

Article

Subscriber access provided by Uppsala universitetsbibliotek

"Ligandless" Pentafluoroethylation of Unactivated (Hetero)Aryl and Alkenyl Halides Enabled by the Controlled Self-Condensation of TMSCF-Derived CuCF

Jordi Mestre, Sergio Castillón, and Omar Boutureira

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b02001 • Publication Date (Web): 03 Oct 2019

Downloaded from pubs.acs.org on October 7, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

"Ligandless" Pentafluoroethylation of Unactivated (Hetero)Aryl and Alkenyl Halides Enabled by the Controlled Self-Condensation of TMSCF₃-Derived CuCF₃

Jordi Mestre, Sergio Castillón, and Omar Boutureira*

Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, 43007 Tarragona, Spain. *E-mail: omar.boutureira@urv.cat

Supporting Information Placeholder

ABSTRACT: Pentafluoroethylation of unactivated $C(sp^2)$ –X bonds (X = I, Br) using a *storable*, "ligandless" CuC₂F₅ reagent prepared by controlled self-condensation of ready available TMSCF₃-derived CuCF₃ has been developed. A thorough analysis by ¹⁹F NMR and ESI–MS revealed the nature of this reagent in solution. The operational simplicity and robustness of this system enables the efficient, late-stage incorporation of C₂F₅ units into a variety of (hetero)aryl and complex alkenyl halides such as glycals, nucleosides, and nucleobases.

INTRODUCTION

In recent years, numerous reports highlight the importance of incorporating fluorinated motifs into drug candidates to boost their biophysical and/or pharmacological properties.^{1,2} Despite the tremendous progress made in monofluorination³ and trifluoromethylation,⁴ synthetic methods for the late-stage introduction of longer perfluoroalkyl chains $(R_f)^5$ and especially the pentafluoroethyl motif (C_2F_5), remain underdeveloped. They tyically involve nucleophilic,⁶ electrophilic,⁷ radical,⁸ or metalmediated/catalyzed transformations^{9,10} via the in situ generation of L_n[CuC₂F₅] and subsequent cross-coupling with C(sp²)-X bonds (X = I, Br) (Scheme 1a).¹⁰ Methods to generate CuC_2F_5 from C₂F₅-precursors use the expensive TMSC₂F₅¹¹ elevated decarboxylation temperatures (>140 °C) of hygroscopic pentafluoropropionate salts (or esters),¹² and the activation of a non-ozone depleting, gaseous C_2F_5H , greenhouse hydrofluorocarbon (HFC-125).13 Moreover, the commercial availability of CuC₂F₅ reagents limited is to Pentafluoroethylator[®] [(Phen)CuC₂F₅]¹⁴ that is still considerably air/moisture-sensitive and too expensive to be implemented in large-scale operations (~83.000 \$/mol).¹⁵ Alternatively, from as early as 1986, Wiemers and Burton detected the formation of CuC₂F₅ species produced after decomposition of non-stabilized CuCF₃.¹⁶ The formation of CuC₂F₅ and longer perfluoroalkyl chains is widely accepted to occur by initial α -fluoride elimination from CuCF₃ and subsequent difluorocarbene insertion into the Cu-CF₃ bond to afford Cu(CF₂)_nCF₃ species (Scheme 1b).

Scheme 1. Syntheses of Cu^I-Pentafluoroethyl Reagents (*upper panel*) and This Work – Synthesis and Characterization of *Storable*, "Ligandless" CuC₂F₅ by Controlled Self-Condensation of TMSCF₃-Derived CuCF₃ (*lower panel*)

TMS = trimethylsilyl, NMP = N-methyl-2-pyrrolidone, DMF = N,N-dimethylformamide, DMI = 1,3-dimethyl-2-imidazolidinone.

Scheme 2. Synthesis and Characterization of "Ligandless"

^aSee the SI for details. BTB = 1,3-bis(trifluoromethyl)benzene.

