined.



Scheme 1. Syntheses of analogs 3a-3h. Reagents and conditions: (a) ArCOCl, CH<sub>2</sub>Cl<sub>2</sub>, pyridine, rt, 16 h, 62-80% yield.

Table 2 $rh-H_3R$  affinity and calculated physico-chemical properties



| No. | Ar                     | Z                  | rh-H <sub>3</sub> R binding $K_i^a$ (nM) | pK <sub>a</sub> | clogP | clog <i>D</i> <sub>7.4</sub> | MW  | PSA (Å <sup>2</sup> ) |
|-----|------------------------|--------------------|------------------------------------------|-----------------|-------|------------------------------|-----|-----------------------|
| 2   |                        |                    | 2.5                                      | 10.1            | 3.2   | 0.7                          | 395 | 36                    |
| 5a  | Ph                     | -CO-               | 3.0                                      | 9.9             | 3.2   | 1.0                          | 364 | 48                    |
| 5b  | 3,4-F <sub>2</sub> -Ph | -SO <sub>2</sub> - | 2.5                                      | 10.0            | 3.4   | 1.1                          | 436 | 74                    |
| 5d  | Benzyl                 | -CO-               | 4.9                                      | 9.9             | 3.3   | 1.1                          | 378 | 48                    |
| 5e  | 1-Naphthalene          | -CO-               | 4.2                                      | 9.9             | 4.4   | 2.2                          | 414 | 48                    |

<sup>a</sup> Binding assay was performed as in Ref. 26;  $K_i$  data were presented as an average of multiple experiments ( $n \ge 3$ ). Standard deviation <50%; ND = not determined.



Scheme 2. Syntheses of analogs 5a–5e. Reagents and conditions: (a) powdered potassium carbonate, DMSO, 85 °C (external temperature), overnight, 87% yield; (b) 5% Pd/C, MeOH, H<sub>2</sub> (40 psi), rt, 4 h. 100% yield; (c) ArCOCl, CH<sub>2</sub>Cl<sub>2</sub>, pyridine, rt, 16 h, 62% yield; or ArCO<sub>2</sub>H, CH<sub>2</sub>Cl<sub>2</sub>, DMF, EDC, HOBt, *N*-methyl-morpholine, rt, overnight, 75–82% yield.

calculated values into a more desirable range. However, the previous SAR studies<sup>26,27</sup> suggested that introduction of polar groups on the terminal aromatic ring was detrimental to  $H_3R$  affinity.

Rather than taking heteroatom-containing functional groups as substituents at the terminal and the central aromatic rings to lower  $c\log P$  and increase PSA, we chose hetero-aryl, the 'embedded' heteroatoms, to replace the corresponding aromatic rings. In addition, our continued optimization started from the lead (**2**) with the preferred *S*,*S* stereochemistry which was superior in H<sub>3</sub>R affinity.<sup>28</sup>

Our first attempt was to investigate whether or not we could replace the terminal substituted aryl in lead (2) with a substituted hetero-aryl without compromising  $H_3R$  affinity while lowering

*c*log*P* and increasing PSA; therefore analogs of the general type **3** were designed (Fig. 1).

Analogs **3a–3h** (Table 1) were synthesized according to Scheme 1 by coupling commercially available hetero-aryl acid chlorides with the chiral amine  $4^{28}$  in DCM catalyzed by pyridine in good yield.

The analogs **3a–3h** were evaluated in an H<sub>3</sub>R binding assay by displacement of  $[{}^{3}H]N-\alpha$ -methyl-histamine in membranes isolated from a CHO cell line stably transfected with the recombinant rhesus monkey H<sub>3</sub> receptor (rh-H<sub>3</sub>R)<sup>26</sup> (Table 1). Gratifyingly, substituted hetero-aryl replacement of aryl in **2** did not cause a substantial drop in H<sub>3</sub>R affinity for most of the compounds. As

