Bidentate Ligand Transfer Reactions between Gold(I) Complexes

Manuel Bardají, Antonio Laguna^{*} and Mariano Laguna

Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-C.S.I.C., E-50009, Zaragoza, Spain

Reactions of the cationic derivative $[Au_2(\mu-Ph_2PCH_2PPh_2)_2][ClO_4]_2$ with $[AuX_2]^-$ (X = Cl or Br) in a 1:1 or a 1:2 molar ratio afforded tri- or di-nuclear derivatives, respectively. Neutral complexes $[Au_2(\mu-L-L)_2]$ $[L-L = S_2CNR_2$ (R = Me or CH_2Ph)] or $[Au_n(\mu-L-L)_n]$ $[L-L = S_2COR$ (R = Me or Et) or $C_8H_4NS]$ react with the cationic $[Au(PPh_3)_2]ClO_4$ in 1:2 molar ratio, to give open-ring complexes $[{Au}(PPh_3)_2(\mu-L-L)]ClO_4$. Reactions of the neutral complexes $[Au_2(\mu-S_2CNR_2)_2]$ (R = Me or CH_2Ph) with cationic $[Au_2(\mu-P-P)_2][ClO_4]_2$ (P-P = Ph_2PCH_2PPh_2 or Ph_2PCH_2CH_2PPh_2) led to the heterobridged dinuclear complexes $[Au_2(\mu-S_2CNR_2)_2]$ ($\mu-P-P$)]ClO₄. All these processes proceed *via* donor-acceptor intermediates, with bidentate ligand transfer.

Binuclear cyclic gold(I) complexes have been extensively synthesized in recent years.¹⁻² The most studied diauracycles are the bis(ylide) derivatives $[Au_2{\mu-(CH_2)_2PR_2}_2]$ (R = Me, Et, Bu or Ph), which undergo a two-^{3,4} or four-electron ^{5,6} oxidative addition to form cyclic gold(II) or gold(III) complexes. In all these reactions the bridging ylide ligand does not participate, and it preserves the dimeric nature by holding the two gold centres close together. In fact, only a few reactions have been described in which the ylide is an active component and carbon–gold bonds are cleaved.⁷⁻¹⁰

In contrast, homoleptic gold(I) complexes containing diphosphines, S–S or S–N ligands have been less studied and only a few reactions involving the bridging ligands are known. For instance, the isomerization¹¹ of the gold(II) derivatives $[Au_2(\mu-S_2CNR_2)_2X_2]$ to a dinuclear mixed-valence gold(I)-gold(III) compound $[Au^{III}(S_2CNR_2)_2][Au^IX_2]$ which takes place with partial dithiocarbamate transfer, or diphosphine migrations, which have been recently reported.^{12,13}

We have reported that bidentate ligand transfers between two homoleptic gold(I) dimers progress to produce heterobridged gold derivatives 12 and the synthesis of di- and tri-nuclear gold complexes¹⁴ by ylide-transfer reactions. The mild conditions used in these processes led us to believe that this type of reaction, via donor-acceptor intermediates, is more general than expected. Therefore we have explored a series of processes between homoleptic di- or poly-nuclear gold(1) complexes containing diphosphine, dithiocarbamate, dithiocarbonate or pyridine-2-thiolate and the mononuclear gold(I) derivatives $[AuX_2]^-$ (X = Cl or Br) or $[Au(PPh_3)_2]^+$, which evolve to di- or tri-nuclear open-ring complexes via donor-acceptor intermediates. Reactions of $[Au_2(\mu-P-P)_2]^{2+}$ $[P-P = Ph_2-P)_2$ PCH₂PPh₂(dppm) or Ph₂PCH₂CH₂PPh₂(dppe)] with [Au₂- $(\mu$ -S₂CNR₂)₂] (R = Me, Et or CH₂Ph), the latter as donor and the former as acceptor, afford heterobridged dinuclear complexes $[Au_2(\mu-S_2CNR_2)(\mu-P-P)]^+$ (R = Me or CH₂Ph; P-P = dppm or dppe).