This detrimental trifluoromethylation side reaction detected with non-stabilized CuCF₃ delivers unwanted perfluoroalkyl byproducts.¹⁷ Although Yagupolskii¹⁸ reported the deliberate access to CuC₂F₅ via decomposition of CuCF₃, the resulting organometallic species showed limited reactivity (<4% conv.) with unactivated substrates. During the preparation of this manuscript,¹⁹ the controlled synthesis of a *liganded* CuC₂F₅ from TMSCF₃-derived CuCF₃ was described by Hu and coworkers.²⁰ Despite this progress, information regarding the nature of the reagent and a broader evaluation of substrate scope focused on using milder reaction conditions specially with more sensitive/complex systems is still needed. To address this challenge, we envisioned a method for taming the uncontrolled generation of CuC₂F₅, yet balancing its stability/reactivity profile without the necessary use of stoichiometric, conventional dative ligands. The "ligandless"²¹ nature of CuR_f is a key issue in latestage protocols since its effect in the reactivity/stability balance of the organometallic system is often underestimated (Scheme 1c).

RESULTS AND DISCUSSION

Optimization of the Synthesis and Characterization of "Ligandless" CuC_2F_5. We started with the divergent preparation of *storable*, "ligandless" CuCF₃ and CuC₂F₅ reagents by pregenerating CuCF₃ from TMSCF₃ (Scheme 2a and Table 1). Although initial attempts with CuI, TMSCF₃, and KF using strong coordinating CH₃CN hampered the formation of CuCF₃, the latter was smoothly afforded in 70% yield by conducting the reaction in pure DMF (Table 1, entry 1 *vs.* 2). Grushin and coworkers²² also noticed that increasing the Lewis acidity of CuX,

which is in the order CuCl>CuBr>CuI (Table 1, entry 2 vs. 3, 4 vs. 5), promotes decomposition of CuCF₃ by favoring the α fluoride elimination to difluorocarbene species that can insert into $Cu(CF_2)_nCF_3$ to produce $Cu(CF_2)_{n+1}CF_3$ species (Scheme 2a) and SI, Scheme S1). To limit the production of CuC₂F₅, the reaction was conducted at 0 °C in 5:1 DMF/DMI to improve the stability of CuCF₃. Certainly, the yield of CuCF₃ increased to 87% while that of CuC₂F₅ decreased to 8% providing an 11:1 $CuCF_3/CuC_2F_5$ selectivity ratio (Table 1, entry 4). Under the same conditions, the use of CuCl gave worse results in terms of vield of CuCF₃ (46%) with a 4.6:1 CuCF₃/CuC₂F₅ ratio and also afforded $[Cu(CF_3)_4]^-$ (Ic) in 11% yield. This can be explained by the greater acidity of CuCl compared to CuBr (Table 1, entry 5). Using DMI and DMF/DMI mixtures with CuBr afforded CuCF₃ in 88% and 84% yield, respectively and reduced the yield of CuC₂F₅ to *ca.* 1% (Table 1, entries 6 and 7). Finally, after optimization (Table 1, entries 1–7), best results for CuCF₃ were obtained using 1:1:1 TMSCF₃/CuBr/KF system in 1:1 DMF/DMI as stabilizing solvent system at 0 °C (Table 1, entry 8). ¹⁹F NMR showed signals at -27.3 ppm and -30.8 ppm, typically assigned to neutral CuCF₃ (Ia) and $[Cu(CF_3)_2]^-$ (Ib), respectively (Scheme 2a). Since the anionic species that are readily oxidized to $[Cu(CF_3)_4]^-$ (Ic) are indeed less effective towards trifluoromethylation reactions,^{23,2} a higher proportion of neutral CuCF₃ (Ia) is desired. While stability studies revealed no detectable changes after storing the reagent solution at -30 °C for at least 1.5 months, decomposition to CuC₂F₅ and higher order CuR_f species occurred at rt within days (Supporting information (SI), Figure S3).