| le | 3   |
|----|-----|
|    | ole |

In vitro profiling of **3h** 

| Profiling assays                                           | Results                                                                                                                                                                                 | Conditions                                                                                                                       |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| hERG                                                       | IC <sub>50</sub> = 37 μM                                                                                                                                                                | Patch-clamp technique in the whole-cell<br>configuration on Chinese hamster ovary (CHO)<br>cells                                 |
| Ames II test                                               | Negative                                                                                                                                                                                | Concentrations ranged from 3 to 1000 $\mu$ g/mL                                                                                  |
| MNT in vitro                                               | Negative                                                                                                                                                                                | Concentration ranged from 5 to 950 $\mu$ g/mL in<br>the presence or absence of metabolic activation<br>by human liver microsomes |
| In silico prediction of phopholipidosis risk <sup>34</sup> | Low risk                                                                                                                                                                                | •                                                                                                                                |
| Panel screen (CEREP)                                       | % Inhibition in binding assay <50%, except $\sigma$ (1 and/or 2): 73% inhibition @ 10 $\mu$ M                                                                                           | 78 receptors, 16 enzymes, 26 kinases, and 38 ion channels                                                                        |
| Metabolic lability in liver microsomes                     | <5% Metabolized                                                                                                                                                                         | Human, mouse, rat, rabbit, macaque and dog,<br>except in guinea pig in which 35% of <b>3h</b> was<br>metabolized                 |
| Metabolic stability in plasma                              | <5% Metabolized (the compound was spiked to each of the blank plasmas at a concentration of 100 ng/ml. The spiked plasma samples were incubated in a water bath at 37 °C for up to 4 h) | Human, mouse, rat, rabbit, macaque and dog.                                                                                      |
| Intrinsic clearance in human hepatocytes                   | $Cl = 0.040 \pm 0.010 \text{ mL } h^{-1} (10^6 \text{ hepatocytes})^{-1} (n = 4)$                                                                                                       |                                                                                                                                  |
| Cyp induction for CYP1A1, CYP1A2, and CYP3A4               | No induction                                                                                                                                                                            | Drug concentration ranged from 1 to 60 $\mu$ M.                                                                                  |
| MBI                                                        | No inhibition                                                                                                                                                                           |                                                                                                                                  |
| Cyp inhibition $(IC_{50})$ for 3A4, 2C9, 2C19              | IC <sub>50</sub> >100 μM                                                                                                                                                                | Incubated for 4 h at 37 °C                                                                                                       |

#### Table 4

Pharmacokinetics of 3h in male OF1 mice and male Sprague-Dawley rats

|    |                            | Male OF1 mice <sup>a</sup> |       | Male Sprague-Dawley rats <sup>b</sup> |       |  |
|----|----------------------------|----------------------------|-------|---------------------------------------|-------|--|
|    |                            | Plasma                     | Brain | Plasma                                | Brain |  |
| iv | $AUC_{0-\infty}$ (ng h/mL) | 670                        | 1100  | 1100                                  | 1200  |  |
|    | $t_{1/2}$ (h)              | 0.65                       | 0.93  | 1.2                                   | 1.8   |  |
|    | Cl (L h/kg)                | 3.0                        |       | 1.8                                   |       |  |
|    | $V_{\rm d}$ (L/kg)         | 1.7                        |       | 2.8                                   |       |  |
| ро | $AUC_{0-\infty}$ (ng h/mL) | 1900                       | 3100  | 3150                                  | 3400  |  |
|    | C <sub>max</sub> (ng/mL)   | 1680                       | 2620  | 749                                   | 599   |  |
|    | $t_{\rm max}$ (h)          | 0.17                       | 0.17  | 0.5                                   | 1.0   |  |
|    | $t_{1/2}$ (h)              | 1.8                        | 4.7   | 7.8                                   | 9.4   |  |
|    | F (%)                      | 57                         |       | 56                                    |       |  |
|    | B/P ratio <sup>c</sup>     |                            | 1.6   |                                       | 1.1   |  |

<sup>a</sup> Administration at 2 mg/kg iv and 10 mg/kg *po*; iv formulation: 50% 1-methyl-2pyrrolidinone in saline; concentration = 1.0 mg/mL, dosing 2 mL; *po* formulation: 5% DMSO/0.5% MC/0.2% Tween80, concentration = 1.0 mg/mL; dosing 10.0 mL.