Results and Discussion

The reaction in dichloromethane of the cationic complex $[Au_2(\mu-dppm)_2][ClO_4]_2$ with $[AuX_2]^-$ (X = Cl or Br) in a 1:1 molar ratio, leads to the trinuclear derivatives $[Au_3X_2(\mu-dppm)_2]ClO_4$ (X = Cl 1 or Br 2) according to reaction (*i*) (Scheme 1). When these reactions are performed in a 1:2 molar ratio, the previously known dinuclear derivatives $[(AuX)_2(\mu-dpm)_2](\mu-dpm)_2$

dppm)]¹⁵ are obtained [reaction (*ii*), Scheme 1]. The former implies partial transfer of the diphosphine and the latter a total transfer. We can suppose that complexes 1 and 2 are intermediates in reaction (*ii*), which is supported by the reaction of 1 or 2 with $[AuX_2]^-$ in 1:1 molar ratio to give the dinuclear complexes [reaction (*iii*), Scheme 1]. The reaction of $[Au_2(\mu-dppm)_2][ClO_4]_2$ with $[(AuX)_2(\mu-dppm)]$ in 1:2 molar ratio gives pure $[Au_3X_2(\mu-dppm)_2]ClO_4$ [reaction (*iv*), Scheme 1].

gives pure $[Au_3X_2(\mu-dppm)_2]CIO_4$ [reaction (*iv*), Scheme 1]. Complex 1 was reported ¹⁶ by us and its conductivity and IR spectral data are coincident. Complex 2 is a white solid, air- and moisture-stable at room temperature, which behaves as a 1:1 electrolyte in acetone solution. In the IR spectra absorptions occur at 1100s (br) and 624m cm⁻¹ characteristic of the perchlorate anion.¹⁷ Their ³¹P-{¹H} NMR spectra show a AA'BB' pattern: 1 $\delta_A = 38.3$, $\delta_B = 29.9$, $J_{AA} = 381.6$, $J_{AB} =$ 68.9, $J_{AB'} = -1.7$, $J_{BB'} = -0.2$ Hz; 2 $\delta_A = 37.5$, $\delta_B = 31.1$, $J_{AA} = 376.6$, $J_{AB} = 74.9$, $J_{AB'} = -1.6$, $J_{BB'} = -0.2$ Hz (the values of the coupling constants have been adjusted by iteration to approach the given experimental spectra). The higher-field resonances are assigned to the two *trans* inner phosphorus atoms and the lower resonances of the complexes $[Au_2(\mu-dppm)_2][CIO_4]_2$ and $[(AuX)_2(\mu-dppm)]$. The positive-ion fast atom bombardment (FAB) mass spectra show the peaks due to $[M - CIO_4]^+$ at m/z 1429 (15) or 1519 (50%) respectively.

In a similar way, we have carried out the same type of reactions using dppe complexes. So the reactions between $[Au_2(\mu-dppe)_2][ClO_4]_2$ and $[AuX_2]^-$ (X = Cl or Br) in a 1:1 molar ratio lead to a mixture of $[Au_3X_2(\mu-dppe)_2]ClO_4$,

Scheme 1 (i) $Q[AuX_2]$, $-Q[ClO_4]$; (ii) $2Q[AuX_2]$, $-2Q[ClO_4]$; (iii) $Q[AuX_2]$, $-Q[ClO_4]$; $Q = N(PPh_3)_2$ and X = Cl or $Q = NBu_4$ and X = Br

Table 1	Analytical an	d spectroscopic	data for comp	lexes 1-11
---------	---------------	-----------------	---------------	------------