Next, we optimized this CuCF₃-to-CuC₂F₅ conversion by small adjustments on essential parameters (solvent, CuX, T, and t). Thus, CuC_2F_5 was preferentially obtained conducting the reaction in pure, non-deoxygenated DMF, adding a slight excess of CuBr, and applying a gradient heating from rt to 55 °C (Table 1, entry 9). The control of the temperature was crucial since a too fast conversion of CuCF₃ increase the yield of longer perfluoroalkyl CuR_f species. Similarly, addition of >1.25 equiv of CuBr also lowered the selectivity and longer perfluoroalkyl chains were obtained. The amount of DMF was also relevant since concentrated reaction mixtures resulted in the formation of longer perfluoroalkyl chains and too diluted reactions slowed down the conversion of CuCF₃. The use of CuBr/TMSCF₃/KF in a 1:2:1 ratio (considering that two equivalents of CuCF₃ are required for the formation of one CuC₂F₅) delivered higher concentrations of CuCF₃ and CuC₃F₇ presumably due to the slow formation of CuCF₃ and competing insertion of difluoromethylene to CuC_2F_5 (Table 1, entry 10). We monitored the progress by ¹⁹F NMR in DMF to confirm purity and selectivity, and ¹⁹F COSY determined CF₂-CF₃ spin systems for each species (Scheme 2b and SI, Figure S2). While ¹H NMR only showed a doublet (J = 7.5 Hz) at 0.22 ppm, which was assigned to TMSF, $^{13}C{^{1}H}$ NMR showed the characteristic multiplicity pattern according to the fluoroalkyl moiety, a triplet of quartets (${}^{1}J$ = 285.0 Hz, ${}^{2}J = 53.8$ Hz) at 140.3 ppm and a quartet of triplets $({}^{1}J = 281.2 \text{ Hz}, {}^{2}J = 29.8 \text{ Hz})$ at 124.2 ppm, assigned to CF₂ and CF₃, respectively. Next, the nature and composition of the complex was carefully evaluated by ¹⁹F diffusion-ordered spectroscopy (DOSY) NMR ($D = 8.06 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$ for IIa, D = $7.88 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$ for **IIb**) and ESI-MS (182.9213 Da for **IIa**) [M+H]⁻, 300.9168 Da for **IIb** [M]⁻) revealing the presence of species with a molecular weight compatible with the coordination of ~3 DMF for IIa and ~2 DMF for IIb (Scheme 2b and SI, Table S1 and Figures S5-8).

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

Table	1.	Optimization	of	the	Divergent	Preparation	of
CuCF ₃ and CuC ₂ F ₅ from TMSCF ₃ ^a							

TMSCF3+KF —			CuX, T, t Solvent \sim Cu[(CF ₂) _n CF ₃] _m					
entry	solvent (v/v)	CuX (equiv)	Т (°С)	t (h)	yield (%) ^{b,c} of CuR _{f}			
					CF3 ^d	C ₂ F ₅ ^e	C ₃ F ₇	
1 ^f	CH ₃ CN	CuI (1)	rt	3	17(13)	0	0	
2	DMF	CuI (1)	rt	3	70(44)	2	0	
3	DMF	CuBr (1.25)	rt	3	67(9)	26	0	
4	DMF/ DMI (5:1)	CuBr (1.25)	0	3	87(20)	8	0	
5	DMF/ DMI (5:1)	CuCl (1.25)	0	3	46(5) ^g	10	0	
6	DMI	CuBr (1.25)	0	3	88(26)	<1	0	
7	DMF/ DMI (1:1)	CuBr (1.25)	0	3	86(20)	2	0	
8	DMF/ DMI (1:1)	CuBr (1)	0	3	91(19)	<1	0	
9	DMF	CuBr (1.25)	$ rt \\ \rightarrow \\ 55 $	33	0	87(4)	7 ^{<i>h</i>}	
10	DMF	CuBr (0.5)	$ rt \\ \rightarrow \\ 55 $	10	2	74(15)	10 ^{<i>h</i>}	

^{*a*}Conducted in a Schlenk flask with TMSCF₃ (1 equiv) and KF (1 equiv) in DMF (0.4 M) unless otherwise indicated (see the SI for details). ^{*b*}All Cu[(CF₂)_nCF₃]_m species **Ia,b** (n=0, m=1,2) and **IIa,b** (n=1, m=1,2) included. ^{*c*}Determined by ¹⁹F NMR using 1,3-bis(trifluoromethyl)benzene (BTB) as internal standard. ^{*d*}Yield of [Cu(CF₃)₂]⁻ species (**Ib**, n=0, m=2) in round brackets. ^{*e*}Yield of [Cu(C₂F₅)₂]⁻ species (**Ib**, n=1, m=2) in round brackets. ^{*f*}61% conversion of TMSCF₃ determined by ¹⁹F NMR. ^{*s*}[Cu(CF₃)₄]⁻ species (**Ic**, n=0, m=4) detected in 11% yield. ^{*h*}The selectivity defined as the molar ratio CuC₂F₅/CuC₃F₇ is ~10.

