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Abstract: Due to the interesting pharmacological activity observed for CI-988, a potent and selective CCK-B 
receptor antagonist, we have continued to study the SAR of this antagonist. This particular study examines the 
importance of the indole moiety for binding affinity. The synthesis and receptor binding affinity for analogs 
containing functionalized indole derivatives and replacing the indole with various heterocycles are reported. 
© 1997 Elsevier Science Ltd. 

Two receptor subtypes for cholecystokinin (CCK), a 33 residue polypeptide, are presently known.1 CCK- 

A receptors are distributed mainly in peripheral tissue such as gall bladder and pancreas, while CCK-B receptors 

are located mainly in the central nervous system. The role of CCK in anxiety/panic disorders, acting via 

interactions with the CCK-B receptors, has been explored. Selective antagonists of this receptor are known to 

produce anxiolytic-like effects in both animal models2 and humans.3 Thus, it has been postulated that CCK-B 

receptor antagonists could represent a novel treatment for CNS disorders such as anxiety and panic attacks. 

Recently, the pharamcological profiles of a number of diverse antagonists have been described.4 

Previous work in our laboratories5 led to the development of dipeptoid CCK-B receptor antagonist, CI- 

988, which exhibits potent and selective antagonism at the CCK-B receptor.Sa Due to the encouraging biological 

results of CI-988, we felt that SAR studies at both the C- and N- terminus might expand our understanding of the 

structural requirements for potency and selectivity. It was determined that the optimal moiety for potent CCK-B 

receptor binding at the N-terminus is [(2-adamantyloxy)carbonyl]-o~-methyl-(R)-tryptophan.Sa,6 SAR studies at 

the C-terminus examined various side chains of CI-988.5,6b,7 In this particular study, the effect of replacing the 

indole moiety of CI-988 with heterocycles and the effect of substituents on the indole ring were examined. 
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Chemistry 
Examples 1-5 (Table 1) were synthesized from 5-fluoro-D,L-tryptophan (II) via the route illustrated in 

Scheme 1. Methyl ester (IV) was obtained by condensation of ester (II) with benzaldehyde, followed by 

subsequent alkylation of I I I  with methyl iodideSa. Treatment of IV with 2-adamantyl chloroformate,Sa followed 

by hydrolysis yielded acid (V). Coupling of V with N-(2-amino-l-phenylethyl)succinamide benzyl esterSb gave 
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example 1. Hydrogenation (20% Pd/C, H2) of I gave 2. Example 3 was isolated by chromatography of 2 (silica 

gel, 65% EtOAc/hexane). Examples 4 and 5 were synthesized via this same route, excluding alkylation with 

methyl iodide. For examples 7 and 19, the appropriate indole analog of acid (V) was coupled with 

phenethylamine and 2-(S)-amino- 1-(S)- 1,3-propanediol, respectively. 
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(a) MeOH/HCI; (b) 1 M K2CO3/Et20; (c) PhCHO, MgSO4, THF, 25 °C; (d) LDA, CH31, 0.6 M citric acid, 
1.35 M K2CO3, 0 °C to 25 °C; (e) 2-adamantyl chloroformate, NEt3, THF, 25 °C; (f) LiOH, dioxane/H20, 
25 °C; (g) N-(2-amino- 1-phenylethyl)succinamide benzyl ester, HOBt, DCC, EtOAc, 25 °C; (h) 20%Pd/C, 
H2, THF, 25 °C. 

Examples 8-16 (Table 1) were synthesized via the route illustrated in Scheme 2. Condensation of amine 

(VI) with benzaldehyde, followed by alkylation with various halides (R iX)8a yielded ester VIII. Treatment of 

VIII  with 2-adamantyl chloroformate, then hydrogenation (20% Pd/C, H2) or hydrolysis (LiOH) yielded acid 

(IX). Coupling of IX with phenethyl amine gave analogs of I, in which the indole moiety is replaced with 

various heterocycles. The alkyl halides used in the synthesis of 8, 10,  11,  14,  16, 23, and 24 were 

commercially available. (For 23 and 24, acid (IX) was coupled with 2-(S)-amino-l-(S)-phenyl-l,3- 

propanediol.Sb) Example 9 was isolated by the removal of the phthalimide of 8 with hydrazine/EtOH. Formation 

of the primary alcohol of benzotriazole with 36% CH20/H20, followed by treatment with thionyl chloride, gave 

the desired alkyl halide needed for the synthesis of 12. The bromide for 13 was synthesized by treating 3- 

methylbenzofuran-2-carboxylic acid with dimethylamine, followed by NBS. For example 15, intermediate VIII  

of 13 was coupled with the adamantyl chloroformate and treated with borane to give the desired intermediate IX. 