	Vield	Analysis ^a (%)		31D (111)			
Complex	(%)	C	Н	N	NMR ^b	Λ_{M}^{c}	M.p.
$1 [Au_3Cl_2(\mu-dppm)_2]ClO_4$	67	39.65 (39.25)	2.9 (2.85)		d	140	270 (decomp.)
$2 [Au_3Br_2(\mu\text{-}dppm)_2]ClO_4$	74	38.0	2.85		d	131	260 (decomp.)
$3 [{Au(PPh_3)}_2(\mu - S_2CNMe_2)]ClO_4$	84	40.9	3.1 (3.2)	1.2 (1.25)	36.7 (s)	140	172
$4 [{Au(PPh_3)}_2 {\mu-S_2CN(CH_2Ph)_2}]ClO_4$	84	47.1	3.35	1.15	36.6 (s)	134	114
${\bf 5} [{Au(PPh_3)}_2(\mu-S_2COMe)]ClO_4$	65	41.0	3.2		36.7 (s)	136	100 (decomp.)
6 [{Au(PPh ₃)} ₂ (μ -S ₂ COEt)]ClO ₄	78	41.3	3.1		36.9 (s)	143	100 (decomp.)
7 [{Au(PPh ₃)} ₂ (μ -C ₅ H ₄ NS)]ClO ₄	75	43.8	3.15	1.3	33.8 (s)	138	110 (decomp.)
8 [Au ₂ (μ -S ₂ CNMe ₂)(μ -dppm)]ClO ₄	76	33.75	2.75	1.3	35.3 (s)	139	168
9 [Au ₂ { μ -S ₂ CN(CH ₂ Ph) ₂ }(μ -dppm)]ClO ₄	65	41.4	3.1	0.95	36.2 (s)	122	136
10 [Au ₂ (μ -S ₂ CNMe ₂)(μ -dppe)]ClO ₄	78	34.55	2.75	1.15	34.4 (s)	128	188 (decomp.)
11 [Au ₂ { μ -S ₂ CN(CH ₂ Ph) ₂ }(μ -dppe)]ClO ₄	77	42.15 (42.3)	3.35 (3.3)	1.25 (1.2)	34.7 (s)	143	148 (decomp.)

^a Calculated values in parentheses. ^b Recorded in CDCl₃, referenced to external H_3PO_4 ; s = singlet. ^c In acetone, ohm⁻¹ cm² mol⁻¹. ^d See text.

[(AuX)₂(μ -dppe)] and starting material whereas a 1:2 molar ratio afforded [(AuX)₂(μ -dppe)].

Reaction (i) of Scheme 1 can be interpreted as a nucleophilic attack of $[AuX_2]^-$ at one gold centre of the starting diauracycle which could evolve with partial transfer of the diphosphine ligand to give the trinuclear complex, which reacts further with a new molecule of $[AuX_2]^-$ through the inner gold atom (which is probably more susceptible to attack by a nucleophile) to afford the dinuclear derivatives $[(AuX)_2(\mu$ -dppm)]. It is noteworthy that although the process (iv) (Scheme 1) is very close to equation (1) (but using ClO_4^- instead of Cl^-) the results are different: equation (1) is an equilibrium while

$$[Au_{2}(\mu-dppm)_{2}Cl_{2}] + 2[(AuCl)_{2}(\mu-dppm)] \iff 2[Au_{3}Cl_{2}(\mu-dppm)_{2}]Cl \quad (1)$$

reaction (*iv*) affords pure trinuclear complexes as shown by the ³¹P-{¹H} NMR spectra of the reaction mixture. Similar intermediates have been recently proposed in the equilibrium ¹³ of $[Au_2(\mu$ -dppm)_2Cl₂] with $[(AuCl)_2(\mu$ -dppm)] [equation (1)] and in the ylide and/or dppm transfer reaction.¹² It is also supported by the crystal structures of $[Au_2(\mu$ -dppm)_2X₂] (X = Cl, ¹⁸ Br¹⁹ or NO₃²⁰) and $[Au_2(\mu$ -dppm)_2X]X' (X = X' = I; ¹⁹ X = S₂CNEt₂, X' = BH₃CN; ²¹ X = S₂CPh, X' = Cl²²) that show the approach of X to the gold atoms.

The reactions of the neutral complexes $[Au_2(\mu-S_2CNR_2)_2]$ (R = Me or CH₂Ph) or $[Au_n(\mu-L-L)_n]$ [L-L = S₂COR (R = Me or Et) or C₅H₄NS] with the cationic $[Au(PPh_3)_2]ClO_4$ in dichloromethane, in 1:2 molar ratio, led to the dinuclear complexes $[{Au(PPh_3)}_2(\mu-L-L)]ClO_4$ [L-L = S₂CNMe₂ 3, S₂CN(CH₂Ph)₂ 4, S₂COMe 5, S₂COEt 6 or C₅H₄NS 7], according to Scheme 2.