<sup>b</sup> Administration at 2 mg/kg iv and 10 mg/kg po; iv formulation: saline, concentration = 0.5 mg/mL; dosing 4.0 mL; po formulati.on: 0.5% MC/0.2% T80; concentration = 1.0 mg/mL, dosing 10 mL.

<sup>c</sup> B/P ratio is brain to plasma ratio calculated with iv AUC<sub>0- $\infty$ </sub> exposure.

for the 5-membered hetero-aryl derivatives **3b–3h**, a certain SAR trend was obvious. Particularly, the *c*log*P*, *c*log*D*, and PSA were substantially improved for all the compounds compared to lead **2**.

Next, the tolerability of replacing the central core aromatic ring by a hetero-aromatic ring was explored and analogs **5a–5e** (Table 2) was designed. The syntheses of analogs **5a–5e** (Scheme 2) commenced from the condensation of the commercially available 6-chloro-2-methyl-3-nitro-pyridine with the amine **6**<sup>28</sup> to yield an adduct (**7**). Hydrogenation of the nitro compound **7** afforded amine (**8**) which was coupled with aryl acid chlorides or sulfonyl chlorides to obtain the designed analogs **5a–5e**.

The H<sub>3</sub>R affinity data of analogs **5a–5e** are listed in Table 2. Introduction of heteroatoms in the central core had little effect on H<sub>3</sub>R affinity. Interestingly, clogP of these compounds was not substantially lowered as compared to the lead (**2**).

In consideration of the multiple parameters of H<sub>3</sub>R affinity and physico-chemical properties in a balanced manner, **3h** excelled. The compound displayed a rh-H<sub>3</sub>R  $K_i$  of 0.3 nM with the most noticeable improvements being a reduced clogP (3.2  $\rightarrow$  2.8),  $clogD_{7.4}$  (0.7  $\rightarrow$  0.4), and an increased PSA (35.6  $\rightarrow$  61.6) as compared to the lead (**2**) (physico-chemical properties were calculated



**Figure 2.** Forced-swimming test in rats. Dose–response relationship of **3h** (formulation:  $MC/0.6\% + H_2O$ ) dosing at mg/kg, *po*; Positive control: imipramine (60 mg/kg, *po*).

using ACD/Labs methods). Compound **3h** displayed an affinity for human and rat H<sub>3</sub>R with  $K_i$  values of 0.1 and 0.9 nM, respectively. In a human H<sub>3</sub> (H445)-CHO-CRE-Luc assay, **3h** showed an EC<sub>50</sub> of 0.7 nM (n = 1). The crystalline free base of **3h**<sup>34</sup> showed a good solubility (0.11 mg/mg in water, >2 mg/mL in GI track simulated media). Compound **3h** was further profiled (see Table 3). There were no significant issues identified which prohibited the development of **3h**. Particularly, **3h** showed a low risk of phospholipidosis induction potential in our internal in silico screen.<sup>35</sup>

When dosed at 10 mg/kg, po, **3h** displayed low plasma clearance and elimination half-life ( $t_{1/2} = 1.8$  h, mice;  $t_{1/2} = 7.8$  h, rat), high exposure (1900 ng h/mL, mice, 3150 ng h/mL, rat, respectively) and good oral bioavailability (57% in mice, 56% in rat) (Table 4). The brain exposures in mice and rats were 3100 ng h/mL and 3400 ng h/mL, respectively. The corresponding brain to plasma ratios were 1.6 and 1.1 for mice and rats, respectively. These results indicated a good correlation between in vivo PK and in vitro ADME data (Table 4).

The in vivo pharmacology of **3h** was then studied for antidepression-like effects in rats. The compound dose-dependently decreased the immobility time in the forced swimming test. The reduction of immobility time was significant at 3 and 10 mg/kg with imipramine (60 mg/kg, *po*) as a positive control (Fig. 2).

