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Abstract

An improved and scalable process for substituted 3,8-diazabicyclo[3.2.1]octane was developed. N-Benzyl-2,5-dicarbethoxy-

pyrrolidine 2 was reduced to N-benzyl-2,5-dihydroxymethylpyrrolidine 9 and subsequently debenzylated to afford N-Boc-2,5-

dihydroxymethylpyrrolidine 10. After mesylation of the diol 10 and cyclization with benzylamine, a diversity of scaffold, 3,8-

diazabicyclo[3.2.1]octane analogue 12 was obtained in a total yield of 42% in five steps.
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The piperazine nucleus is often found embedded in chemotherapic agents exhibiting a wide range of biological

activities [1,2]. As an analogue and alternative of piperizine in drug discovery, compounds based on 3,8-

diazabicyclo[3.2.1]octanyl ring system received great interest for their biological acativities such as anti-tumor

activity [3], antiarrhythmic activity [4], antinociceptive activity [5], analgetic activity [5,6], as m-opioid receptor [7],

neuronal nicotinic acetylcholine receptor [8] as well as novel amide CCR5 antagonist [9].

Cignarella et al. [10] first reported the synthesis of 3,8-diazabicyclo[3.2.1]octane derivatives. Several 3-substituted-

8-methyl-3,8-diazabicyclo[3.2.1]octanes were synthesized starting from 2,5-dicarbethoxypyrrolidine, which was

converted into N-carbobenzoxy-2,5-pyrrolidine dicarboxylic acid anhydride in three steps. The latter reacted with

appropriate amines to give 3-substituted-8-carbobenzoxy-3,8-diazabicyclo[3.2.1]octanes-2,4-diones from which the

corresponding bicyclic bases were obtained by reduction with lithium aluminium hydride. The process suffers from

several disadvantages such as long steps, tedious and labrious isolation of intermediates and low overall yields. A more

efficient synthesis of 3-benzyl-3,8-diazabicyclo[3.2.1]octanes was subsequently reported soon and has being used

today (Scheme 1) [3,5,9,11]. The key intermediate, 2-benzylcarbamyl-5-carbethoxy pyrrolidine 4 was obtained in an

overall yield of 87% based on the recovery of starting materials by refluxing 3 with benzylamine in xylene. 4 was then

heated at 200–210 8C to afford intermediate 5 from which the 3-benzyl-3,8-diazabicyclo[3.2.1]octane was obtained by

reduction with lithium aluminiun hydride. The modified synthesis is much shorter and efficient than the original one.

But it still has some drawbacks. The intermediates need to be isolated in each step, which result in labrious work-up

and isolation. The cyclization of the key intermediate 4 was carried out at high temperature. The total yield is only 17%
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(23% based on the conversion) in five steps. In our course to synthesize this intermediate, an improved and scalable

process of diverse substituted 3,8-diazabicyclo [3.2.1]octane was developed. The synthetic route was illustrated as

Scheme 3.

1. Results and discussion

In our effort to search for novel antitumor compounds in drug discovery, we need to synthesize this scaffold in

kilogram quantities. We tried to use the same procedures as described by Cignarella [11a,b]. After mono-amidation of

ethyl 2,5-pyrrolidine dicarboxylate 3, the isolation of unreacted starting materials and product was difficult and the

yield is unsatisfactory, the subsequent cyclization is also not worked well in our hand. After several attempts to the

cyclization of the second ring, we found (Scheme 2) that when ethyl 2,5-pyrrolidine dicarboxylate 3 was reduced and

mesylated, the dimesylate 8 could be cylizated smoothly by refluxing with primary amines. This process is much easer

and the yield is reasonable. But it still has some drawbacks: the diol 7 was water soluble and hard to isolate, which also

result in tedious work up. It is also necessary to isolate the intermediates 7 and 8. The 3-benzyl-3,8-

diazabicyclo[3.2.1]octane 6 needs to be distillated at high vacuum.

Inspired by this result, we examined the same strategy from 2 without debenzylation. The results are as well as

expected. The yield of reduction of 2 is much better than that of reduction of 3 by lithium aluminium hydride. The

reaction is easy to work up. Based on those results, we proposed a modified synthesis of the bicyclic ring system

(Scheme 3). In order to maximize the diversity of the scaffold, we synthesized the di-substituted 3,8-diazabicyclo
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Scheme 1. Cignarella’s synthesis of mono-substituted 3,8-diazabicyclo[3.2.1]octane. Reagents and conditions: (a) BnNH2, benzene, reflux; (b) H2,

Pd/C, ethanol; (c) benzylamine, xylene, reflux; (d) 210 8C; (e) LiAlH4, ether, 0 8C–r.t.
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Scheme 2. alternative synthesis of mono-substituted 3,8-diazabicyclo[3.2.1]octane. Reagents and conditions: (a) LiAlH4, ether, 0 8C–r.t.; (b) MsCl,

Et3N, r.t. CH2Cl2; (c) BnNH2, CH3CN, reflux.
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Scheme 3. Synthesis of substituted 3,8-diazabicyclo[3.2.1]octane. Reagents and conditions: (a) LiAlH4, THF, 0 8C–r.t.; (b) H2, Pd/C, Boc2O,

MeOH, 40 8C; (c) MsCl, Et3N, r.t. CH2Cl2; (d) BnNH2, CH3CN, reflux.



[3.2.1]octane 12, which could be either de-Boc to modify the amine in 3-position or debenzylated to modify the amine

in 8-position and/or both.

The 2,5-dicarbethoxypyrrolidine 2 was synthesized from meso-a,a-dibromoadipate 1 by modifying the Braun and

Seeman’s method [12]. In our hand, starting with one kilogram of ethyl meso-a,a-dibromoadipate 1, we obtained the

2,5-dicarbethoxypyrrolidine 2 (888 g) quantitively by refluxing with equimolar benzylamine in toluene for 4 h

compared a yield of 82.5% in benzene for 24 h [12]. Reduction of 2 by lithium aluminium hydride in tetrahydrofuran

gives N-benzyl-2,5-dihydroxymethylpyrrolidine 9. Debenzylation of 9 in the mixture of di-tert-butyl dicarbonate and

methanol by hydrogenation using Pd/C catalyst afford N-Boc-2,5-dihydroxymethylpyrrolidine 10. Mesylation of the

diol 10 with methanesulfonyl chloride in dichloromethane, we obtained tert-butyl 2,5-bis(((methylsulfonyl)ox-

y)methyl)pyrrolidine-1-carboxylate 11. Refluxing 11 with benzylamine in acetonitrile afford the desired compound 3-

benzyl-8-Boc-3,8-diazabicyclo[3.2.1]octane 12. We also found by optimization that it is unnecessary to isolate the

intermediates in each step. After regular work up, the intermediates (2, 9, 10, and 11) were obtained and used in next

step. The 3-benzyl-8-Boc-3,8-diazabicyclo[3.2.1]octane 12 (370 g) was obtained by recrystallization in petroleum

ether [13–16]. The total yield is 42% in five steps.

2. Conclusion

We developed an improved simple and scalable process for the synthesis of 3,8-diazabicyclo[3.2.1]octane

analogues, which can be used in the synthesis of diverse 3,8-diazabicyclo[3.2.1]octane derivatives.
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