Complexes 3–7 are air- and moisture-stable white solids at room temperature. They behave as 1:1 electrolytes in acetone solution and their IR spectra show absorptions at 1090s (br) and 623m cm⁻¹ due to the perchlorate anion. The ³¹P-{¹H} NMR spectra show a singlet for the phosphorus atom of the phosphine even for complex 7 with pyridin-2-thiolate that does not split at -85 °C in deuterioacetone (Table 1). That is why we cannot decide between a μ -S,N or a μ -S co-ordination mode for this ligand. In the ¹H NMR spectra the resonances are as

Scheme 2 (i) [Au(PPh₃)₂]ClO₄; (ii) [Au(PPh₃)₂]ClO₄

expected. The positive-ion FAB mass spectra show the peaks corresponding to the cations $[M - \text{ClO}_4]^+$ at m/z (abundance, complex): 1038 (35, 3), 1190 (54, 4), 1025 (87, 5), 1039 (100, 6) and 1028 (55, 7).

The trinuclear derivatives, likely intermediates of these reactions, cannot be obtained when these processes are carried out in a 1:1 molar ratio although in the ³¹P-{¹H} and ¹H NMR spectra of reaction mixtures with L-L = S₂CNMe₂ or S₂CN(CH₂Ph)₂ resonances that can be assigned to these trinuclear intermediates are evident. Their ³¹P-{¹H} NMR spectra show a singlet at δ 37.4 and δ 37.5, respectively, whilst their ¹H NMR spectra show broad resonances at δ 3.22 (CH₃N) for L-L = S₂CNMe₂ and δ 4.78 (CH₂N) for L-L = S₂CNMe₂. In all cases, a mixture of dinuclear starting materials and complexes 3–7 is obtained.

These processes can occur in a similar way by nucleophilic attack of $[Au_n(\mu-L-L)_n]$ on $[Au(PPh_3)_2]^+$. This is also supported by the recent preparation ²³ of $[{Au(pta)_3}_2Au_2-{S_2C_2(CN)_2}_2]$ (pta = phosphatriazaadamantane), a tetranuclear chain with unsupported gold(1)-gold(1) interactions.

In accordance with the proposed donor-acceptor interaction, the reaction of $[Au_2(\mu$ -dppm)₂]²⁺ with $[Au(PPh_3)_2]^+$ does not

progress and the starting materials are recovered, as well as in the reaction of $[Au_n(\mu-L-L)_n]$ $[L-L = C_5H_4NS; n = 2,$ $L-L = S_2CNMe_2$ or $S_2CN(CH_2Ph)_2$] with $[AuCl_2]^-$.

After investigating the reactions of cationic or neutral dinuclear derivatives with the appropriate mononuclear gold complexes, the following step was to study the processes between dinuclear acceptors and dinuclear donors. Therefore we have carried out reactions of the neutral complexes $[Au_2(\mu-S_2CNR_2)_2]$ (R = Me or CH₂Ph) with the cationic complexes $[Au_2(\mu-P-P)_2][ClO_4]_2$ (P-P = dppm or dppe) in a 1:1 molar ratio, which afforded the heterobridged dinuclear derivatives $[Au_2(\mu-S_2CNR_2)(\mu-P-P)]ClO_4$ (P-P = dppm, R = Me 8 or CH₂Ph 9; P-P = dppe, R = Me 10 or CH₂-Ph 11).

