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ABSTRACT: A simple and efficient methodology for the synthesis
of large sterically hindered triarylamines in a single step was
developed. A direct N,N-diarylation of 8-aminoquinoline with
sterically hindered bromides, making use of inexpensive nickel as a
catalyst and simple sodium salt as a base, gives the products in good
to excellent yields. Various bromides and substituted 8-amino-
quinolines are tolerated. Preliminary fluorescence results indicate
that these sterically hindered and conjugated triarylamines may have
some potential in material chemistry.

Large sterically hindered triarylamines, especially those with
large conjugated systems, such as carbazole and quino-

lines, have attracted wide attention in material chemistry.1

They are important skeletons in organic light-emitting diodes
(OLEDs), sensitized solar cells, and photochromic materials.
For example, as shown in Figure 1, TPD,2 TCTA,3 TPA-AC,4

and 4CzIPN5 and their structurally related compounds are well
known for their use in LED materials and photocatalysis.

Because of their wide applications in material chemistry, the
efficient synthesis of triarylamines, which were previously
obtained mainly from the Buchwald−Hartwig reaction and
Ullmann coupling, has attracted much attention in organic
synthesis. The first kind of reliable synthetic route is the N-
arylation of secondary arylamine with aryl halide under the
catalysis of Pd,6 Ni,7 or Cu8 salts (Scheme 1a). Another
straightforward route is the use of primary aryl amines to react
with two equivalents of aryl halides (Scheme 1b).9 With noble-
metal Pd catalysts, the relatively large sterically hindered
triarylamines can be synthesized in good yields.9e,10 The cheap
copper catalyst system with the second route has also been
disclosed but is mainly used in the occasion of active aryl
iodides as a coupling partner,11 and only a few examples with
more stable, cheaper, and relatively available aryl bromides

have been disclosed.12 However, these copper systems usually
gave moderate yields when they were applied in the synthesis
of large hindered triarylamines from primary amines.13

We are interested in the nickel catalysis.14 With the second
route, only one substrate was disclosed as a side product (26%)
catalyzed by a nickel/carbene complex.15 Although the yield is
somewhat lower, this pioneering work indicates that proper
coordination would be essential for the formation of

Received: February 7, 2021
Published: March 16, 2021

Figure 1. Selected triarylamine skeleton in material chemistry.

Scheme 1. Synthetic Routes of Triarylamines
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triarylamine by nickel catalysis. Our previous work demon-
strated that 8-aminoquinole exhibits excellent coordination
ability,14c−f,16 especially to nickel.14c−f Herein we developed a
highly efficient synthesis of large sterically hindered triaryl-
amines by a nickel-catalyzed N,N-diarylation of 8-aminoquino-
line with large sterically hindered bromides in the presence of a
simple sodium base (Scheme 1b-2).
Initially, 8-aminoquinoline (1a) and 9-(4-bromophenyl)-

9H-carbazole (2a) were selected as substrates for optimizing
the reaction conditions (Table 1). The target product 3a was
detected by adding 10 mol % nickel catalyst (NiCl2(dppe),
NiCl2, Ni(OAc)2, or Ni(OTf)2) and 3.0 equiv of CH3ONa as
the base (entries 1−4), and NiCl2 was found to be the best
(93%, entry 2). Among the bases investigated, NaOH was
found to be the best base, with a 96% yield of 3a (entries 5−7).
DMF was used prior to other investigated solvents, such as 1,4-
dioxane, toluene, and acetonitrile (entries 8−10). Among the
reaction temperatures investigated, 150 °C was the best
(entries 11 and 12). When we tried to reduce the amount of
NiCl2 (entry 13) or NaOH (entry 14), the reaction effect was
worse than before. The structure of 3a was unambiguously
confirmed by single-crystal X-ray analysis (shown in Scheme
2).17

With the optimized reaction conditions in hand, we
investigated the substrate scopes with respect to various aryl
bromides (Scheme 2). For the highly hindered 9-(4-
bromophenyl)carbazole analogues, the desired products 3a−
d could be obtained in high yields (79−96%). For 4-bromo-
N,N-diphenylaniline, the target product was obtained in 91%
yield (3e). For 4-bromobiphenyl and 4-bromoterphenyl
bromides, the corresponding products 3f and 3g were obtained
in 90 and 87% yields, respectively. With electron-withdrawing
groups of bromobenzene at the para position of the phenyl
moiety (4-F, 4-Cl, 4-CF3), the corresponding products 3h−j
were obtained in good yields (84−93%). When the methyl
group was attached to the meta or para position of the phenyl
group, the target compound could be obtained in good yield
(3l(m), 3l(m,m), and 3l(p): 73, 71, and 72%, respectively),

whereas when the methyl group was attached to the ortho
position, a higher temperature was required to obtain the
corresponding compound 3l(o) in moderate yield (22%).
Through the present method, the tetraphenyl ethylene (TPE)
motif that has been demonstrated to be one of the most
common structures in the aggregation-induced emission (AIE)
molecular library18 and its analogues can be introduced to 8-
aminoquinoline in good yields (3m−o).
As depicted in Scheme 3, we explored these reactions of 2a

with various 8-aminoquinoline derivatives. When different
substituent groups attached to the C2, C4, C5, C6, or C7