The effects of **3h** on hERG current were investigated in vitro using patch-clamp technique in the whole-cell configuration on

Chinese hamster ovary (CHO) cells stably transfected with the human gene of ERG. Compound **3h** inhibited hERG current with an IC<sub>50</sub> of 37  $\mu$ M (n = 4). The effect of **3h** on canine ERG (cERG) current was investigated in vitro using patch-clamp technique in the whole-cell configuration on CHO cells stably transfected with the canine gene of ERG. **3h** inhibited cERG current with an IC<sub>50</sub> of 44  $\mu$ M (n = 4).

In the in vivo drug safety assessment, **3h** was first evaluated in group toxicity (an acute oral evaluation of behavioral side effects in mice). Compound **3h** was well tolerated and showed no evidence of any behavioral side effects (social interaction, motility, preconvulsant and convulsions) at doses of 30 mg/kg, *po*. Tremors were observed at a dose of 100 mg/kg *po* only. This result was confirmed in an independent oral exploratory general behavior study (Irwin test) in male mice. There were no behavioral, neurologic, or autonomic effects observed when **3h** was administrated orally at 0, 10, and 30 mg/kg. The MED for FST is 10 mg/kg; the tolerable dose is 30 mg/kg. Therefore, TI for mouse was estimated to be  $3 \times$ .

The effects of **3h** in isolated guinea pig hearts (n = 3) were studied at concentrations from 0.1 to 30  $\mu$ M. Compound **3h** induced a negligible effect on the coronary pressure, suggesting no effect on coronary smooth muscle cells; and a weak to moderate decrease on the ventricular contraction at higher concentrations (23% decrease at 10  $\mu$ M, 33% decrease at 30  $\mu$ M), indicating an inhibition of L-type calcium current.

In conclusion, lead optimization guided by histamine H<sub>3</sub> receptor (H<sub>3</sub>R) affinity and calculated physico-chemical properties enabled simultaneous improvement in potency and PK properties leading to the identification of a potent, selective, devoid of hERG issues, orally bioavailable, and CNS penetrable H<sub>3</sub>R antagonist/inverse agonist **3h**. The compound was active in forced-swimming tests suggesting its potential therapeutic utility as an anti-depressive agent. After assessment of the cardiovascular and neuropsychological/behavior safety of **3h**, the compound was extensively profiled as a pre-clinical candidate.

## Acknowledgments

The authors greatly appreciate Sanofi R&D management for the strong support,  $H_3R$  project team members for their contributions, the Sanofi analytical department for their support on analytical studies in confirmation of the structures, solid state characterizations and formulation support, and the Sanofi DMPK and toxicology department for PK and in vitro/in vivo safety assessments.

#### **References and notes**

- 1. Arrang, J. M.; Garbarg, M.; Schwartz, J. C. Nature 1983, 302, 832.
- 2. Lovenberg, T. W.; Roland, B. L.; Wilson, S. J.; Jiang, X.; Pyati, J.; Huvar, A.;
- Jackson, M. R.; Erlander, M. G. *Mol. Pharmacol.* **1999**, *55*, 1101. **3**. Yao, B. B.; Sharma, R.; Cassar, S.; Esbenshade, T. A.; Hancock, A. A. *Eur. J.*
- Pharmacol. 2003, 482, 49.
  Hancock, A. A.; Esbenshade, T. A.; Krueger, K. M.; Yao, B. B. Life Sci. 2003, 73, 3043.
- 5. Pollard, H.; Moreau, J.; Arrang, J. M.; Schwartz, J. C. Neuroscience 1993, 52, 169.
- Rouleau, A.; Heron, A.; Cochois, V.; Pillot, C.; Schwartz, J. C.; Arrang, J. M. J. Neurochem. 2004, 90, 1331.