Equilibration of CuR_f Species. Both monomeric compounds CuR_f and $[Cu(R_f)X]^-$ are in equilibrium with the corresponding ionic form $[Cu(R_f)2]^-$. The coordination sphere of neutral CuR_f species in ligand-free conditions has been mainly formulated in the literature in two different forms: (a) $MX \cdot CuR_f$ (metal halide adduct), usually $KBr \cdot CuR_f^2$ and (b) L_nCuR_f (solvent stabilized organocopper). Thus, $KBr \cdot CuR_f$ adduct is expected to equilibrate with ionic $K^+[Cu(R_f)2]^-$ (eq. 1) whereas the solvent stabilized L_nCuR_f will predictably equilibrate with $L_nCu^+[Cu(R_f)2]^-$ (eq. 2).

eq. 1 2 KBr-CuR_f \longleftrightarrow $K^{\dagger}[Cu(R_{f})_{2}]^{-}$ + CuBr eq. 2 2 L_nCuR_f \longleftrightarrow L_nCu^{\dagger}[Cu(R_f)₂]⁻

To determine the presence of adducts in CuR_f and the nature of the counterion in $M^+[Cu(R_f)_2]^-$, a precipitation test was performed. Inspired by Grushin's procedure for the stabilization of $CuCF_3$ by neutralization of *t*-BuOK with HF,² we decided to add Et₃N·3HF to the CuCF₃ and CuC₂F₅ reagent solutions expecting to promote precipitation of MF. After addition of the acid, a white precipitate was instantaneously formed from both reagents and, although the ¹⁹F NMR signals from CuC₂F₅ were unchanged, CuCF₃ resulted unstable under acidic conditions and progressively evolved to CuC₂F₅. The solid was separated and tried to redissolve in H₂O but resulted poorly soluble and the slurry gradually turned deep blue. Analysis by ¹⁹F NMR showed no more signals than that from BTB, which was remarkably broader than usual. Given that KF is highly soluble in water, the precipitate was certainly composed of another fluoride salt. The blue color appearance and the deterioration of the quality of the spectra may be explained by the formation of Cu^{II} salts. Moreover, the presence of CuF₂ could not be detected by ¹⁹F NMR owing to its paramagnetic nature. Then, we presume that the species involved in the equilibrium are those illustrated in eq. 2. It should be noted that this equilibration is usually proposed in recent reports²⁷ and the composition of the species involved in the equilibrium is related to those proposed by Vicic and coworkers.²⁴ Moreover, this behavior is also found in other Cu-Nu species.²⁸ The complexity of the system was evidenced after observing the diversification of the species detected by ¹⁹F NMR in different experiments and their apparent correlation (SI, Figure S4 and Scheme S4). Thus, CuCF₃ (Ia) equilibrates with $[Cu(CF_3)_2]^-$ (**Ib**) (SI, Scheme S4a) and the same applies to CuC₂F₅ (SI, Scheme S4b). Compounds CuC₂F₅ (IIa) and $[Cu(C_2F_5)_2]^-$ (IIb) are easily discernible by the diffuoromethylene moiety, which appears in this system at -112.8 ppm and -117.2 ppm, respectively. Typically, the equilibrium is strongly shifted towards the neutral organocopper reagent with, for example, ca. 20:1 IIa/IIb ratio. Notably, after addition of TMSCF₃ and KF to a solution containing only CuC₂F₅, newly formed CuCF₃ was observed and meaningfully, the **Ha/Hb** ratio was equilibrated to 1.2:1. Two new singlets appeared around -30.6 ppm and -116.9 ppm (SI, Figure S4). This was also observed in the following situations: (a) in intermediate stages during conversion of CuCF₃ to CuC₂F₅ and (b) after addition of HF to a solution of CuCF₃ and gradual formation of CuC₂F₅. The common feature of these scenarios is the coexistence of CuCF₃ and CuC₂F₅, thus, their equilibration to give mixed [Cu(CF₃)(CF₂CF₃)]⁻ (III) seems reasonable. Moreover, III could be directly produced by the nucleophilic attack of CF3liberated from TMSCF₃/KF to neutral IIa, ultimately affecting the initial IIa/IIb ratio (SI, Scheme S4c). The full picture can be described as a series of comproportion/disproportion reactions.