Table 1. Screening of Reaction Conditionsa

entry catalyst (10 mol %) base (3.0 equiv) solvent (2.0 mL) temperature (°C) yield of 3a (%) yield of 3a′ (%)
1 NiCl2(dppe) CH3ONa DMF 150 72 24
2 NiCl2 CH3ONa DMF 150 93 trace
3 Ni(OAc)2 CH3ONa DMF 150 91 trace
4 Ni(OTf)2 CH3ONa DMF 150 90 trace
5 NiCl2 KOH DMF 150 trace 13
6 NiCl2 Na2CO3 DMF 150 trace trace
7 NiCl2 NaOH DMF 150 96 0
8 NiCl2 NaOH 1,4-dioxane 150 ND trace
9 NiCl2 NaOH toluene 150 29 35
10 NiCl2 NaOH CH3CN 150 ND trace
11 NiCl2 NaOH DMF 140 72 19
12 NiCl2 NaOH DMF 160 94 trace
13b NiCl2 NaOH DMF 150 87 10
14c NiCl2 NaOH DMF 150 85 13

a1a (0.2 mmol), 2a (0.6 mmol), catalyst (0.02 mmol), and base (0.6 mmol) in solvent (2.0 mL), 150 °C, N2, 16 h, sealed tube, isolated yield.
bNiCl2 (0.01 mmol). cNaOH (0.4 mmol). ND: not detected.

Scheme 2. Substrate Scope for Aryl Bromidesa

a1a (0.2 mmol), 2 (3.0 equiv), NiCl2 (10 mol %), NaOH (3.0 equiv),
DMF (2.0 mL), N2, sealed tube, isolated yield. btBuONa (3.0 equiv)
and H2O (15.0 uL) was used instead of NaOH, 165 °C.
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position of the 8-aminoquinoline ring, the reactions proceeded
well with good yields of the corresponding products (4a−l) by
simply changing the base from NaOH to tBuONa and water. A
possible reason might be that different substituents would have
various steric and electronic effects on the coordination of the
nickel catalyst and aminoquinolines. Thus the in situ formation
of the base by tBuONa and H2O was required in some case.
When the quinoline ring had a methyl substitution at the C2
position, it could react with 9-(4-bromophenyl)-9H-carbazole
to form the corresponding product 4a in 68% yield. When a
phenyl group was attached to the C4 position, the desired
product 4b was obtained in 95% yield. As for the C5
substituents, when electron-withdrawing groups (5-Br, 4-
fluorophenyl, 4-trifluoromethylphenyl) or electron-donating
groups (phenyl, 4-methylphenyl, 1-naphthyl) were attached to
the C5 position, the corresponding products were generated in
62−92% yields(4c−h). Furthermore, when a heterocyclic
group, such as 3-furanyl or 4-pyridyl, was attached to the C5
position, the corresponding products 4i and 4j were generated
in 67 and 89% yields, respectively. Other positions, such as a
methoxy group at the C6 position (4k) or a methyl group at
the C7 position (4l), of the 8-aminoquinoline core were also
investigated, and the desired products were obtained in good
yields.
To show the potential use of this protocol, a gram-scale

synthesis was carried out. When using 2.0 mmol of 1a and 6.0
mmol of 2a under standard conditions, the corresponding
triarylamine product 3a could be obtained in 83% yield (1.04
g) (eq 1). Because the nitro-substituted quinolines have the

potential for further transformation,19 we achieved the
nitration of the large sterically hindered 3a in moderate yield
under the condition of Ni(NO3)2·6H2O as the nitrating
reagent (eq 2). The structure of 5 was confirmed by single-
crystal X-ray analysis.17

With two series of triarylamine compounds (3a−o; 4a−l) in
hand, we proceeded to characterize their fluorescence
performance (Figure 2, Table 2). The UV absorption

wavelengths of all compounds ranged from 363 to 412 nm.
(See the Supporting Information, Figure S3 and S4.) The
maximum fluorescence emission wavelengths of these com-
pounds were from 435 to 584 nm, ranging from blue to
yellowish orange. Among the compounds 3a−o, compound 3g
had the highest fluorescence quantum yield of 23%. The
quantum yields of triarylamine products with different
substituents on the quinoline ring (4a−l) were higher than
those of the products without substitution (3a). Because of the
steric effect of the C2 methyl group of the quinoline ring on
the inhibition of rotation, 4a gave the best quantum yields
(31%), and the heterocyclic groups C5-furan (4i) and C5-
pyridine (4j) also increased the quantum yields to 27 and 25%,
respectively.
Previously, triarylamine was demonstrated to have good AIE

performance.21 We therefore tested the AIE performance of
compound 3a and found that the fluorescence intensity
increased two-fold when the water fraction was increased from
0 to 95% (Figure 3A), indicating some potential in AIE, but its
background signal was a problem. This property of 3a could be
modified after the introduction of a less conjugated and rigid
TPE motif, which was demonstrated to play an important role
in AIE by Tang et al.22 As shown in Figure 3B, 3m with two
TPE motifs exhibited a 9.5 times better AIE effect when the
water fraction was increased from 0 to 95%. Furthermore,
compared with the single TPE and 3a (Figure 3A−D), 3m had