- Pillot, C.; Heron, A.; Schwartz, J. C.; Arrang, J. M. *Eur. J. Neurosci.* 2003, *17*, 307.
   Tardivel-Lacombe, J.; Rouleau, A.; Heron, A.; Morisset, S.; Pillot, C.; Cochois, V.;
- Schwartz, J. C.; Arrang, J. M. *NeuroReport* **2000**, *11*, 755. 9. Berlin, M.; Boyce, C. W.; Ruiz Mde, L. J. Med. Chem. **2011**, *54*, 26.
- 10. Brioni, J. D.; Esbenshade, T. A.; Garrison, T. R.; Bitner, S. R.; Cowart, M. D. J. Pharmacol. Exp. Ther. 2011, 336, 38.
- 11. Lin, J. S.; Sergeeva, O. A.; Haas, H. L. J. Pharmacol. Exp. Ther. 2011, 336, 17.
- 12. Panula, P.; Nuutinen, S. J. Pharmacol. Exp. Ther. 2011, 336, 9.
- 13. Passani, M. B.; Blandina, P.; Torrealba, F. J. Pharmacol. Exp. Ther. 2011, 336, 24.
- 14. Schwartz, J. C. Br. J. Pharmacol. 2011, 163, 713.
- Chen, P. Y.; Tsai, C. T.; Ou, C. Y.; Hsu, W. T.; Jhuo, M. D.; Wu, C. H.; Shih, T. C.; Cheng, T. H.; Chung, J. G. *Mol. Med. Rep.* **2012**, *5*, 1043.
- 16. Bitner, R. S.; Markosyan, S.; Nikkel, A. L.; Brioni, J. D. Neuropharmacology 2011, 60, 460.
- Ligneau, X.; Perrin, D.; Landais, L.; Camelin, J. C.; Calmels, T. P.; Berrebi-Bertrand, I.; Lecomte, J. M.; Parmentier, R.; Anaclet, C.; Lin, J. S.; Bertaina-Anglade, V.; la Rochelle, C. D.; d'Aniello, F.; Rouleau, A.; Gbahou, F.; Arrang, J. M.; Ganellin, C. R.; Stark, H.; Schunack, W.; Schwartz, J. C. J. Pharmacol. Exp. Ther. 2007, 320, 365.
- 18. Vohora, D.; Bhowmik, M. Front. Syst. Neurosci. 2012, 6, 72.
- F Egan, M.; Zhao, X.; Gottwald, R.; Harper-Mozley, L.; Zhang, Y.; Snavely, D.; Lines, C.; Michelson, D. Schizophr. Res. 2013, 146, 224.
- Mahmood, D.; Khanam, R.; Pillai, K. K.; Akhtar, M. Pharmacol. Rep. 2012, 64, 191.
- Inocente, C.; Arnulf, I.; Bastuji, H.; Thibault-Stoll, A.; Raoux, A.; Reimao, R.; Lin, J. S.; Franco, P. Clin. Neuropharmacol. 2012, 35, 55.
- Medhurst, S. J.; Collins, S. D.; Billinton, A.; Bingham, S.; Dalziel, R. G.; Brass, A.; Roberts, J. C.; Medhurst, A. D.; Chessell, I. P. Pain 2008, 138, 61.
- Yoshimoto, R.; Miyamoto, Y.; Shimamura, K.; Ishihara, A.; Takahashi, K.; Kotani, H.; Chen, A. S.; Chen, H. Y.; Macneil, D. J.; Kanatani, A.; Tokita, S. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 13866.
- 24. Sander, K.; Kottke, T.; Stark, H. Biol. Pharm. Bull. 2008, 31, 2163.
- Gemkow, M. J.; Davenport, A. J.; Harich, S.; Ellenbroek, B. A.; Cesura, A.; Hallett, D. Drug Discovery Today 2009, 14, 509.
- 26. Gao, Z.; Hurst, W. J.; Guillot, E.; Czechtizky, W.; Lukasczyk, U.; Nagorny, R.; Pruniaux, M. P.; Schwink, L.; Sanchez, J. A.; Stengelin, S.; Tang, L.; Winkler, I.; Hendrix, J. A.; George, P. G. Bioorg. Med. Chem. Lett. 2013, 23, 3416.