Optimization of the Pentafluoroethylation of 2lodoglycals. With our "ligandless" CuC₂F₅ in hand, we evaluated its synthetic value starting with 2-iodoglycals²⁹ as examples of complex/sensitive electron-rich alkenvl halides. 3,4,6-Tri-O-benzyl-2-iodo-D-glucal 1a was selected for both optimization studies and comparison of Cu-mediated pentafluoroethylations (Table 2). We initially assessed the effect of the reaction temperature and dilution (Table 2, entries 1–4). Raising the temperature to 80 °C was sufficient to afford 2a quantitatively after 19 h, whereas moderate heating at 60 °C provided the same vield after 39 h (Table 2, entry 2 vs. 3). Dilution from 0.4 to 0.06 M of the CuC_2F_5 lowered the rate of the reaction and 2a was afforded in 60% yield after 75 h (Table 2, entry 4). Although traces of perfluoropropyl byproducts (3-5%) were occasionally detected (¹⁹F NMR showed signals at ca. -80 ppm), the absence of hydrodehalogenation³⁰ and Ferrier³¹ side reactions and the high purity of the crude reaction simplified isolation steps (SI, Figure S9).

Table 2. Optimization of	Pentafluoroethylation	of	1a	ar				
Comparison of Copper-Mediated Transformations ^a								

BnO BnO BnO	CuC ₂ F ₅ Conditions	$\Rightarrow BnO \\ BnO \\ BnO \\ 2a C_2F_5$	Conformation analysis ${}^{3}J_{3,4} < 2 \text{ Hz}$ ${}^{3}J_{4,5} < 2 \text{ Hz}$	nal OBn F ₅ C ₂	CH ₂ OBn 5
entry	CuC ₂ F ₅ (equiv)	additive (equiv)	<i>T</i> (°C)	<i>t</i> (h)	yield (%) ^l
1	TMSCF ₃ - derived CuC ₂ F ₅ (1.5)	_	rt	14	5
2	TMSCF ₃ - derived CuC ₂ F ₅ (1.5)	_	60	39	>95 ^c
3	TMSCF ₃ - derived CuC ₂ F ₅ (1.5)	-	80	19	>95 ^c
4 ^{<i>d</i>,<i>e</i>}	TMSCF ₃ - derived CuC ₂ F ₅ (1.5)	_	$60 \rightarrow 80$	75	60(90) ^f
5 ^{<i>d</i>,<i>e</i>}	TMSCF ₃ - derived CuC ₂ F ₅ (1.5)	Ру (40)	$60 \rightarrow 80$	75	6(>98) ^{f,g}
6 ^{<i>d</i>,<i>e</i>}	TMSCF ₃ - derived CuC ₂ F ₅ (1.5)	Phen (1.5)	$60 \rightarrow 80$	75	11(>98) ^{f,g}
7 ^{d,e}	TMSCF ₃ - derived CuC ₂ F ₅ (1.5)	Bipy (1.5)	$60 \rightarrow 80$	75	16(77) ^{f,g}
8 ^{<i>d</i>,<i>e</i>}	TMSCF ₃ - derived CuC ₂ F ₅ (1.5)	Phen (1.5) PPh ₃ (1.5)	$60 \rightarrow 80$	75	6(78) ^{f,g}
9	C ₂ F ₅ H- derived CuC ₂ F ₅ (2)	Et ₃ N·3HF $(0.33)^h$	60	24	<5
10	C ₂ F ₅ H- derived CuC ₂ F ₅ (2)	Et ₃ N·3HF $(0.43)^h$	60	24	<5
11	C ₂ F ₅ H- derived CuC ₂ F ₅ (2)	Et ₃ N·3HF $(0.53)^h$	60	24	<5'