The appropriate bromides for 6, 16, and 17 were synthesized by alkylating benzyl methyl malonate with either ~, 

c(-dibromo-o-xylene or 1,8-bis(bromomethyl)-naphthalene in the presence of Nail. Reduction of the benzyl ester 

(20% Pd/H2), followed by coupling with 2-adamantanol using diphenylphosphoryl azide and triethylamine, 

followed by hydrolysis (LiOH) gave acid IX. 

Scheme 3 illustrates the synthesis of 20-22. Coupling of ct-methyl-D,L-tyrosine methyl ester (X) with 2- 

adamantyl chloroformate gave XI. Acid (XIV) was obtained by treatment of XI with benzyl chloride or methyl 

iodide to give XII and XIII,  respectively,and then hydrolysis (LiOH). Coupling of XIV with 2-(S)-amino-1- 

(S)-l,3-propanediol yielded the corresponding amide (I) (R4 = OPh, OH, OMe, examples 20-22, respectively). 
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(a) PhCHO, MgSO4, THF, 25 °C; (b) LDA, RIX, 0.6 M citric acid, 1.35 M K2CO 3, 0 °C to 25 °C; 
(c) 2-adamantyl chlorformate, NEt3, THF, 25 °C; (d) 20%Pd/C, H2, THF, 25 °C or LiOH, dioxane/H20, 
25 °C; (e) NH2CH2CH2Ph, HOBt, DCC or EDCI, EtOAc or CH2CI 2, NEt3, 25 °C. 
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(a) 0.001 M K2CO3/EtOAc; (b) 2-adamanyl chloroformate, NEt3, THF, 25 °C; (c) PhCH2C1, K2CO 3, 
CH3CN, A; (d) CH3I, K2CO 3, CH3CN, A; (e) LiOH, dioxane/H20; (f) 2-(S)-amino-I-(S)-1,3-propanediol, 
HOBt, DCC, EtOAc, 25 °C. 

Resu l t s  and  D i s c u s s i o n  

It had previously been shown that the N-terminal carbamate alkyl moiety required a cycloalkyl or a bulky 

substituent rather than a straight chain or aromatic hydrocarbon to achieve micromolar CCK-B receptor affinity.6a 

A study of bulky, fused C-10 cyclic systems led to the 2-adamantyl group which has been shown to be the 

optimal N-terminus necessary for potent CCK-B binding. However, a variety of side chains at the C-terminus 

were utilized. Examples 1-6 have the same side chain as CI-988, whereas 7-18 and 19-24 utilize phenethyl 

amine and 2-(S)-amino-1-(S)-1,3-propanediol, respectively, side chains that could be synthesized more easily. 

Since the parent compounds (75a and 198b) both showed good affinity for the CCK-B receptor (ICs0 = 32 nM 

and 6.1 nM, respectively), we felt that 7 and 19 would be reasonable reference compounds for this SAR study. 

Previous efforts in our laboratories focused on optimizing the C- and N-terminal regions of CI-988. This 

study focused on modifying the central m-methyl tryptophan moiety. Based on this SAR study, very little 
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TABLE 1 (cont'd). 
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alCs0 represents the concentration (riM) producing half maximal inhibition of specific binding of [ 125I] Bolton-Hunter-labeled CCK-8 to CCK 
receptors in the mouse cerebral cortex (CCK-B) or the rat pancreas (CCK-A). For compounds tested more than once, the value given is the 
geometric mean. Complete protocol of both assays is described by Boden et al, 6b bHPLC conditions: [Hypersil BDS, 250 x 4,6 mm, 5 }.tm 
column; 55:45 CH3CN:buffer (0.5 M NH4H2PO 4, 0.5% TEA), pH 3.0]. CNot tested, dNot determined, eSee ref 5a for preparation, fSee ref 8b for 
preparation. 
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structural variation is tolerated in this region of the molecule. Remarkably, even the very conservative 5-fluoro- 

substituted indole analog (2) was five times less potent and ten times less selective than CI-988. Consistent with 

previous studies, Sd analogs that lacked the c~-methyl group in the tryptophan moiety (5, 6, 17, and 18) also 

displayed reduced binding affinity. Not surprisingly, analogs possessing the N-terminus phenethyl amide moiety 

(8-18) were significantly less potent. Improved activity was obtained with the more optimal phenylpropanediol 

N-terminus (19-24). 

In conclusion, "dipeptoids" in which the indole ring of CI-988 has been replaced with various heterocycles 

and substituted indole derivatives, have been synthesized and studied as potential CCK-B receptor ligands. The 

results from this study (Table 1) indicate that the binding site of the CCK-B receptor prefers the indole ring and 

does not tolerate the heterocycles.The only compound that maintained affinity for the CCK-B receptor similar to 

that of CI-988 was 2. However, the 5-fluoro-substituent of 2 caused a ten-fold reduction in selectivity for the 

CCK-B vs CCK-A receptor. 
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