- 27. Gao, Z.; Hurst, W. J.; Guillot, E.; Czechtizky, W.; Lukasczyk, U.; Nagorny, R.; Pruniaux, M. P.; Schwink, L.; Sanchez, J. A.; Stengelin, S.; Tang, L.; Winkler, I.; Hendrix, J. A.; George, P. G. *Bioorg. Med. Chem. Lett.* **2013**, *23*, 3421.
- Gao, Z.; Hurst, W. J.; Guillot, E.; Nagorny, R.; Pruniaux, M. P.; Hendrix, J. A.; George, P. G. Bioorg. Med. Chem. Lett. 2013, 23, 4044.
- Rodriguez Sarmiento, R. M.; Nettekoven, M. H.; Taylor, S.; Plancher, J. M.; Richter, H.; Roche, O. Bioorg. Med. Chem. Lett. 2009, 19, 4495.
- Wager, T. T.; Pettersen, B. A.; Schmidt, A. W.; Spracklin, D. K.; Mente, S.; Butler, T. W.; Howard, H.; Lettiere, D. J.; Rubitski, D. M.; Wong, D. F.; Nedza, F. M.; Nelson, F. R.; Rollema, H.; Raggon, J. W.; Aubrecht, J.; Freeman, J. K.; Marcek, J. M.; Cianfrogna, J.; Cook, K. W.; James, L. C.; Chatman, L. A.; Iredale, P. A.; Banker, M. J.; Homiski, M. L.; Munzner, J. B.; Chandrasekaran, R. Y. J. Med. Chem. 2011, 54, 7602.
- Levoin, N.; Labeeuw, O.; Calmels, T.; Poupardin-Olivier, O.; Berrebi-Bertrand, I.; Lecomte, J. M.; Schwartz, J. C.; Capet, M. Bioorg. Med. Chem. Lett. 2011, 21, 5378.
- Ploemen, J. P.; Kelder, J.; Hafmans, T.; van de Sandt, H.; van Burgsteden, J. A.; Saleminki, P. J.; van Esch, E. *Exp. Toxicol. Pathol.* 2004, 55, 347.
- Pelletier, D. J.; Gehlhaar, D.; Tilloy-Ellul, A.; Johnson, T. O.; Greene, N. J. Chem. Inf. Model. 2007, 47, 1196.
- 34. Analytical of **3h**: LCMS: LC method: SYNERGI 2U HYDRO-RP 20 × 4.0 mm column, 0.1% TFA in water/acetonitrile 5–40% acetonitrile in 2 min then, to 95% acetonitrile at 5 min at flow rate of 1.0 mL/min; LCMS:  $t_{\rm R}$  = 1.54 min, MS: 383 (M+H<sup>+</sup>).

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz), δ (ppm): 7.44 (m, 1H), 6.92 (br s, 1H), 6.40 (br s, 1H), 6.39 (bs, 1H), 3.50 (m, 1H), 3.4–3.2 (m, 4H), 3.00 (m, 1H), 2.78 (m, 1H), 2.66 (br s, 3H), 2.48 (br s, 3H), 2.5 (m, 1H), 2.26 (s, 3H), 2.18 (m, 1H), 2.00 (m, 2H), 1.79 (m, 2H), 1.48 (m, 1H), 1.14 (d, 6.3 Hz, 3H). Calcd for  $C_{22}H_{30}N_4O_2$  382.4992; C 69.08, H 7.91, N 14.65, O 8.37; Found: C 69.05, H 8.17, N 14.69; Optical rotation: [α]<sub>D</sub> +27.45° (c 0.532, MeOH); Chiral purity: 100% (chiral HPLC).

35. Proprietary internal in silico model prediction. The model is based on carefully filtered internal experimental data. It was developed using relevant two-and three dimensional descriptors to capture molecular properties like shape, lipophilicity and electrostatic potential combined with powerful statistical methods. The model was carefully validated using test sets of novel molecules.