^{*a*}Conducted in a Schlenk flask with **1a** (1 equiv) and CuC₂F₅ (1.5–2 equiv) in DMF (0.4 M for TMSCF₃-derived and 0.7 M for C₂F₅H-derived CuC₂F₅) unless otherwise indicated (see the SI for details). ^{*b*}Determined by ¹⁹F NMR using 1,3-bis(trifluoromethyl)benzene (BTB) as internal standard. ^{*c*}Isolated yields. ^{*d*}Conducted in DMF (0.06 M). ^{*e*}68 h at 60 °C, 7 h at 80 °C. ^{*f*}Conversion of CuC₂F₅ indicated in round brackets. ^{*g*}Decomposition to C₂F₅H detected. ^{*h*}Mol Et₃N·3HF/mol CuCl. ^{*i*}Unidentified decomposition byproducts detected after 40 h. Py = pyridine, Phen = 1,10-phenanthroline, Bipy = 2,2'-Bipyridine.

Identification and Conformational Analysis of 2a. While 2a was initially identified by ESI–MS analysis ($I \rightarrow C_2F_5$, $\Delta mass$ –8 Da), ¹H, ¹³C{¹H}, and ¹⁹F NMR unequivocally proved the introduction of the C₂F₅ unit at C-2. H-1 was shifted downfield from 6.74 ppm in **1a** to 7.02 ppm in **2a**. Moreover, the ¹⁹F NMR spectrum showed the appearance of three new signals at –84.4

nd (t, ${}^{3}J_{\text{H,F}} = 2.4$ Hz, 3F, CF₃), -112.4 (d, ${}^{2}J_{\text{H,F}} = 273.6$ Hz, 1F, CF_{2a}), and -113.38 (d, ${}^{2}J_{\text{H,F}} = 273.6$ Hz, 1F, CF_{2b}), the first assigned to CF₃ and the other two signals to diastereotopic fluorine atoms. Finally, C-1 and C-2 appeared in the ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR spectra as triplets at 149.7 ppm (${}^{3}J_{\text{C,F}} = 10.5$ Hz) and 101.4 ppm (${}^{2}J_{\text{C,F}} = 24.7$ Hz), respectively, and two new quaternary carbon signals corresponding to CF₃ at 119.4 ppm (qt, ${}^{1}J_{\text{C,F}} = 286.0$ Hz, ${}^{2}J_{\text{C,F}} = 39.6$ Hz) and CF₂ at 114.0 ppm (tq, ${}^{1}J_{\text{C,F}} = 254.9$ Hz, ${}^{2}J_{\text{C,F}} = 39.6$ Hz) were also detected. Notably, the presence of C₂F₅ had an impact on the conformation adopted by 2-substituted-glycals (from ${}^{4}\text{H}_{5}$ in D-glucal to "inverted" ${}^{5}\text{H}_{4}$ in **2a**) as revealed by analysis of diagnostic coupling constants $J_{3,4}$ and $J_{4,5} < 2$ Hz, probably due to the strong 1,2-allylic (A^{1,2}) strain observed with C₂F₅>CF₃>I>H (SI, Figure S10).³²

Comparison with Other Cu-Systems. Next, the effect of common ligands in Cu-mediated fluoroalkylations was addressed (Table 2, entries 5–8). Reactions in the presence of pyridine, phenanthroline, bipyridine, and PPh₃ ligands suffered from very low yields (6–16%) after heating from 60 °C to 80 °C for prolonged reaction times (up to 75 h in total) along with the unproductive consumption of CuC₂F₅ to form C₂F₅H (Table 2, entries 5–8). Finally, we also compared the performance of our system with another "ligandless" reagent, the C₂F₅H-derived CuC₂F₅ (Table 2, entries 9–11).¹³ No substantial differences were observed when increasing from 0.33 to 0.53 equiv of Et₃N·3HF that afforded only traces of **2a**. Collectively, these results suggest that our "ligandless" system performs better over traditional Cu-based systems, especially with sensitive substrates.