Complexes 8-11 were obtained as air- and moisture-stable yellow solids at room temperature. Their acetone solutions behave as 1:1 electrolytes and their IR spectra show bands at 1100s (br) and 623m cm⁻¹ due to the perchlorate anion. The ³¹P-{¹H} NMR spectra show a singlet at $ca. \delta$ 36 (8, 9) or 34 (10, 11) for the phosphorus atoms of the dppm or dppe, respectively (Table 1). Their ¹H NMR spectra show the expected resonances due to the dithiocarbamate and the methylene protons as triplets (8, 9) or pseudo doublets (10, 11). The simplicity of the ³¹P-{¹H} NMR spectra compared with those of complexes 1, 2, or that reported for the tetranuclear complexes $[Au_4(\mu-C_3S_5)_2(\mu-dppm)_2]^{24}$ [which also shows an AA'BB' pattern; $C_3S_5^{2-} = 4,5$ -disulfanyl-1,3-dithiole-2thionate(2-)] or $[Au_4 \{SC(CN)C(CN)S\}(Ph_2PCHCHPPh_2)_2$ -Cl₂]²⁵ points to a dinuclear structure rather than a larger nuclearity, as was shown for the $[Au_2{\mu-(CH_2)_2PPh_2}](\mu-S_2CNR_2)]^{12}$ derivatives. Their dinuclear structure is also supported by their positive-ion FAB mass spectra which show in all cases the parent ion $[Au_2(S_2CNR_2)(P-P)]^+$ as the base peak at m/z 898 (8), 1050 (9), 912 (10) and 1064 (11).

Experimental

Infrared spectra were recorded on a Perkin-Elmer 559 or 883 spectrophotometer, over the range 4000–200 cm⁻¹, by using Nujol mulls between polyethylene sheets and ¹H and ³¹P NMR spectra on a Varian UNITY 300 (VNMR Software Version 4.1) in CDCl₃ solutions; chemical shifts are quoted relative to SiMe₄ (external, ¹H) and H₃PO₄ (external, ³¹P). Carbon, H and N analyses were performed with a Perkin-Elmer 2400 micro-analyser. Conductivities were measured in acetone solution with a Philips PW 9509 apparatus. Melting points were measured on a Büchi apparatus and are uncorrected. Mass spectra were recorded on a VG Autospec using positive-ion fast atom bombardment techniques.

The yields, C, H and N analyses, conductivities, melting points and ${}^{31}P{}^{1}H$ NMR data are listed in Table 1. All reactions were carried out at room temperature.

Syntheses.— $[Au_3X_2(\mu-dppm)_2]ClO_4$ (X = Cl 1 or Br 2). To a suspension of $[Au_2(\mu-dppm)_2][ClO_4]_2^{26}$ (0.068 g, 0.05 mmol) in dichloromethane (40 cm³) was added Q[AuX_2]²⁷ [0.05 mmol; Q = N(PPh_3)_2, X = Cl, 0.040 g; Q = NBu_4, X = Br, 0.030 g]. After stirring the suspension for about 4 h, the clear solution was evaporated to *ca*. 5 cm³. Addition of diethyl ether (15 cm³) led to precipitation of complex 1 or 2. The former was washed three times with MeOH–Et₂O (5 cm³, 1:1), to remove [N(PPh_3)₂]ClO₄.

R = Me 10 or CH₂Ph 11

[(AuX)₂(μ -dppm)] (X = Cl or Br). These complexes were obtained in two different ways. (a) To a suspension of [Au₂-(μ -dppm)₂][ClO₄]₂ (0.068 g, 0.05 mmol) in dichloromethane (40 cm³) was added Q[AuX₂] [0.1 mmol; Q = N(PPh₃)₂, X = Cl, 0.081 g; Q = NBu₄, X = Br, 0.060 g]. The mixture was stirred for 3 h and then was evaporated to ca. 5 cm³. Addition of diethyl ether (20 cm³) led to precipitation of the complexes. The compound with X = Cl was washed three times with MeOH–Et₂O (5 cm³, 1:1), to remove [N(PPh₃)₂]ClO₄. Yield: 53 (Cl), 80% (Br).

(b) To a solution of complex 1 (0.05 mmol, 0.076 g) or 2 (0.05 mmol, 0.081 g) in dichloromethane (30 cm³) was added Q[AuX₂] [0.05 mmol; Q = N(PPh₃)₂, X = Cl, 0.040 g; Q = NBu₄, X = Br, 0.030 g]. After stirring for about 2 h, the solution was evaporated to *ca*. 5 cm³. Addition of diethyl ether (20 cm³), led to precipitation of the complexes. The chloride compound was washed three times with MeOH-Et₂O (5 cm³, 1:1), to remove [N(PPh₃)₂]ClO₄. Yield 45 (Cl), 75% (Br).