Scheme 3. Substrate Scope for 8-Aminoquinolinesa

a1 (0.2 mmol), 2a (3.0 equiv), NiCl2 (10 mol %), tBuONa (3.0
equiv), H2O (15.0 uL), DMF (2.0 mL), N2, sealed tube, isolated
yield. bNaOH (3.0 equiv) was used instead of tBuONa and H2O; the
isolated yield is listed in parentheses. Figure 2. Fluorescence spectra of (A) 3a−o and (B) 4a−l in toluene

compared with Al(q)3 in CH2Cl2 as reference. For the full-size panels
A and B, see the SI (Figure S5).
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a higher fluorescence intensity than that of TPE and a weaker
background signal than that of 3a at the same concentration.
To understand the reaction, we performed some control

experiments to explore the possible reaction mechanism
(Scheme 4). When using 1-naphthylamine (1a′) without a
bidentate coordination site to react with 2a under standard
conditions, neither the N,N-diarylated product 6 nor the N-
arylated product 6′ was obtained (Scheme 4a), indicating that
the bidentate coordination of quinoline is critical (Scheme 4a).
In addition, when Ni(COD)2 was used as the catalyst instead
of NiCl2 (Scheme 4b), the target product 3a was also obtained
in good yield (86%), indicating that the active species of the
reaction might involve a nickel(0)/nickel(II) process. Without
a base and with the addition of 15.0 μL of H2O to the DMF
solution, the N-arylated product 3a′ could be isolated in 40%
yield (Scheme 4c), but no N,N-diarylated product 3a was
detected, indicating that the strong base plays an important
role in the N,N-diarylation of quinoline. Then, we used 3a′ to
react with 2a with NaOH, and the target product 3a was
obtained in 95% yield under standard conditions (Scheme 4d),

which indicates that the N-arylated product 3a′ is a probable
intermediate.
On the basis of the previously described control experiments

and related literature,6c,7b,16a,23 we propose here a possible
mechanism (Scheme 5). First, the NiCl2 is reduced to Ni(0)
by 8-aminoquinoline (1a); then, catalytic cycle I starts. After
the oxidative addition of aryl bromide, intermediate B is
formed. Then, 1a coordinated with B forms intermediate C.
After successively undergoing deprotonation and reductive
elimination, the monosubstituted intermediate E is generated,
which then participates in the next catalytic cycle II. After
reacting with intermediate B for the second time, the
intermediate F is generated, which undergoes deprotonation
with the base to form G, followed by reductive elimination to
generate the N,N-diarylated product H, and the Ni(0) catalyst
is regenerated.
In summary, we have developed a simple and efficient

methodology for the synthesis of large sterically hindered
triarylamines in a one-pot manner. A series of triarylamines can
be obtained in good yields by using the inexpensive NiCl2 and
sodium base. Preliminary fluorescence results indicate that
these triarylamines with large conjugated systems may have
some potential in material chemistry.

Table 2. UV Absorption and Fluorescence Propertiesa

compd. λmax (nm) λem (nm) Φ (%) compd. λmax (nm) λem (nm) Φ (%)

3a 388 508 12 3b 393 519 11
3c 385 515 6 3d 405 524 20
3e 412 584 4 3f 395 501 12
3g 358 501 23 3h 385 491 1
3i 384 477 7 3j 363 435 5
3k 387 493 10 3l(p) 399 511 9
3m 373 509 5 3n 385 512 9
3o 385 513 16 4a 379 496 31
4b 397 522 16 4c 385 512 16
4d 399 519 27 4e 405 530 17
4f 399 515 23 4g 402 519 20
4h 397 512 18 4i 398 513 27
4j 408 537 25 4k 379 499 14
4l 381 502 17 Al(q)3 381 518 17

aUV absorption was controlled between 0.025 and 0.050 in toluene for the fluorescence quantum yield. The data of fluorescence emission were
excited at the maximum absorption wavelength. ΦF of Al(q)3 is 17% in CH2Cl2.

20

Figure 3. Photoluminescence (PL) spectra of (A) 3a, (B) 3m, and
(C) TPE in THF with varying amounts of water (% fraction of
volume) with the same initial concentration of 5 μmol/L. (D)
Changes in the PL peak intensity with the water fraction. The
definition of fw is as follows: fw = Vwater/(VTHF + Vwater). For the full-
size panels A−D, see the SI (Figure S6).

Scheme 4. Control Experiments
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