Substrate Scope. With the optimal conditions in hand, the scope of this reaction was evaluated with a series of differently protected (Bn, Ac, and Piv) 2-iodoglycals of different configurations (D-gluco, D-galacto) including disaccharides with acidlabile linkages (D-lactose) and Neu5Ac2en, analog of the antiviral zanamivir (Relenza[®]) (Scheme 3). All afforded pure C₂F₅derivatives 2a-f in high isolated yields (up to 97%, 92% in gram scale for 2a). We next studied the scope with other electron-rich iodinated scaffolds (Scheme 3). Thus, the C₂F₅-analog 2g of the antiviral trifluridine³³ (Viroptic[®]) was obtained in 79% vield after only 6 h at 60 °C in contrast to previous low-vielding protocols based on radical perfluoroalkylations with R/CO₂H/XeF₂³⁴ or Cu-mediated systems (Cu/C₂F₅I/HMPA).³⁵ 6- $C_{2}F_{5}$ -Pyrimidine derivative **2h** (80%) was nicely obtained under even milder conditions (50 °C, 6 h), probably due to the facilitated oxidative addition at the more electron-deficient C-6 position. Next, the regioselective preintroduction of iodine at electronically different positions (C-2 vs. C-3) enabled the selective preparation of isomeric C₂F₅-indoles 2i (86%) and 2j (86%) under very mild conditions (40-50 °C), which provides a synthetic alternative to perfluoroalkyl indoles obtained by cyclization of fluorinated building blocks.³⁶ Of note is the fact that our system is amenable to free OH and NH groups as demonstrated with 2g and 2i. Finally, similar to 1a (Table 2, entries 9–11), reactions of C₂F₅H-derived "ligandless" CuC₂F₅ with 1g and 1j were unsuccessful at 60 °C and only decomposition was observed using excess of Et₃N·3HF and higher temperatures. The high performance of our system towards electron-rich alkenyl/heterocyclic iodides prompted us to evaluate its reactivity with aryl and heteroaryl iodides along with the more challenging bromides (Scheme 4). Thus, a series of *p*-substituted aryl iodides and bromides afforded C₂F₅-derivatives 2k-p in good yields (up to >98%) after 48 h at 60 °C (X = I) and 90 °C (X = Br) regardless their electronic properties.

52

53

54

55

56

57

58 59

2 3

4 5 6

7

8

9

10 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

Scheme 3. Pentafluoroethylation of Electron-Rich Alkenyl and Heterocyclic Iodides^a

^{*a*}Conducted in a Schlenk flask with **1a–j** (1 equiv) and "ligandless" CuC₂F₅ (1.5 equiv) in DMF (0.4 M) unless otherwise indicated. Isolated yields given. Deviation from standard conditions indicated in round brackets. Reactions using C₂F₅H-derived CuC₂F₅ (2 equiv) stabilized with Et₃N·3HF (0.33–0.53 mol Et₃N·3HF/mol CuCl) in DMF (0.7 M) were conducted at 60 °C, 24 h (see the SI for details). Color code; electron-rich position (blue) and electron-deficient (green). Piv = pivaloyl, Boc = *tert*-butoxycarbonyl.

o-Isomers **2q**–**s** also provided the expected products in nearly quantitative yields under mild reaction conditions for both I and Br, including the example of **2r** (X = Br, >98%, rt, 48 h) in which the so-called *ortho*-effect²² may be operative. Finally, reaction with activated pyridines afforded **2u** (X = Br, >98%) and **2v** (X = Br, 83%), including an example with a chloride that yielded the same 2-C₂F₅-pyridine **2v** in a fair 67% yield after 48 h at 120 °C.

CONCLUSIONS

In summary, we have developed a selective method for the preparation of a *storable*, "ligandless" CuC_2F_5 reagent from ready available $CuCF_3$. Evaluation of the nature and composition of this reagent in solution provided evidence of the species involved in the subsequent cross-coupling reaction. Its high reactivity enabled the efficient pentafluoroethylation of challenging alkenyl iodides and unactivated (hetero)aryl halides, including ready available bromides (and an example with a 2-Cl-pyridine). Collectively, our complex proves particularly effective for the late-stage incorporation of C_2F_5 units into complex/sensitive products including sugars, nucleosides, and nitrogenous bases, along with the more robust (hetero)arenes compared to other CuC_2F_5 systems bearing dative ligands.