[{Au(PPh₃)}₂(μ-L-L)][ClO₄] [L-L = S₂CNMe₂ 3, S₂-CN(CH₂Ph)₂ 4, S₂COMe 5, S₂COEt 6 or C₅H₄NS 7]. To a solution of [Au₂{μ-S₂CN(CH₂Ph)₂}₂]¹² (0.047 g, 0.05 mmol) or a suspension of [Au₂(μ-S₂CNMe₂)₂]¹² (0.032 g, 0.05 mmol) or [Au_n(μ-L-L)_n]^{28.29} (0.05 mmol if n = 2; L-L = S₂COMe, 0.030 g; S₂COEt, 0.032 g; or C₅H₄NS, 0.031 g) in dichloromethane (40 cm³) was added [Au(PPh₃)₂]ClO₄³⁰ (0.1 mmol, 0.082 g). The mixture was stirred for 90 min, and evaporated to *ca*. 5 cm³. Addition of diethyl ether (20 cm³) afforded complexes **3–7**. Solids were washed with diethyl ether (2 × 5 cm³). ¹H NMR: **3**, δ 7.45–7.30 (m, Ph) and 3.73 (s, MeN); **4**, δ 7.60–7.24 (m, Ph) and 5.25 (s, CH₂N); **5**, δ 7.53 (br, Ph), 4.43 (s, MeO); **6**, δ 7.65–7.45 (m, Ph), 4.73 [q, J(HH) = 7.1, CH₂O] and 1.47 (t, CH₃); **7**, δ 8.39 [d, J(HH) = 5.7], 7.78 [d, J(HH) = 7.9], 7.67 [t, J(HH) = 7.3 Hz] and 7.50–7.40 (m).

[Au₂(μ -S₂CNR₂)(μ -P-P)]ClO₄ (P-P = dppm, R = Me 8 or CH₂Ph 9; P-P = dppe, R = Me 10 or CH₂Ph 11). To a solution of [Au₂{ μ -S₂CN(CH₂Ph)₂]₂] (0.047 g, 0.05 mmol) or a suspension of [Au₂(μ -S₂CNMe₂)₂] (0.032 g, 0.05 mmol) in dichloromethane (40 cm³) was added [Au₂(μ -P-P)₂][ClO₄]₂²⁶ (0.05 mmol; P-P = dppm 0.068 g or dppe 0.069 g). After stirring for 1 d (8), 10 h (10) or 2 h (9, 11) the unreacted starting material was filtered off. The clear solution was evaporated to *ca.* 5 cm³ and addition of diethyl ether led to precipitation of complexes 8-11. ¹H NMR: 8, δ 7.80-7.30 (m, Ph), 4.14 [t, J(HP) = 13.0, PCH₂P] and 3.57 (s, MeN); 9, δ 7.90-7.25 (m, Ph), 5.25 (s, CH₂N) and 4.24 [t, J(HP) = 12.2, PCH₂P]; 10, δ 7.83-7.37 (m, Ph), 3.64 (s, MeN) and 3.05 ['d', J(HP) = 12.6, P(CH₂)₂P]; 11, δ 7.87-7.40 (m, Ph), 5.25 (s, CH₂N) and 3.09 ['d', J(HP) = 12.6 Hz, P(CH₂)₂P].

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica (No. PB91-0122) for financial support and the Ministerio de Educación y Ciencia for a grant (to M. B.).

References

- 1 H. Schmidbaur, Organogold Compounds, Gmelin Handbuch der Anorganischen Chemie, Springer, Berlin, 1980.
- 2 R. Usón and A. Laguna, Coord. Chem. Rev., 1986, 70, 1.
- 3 H. Schmidbaur, Acc. Chem. Res., 1975, 8, 62.
- 4 H. H. Murray, J. P. Fackler, jun., L. C. Porter, D. A. Briggs, M. A. Guerra and R. J. Lagow, Inorg. Chem., 1987, 26, 357.
- 5 P. Jandik, U. Schubert and H. Schmidbaur, Angew. Chem., Int. Ed. Engl., 1982, 21, 73.
- 6 H. H. Murray, J. P. Fackler, jun., and D. A. Tocher, J. Chem. Soc., Chem. Commun., 1985, 1278.
- 7 P. Jandik and H. Schmidbaur, J. Chromatogr., 1981, 213, 47.
- 8 H. C. Knachel, C. A. Dettorre, H. J. Galaska, T. A. Salupo, J. P. Fackler, jun., and H. H. Murray, Inorg. Chim. Acta, 1987, 126, 7.
- 9 J. P. Fackler, jun., and B. Trzcinska-Bancroft, Organometallics, 1985. 4. 1891.
- 10 A. W. Johnson, Ylides and Imines of Phosphorus, Wiley, New York, 1993, pp. 543-548.
- 11 C. Calabro, B. A. Harrison, G. T. Palmer, M. K. Moguel, D. L. Rebbert and J. L. Burmeister, Inorg. Chem., 1981, 20, 4311.
- 12 M. Bardají, N. G. Connelly, M. C. Gimeno, J. Jiménez, P. G. Jones, A. Laguna and M. Laguna, J. Chem. Soc., Dalton Trans., 1994, 1163. 13 I. J. B. Lin, J. M. Hwang, D. Feng, M. C. Cheng and Y. Wang, Inorg.
- Chem., 1994, 33, 3467. 14 E. Cerrada, M. C. Gimeno, J. Jiménez, P. G. Jones, A. Laguna and M. Laguna, Organometallics, 1994, 13, 1470.

View Article Online

- 15 H. Schmidbaur, A. Wohlleben, F. Wagner, O. Orama and G. Huttner, Chem. Ber., 1977, 110, 1748.
- 16 R. Usón, A. Laguna, M. Laguna, E. Fernández, M. D. Villacampa, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1983, 1679
- 17 M. N. Gowda, S. B. Naikar and G. K. N. Reddy, Adv. Inorg. Chem.
- Radiochem., 1984, 28, 255. 18 H. Schmidbaur, A. Wohlleben, A. Schubert, A. Frank and G. Huttner, Chem. Ber., 1977, 110, 2751.
- 19 J. Shain and J. P. Fackler, jun., Inorg. Chim. Acta, 1987, 131, 157.
- 20 J. C. Wang, M. N. I. Khan and J. P. Fackler, jun., Acta Crystallogr., Sect. C, 1989, 45, 1482.
- 21 M. N. I. Khan, C. King, D. D. Heinrich and J. P. Fackler, jun., Inorg. Chem., 1989, 28, 2150.
- 22 J. C. Wang and L. K. Liu, Acta Crystallogr., Sect. C, 1994, 50, 704.
- 23 J. P. Fackler, jun., R. J. Staples and Z. Assefa, J. Chem. Soc., Chem. Commun., 1994, 431.
- 24 E. Cerrada, P. G. Jones, A. Laguna and M. Laguna, J. Chem. Soc., Dalton Trans., 1994, 1325.
- 25 R. M. Dávila, R. J. Staples and J. P. Fackler, jun., Organometallics, 1994, 13, 418.
- 26 R. Usón, A. Laguna, M. Laguna, M. N. Fraile, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1986, 291.
- 27 P. Braunstein and R. J. H. Clark, J. Chem. Soc., Dalton Trans., 1973, 1845.
- 28 C. W. Denko and A. K. Anderson, J. Am. Chem. Soc., 1945, 67, 2241. 29 R. Usón, A. Laguna, M. Laguna, J. Jiménez, M. P. Gómez, A. Sainz
- and P. G. Jones, J. Chem. Soc., Dalton Trans., 1990, 3457. 30 N. C. Baenziger, K. M. Dittemore and J. R. Doyle, Inorg. Chem.,
- 1974. 13, 805.

Received 11th October 1994; Paper 4/06184E