Scheme 4. Pentafluoroethylation of Aryl and Heteroaryl Halides^a

^{*a*}Conducted in an NMR tube with **2k–v** (1 equiv) and "ligandless" CuC₂F₅ (1.5 equiv) in DMF (0.4 M) unless otherwise indicated. All yields were determined by ¹⁹F NMR using 1,4-difluorobenzene (for **2k**) or 1,3-bis(trifluoromethyl)benzene (for **2l–v**) as internal standard. Deviation from standard conditions indicated in round brackets (see the SI for details).

EXPERIMENTAL SECTION

General Remarks. Proton (¹H NMR), carbon (¹³C NMR), and fluorine (19F NMR) nuclear magnetic resonance spectra were recorded on a 400 MHz (for ¹H), 100.6 MHz (for ¹³C) and 376.5 MHz (for ¹⁹F) spectrometer. Spectra were fully assigned using COSY, HSQC, HMBC, and NOESY. Fluorine diffusionordered spectroscopy (19F DOSY) experiments were recorded at 300 K operating at a proton frequency of 500.13 MHz using a 5 mm PBBO gradient probe. All chemical shifts are quoted on the δ scale in ppm using the residual solvent as internal standard (¹H NMR: CDCl₃ = 7.26, CD₃OD = 3.31 and ¹³C NMR: CDCl₃ = 77.16, $CD_3OD = 49.0$). Coupling constants (J) are reported in Hz with the following splitting abbreviations: s = singlet, d =doublet, t = triplet, q = quartet, quin = quintet, and app = apparent. Melting points (m.p.) were determined on a melting point apparatus and are uncorrected. Infrared (IR) spectra were recorded on a FTIR-ATR spectrophotometer. Absorption maxima (v_{max}) are reported in wavenumbers (cm⁻¹). Optical rotations were measured on a polarimeter with a path length of 1.0 dm and are reported with implied units of 10⁻¹ deg cm² g⁻¹. Concentrations (c) are given in g/100 mL. High-resolution mass spectra (HRMS) were recorded on a LC/MSD mass spectrometer with electrospray ionization (ESI) or a GC/MSD apparatus with electronic impact ionization (EI, 70 eV). Nominal and exact m/zvalues are reported in Daltons (Da). MS spectra of organometallic complexes were acquired both in positive and negative ionization with a 6550-qTOF. Thin layer chromatography (TLC) was carried out using commercial aluminium backed sheets coated with silica gel. Visualization of the silica plates was achieved using a UV lamp ($\lambda_{max} = 254$ nm) and/or staining with a 6% H₂SO₄ in EtOH or cerium molybdate solution dip followed by heating. Flash column chromatography was carried out using silica gel (230-400 mesh). Mobile phases are reported in relative composition (e.g., 1:1 EtOAc/hexane v/v). All reagents and solvents (Analytical or HPLC grade) were used as received from commercial suppliers. All reactions using anhydrous conditions were performed using flame-dried apparatus under an atmosphere of argon. Brine refers to a saturated solution of sodium chloride. Anhydrous sodium sulfate (Na₂SO₄) was used as drying agent after reaction work-up, as indicated. CuBr was stirred overnight under argon with an excess of glacial acetic acid, and after filtration, the solid was washed with absolute ethanol, dry diethyl ether (Et₂O), and the white CuBr was dried under vacuum at 60 °C for at least 8 h and stored under argon.

Preparation of "Ligandless" TMSCF₃-Derived CuC₂F₅. KF (1 mmol) and CuBr (1.25 mmol) were dried under vacuum overnight at 150 °C and 80 °C, respectively. The solids and a magnetic stir bar were added into a two-neck round-bottom flask with PTFE stopcock and the system was evacuated under vacuum and refilled with argon three times. Dry DMF (0.4 M) was added under argon and the mixture vigorously stirred for 10 min. TMSCF₃ (1 mmol) was slowly added via a syringe under argon while the reaction mixture was stirred at room temperature. Next, the mixture was gradually warmed up to 55 °C until was complete 33 the reaction (*ca*. h). 1.3-Bis(trifluoromethyl)benzene (BTB, 0.5 mmol) was added as internal standard. After mixing well the components, the stirring was stopped and the reaction was left undisturbed until all solids settled on the bottom of the flask. An aliquot (0.7 mL) of the supernatant was transferred under argon to a NMR tube for quantitative ¹⁹F NMR analysis.

General Procedure for the Pentafluoroethylation of Unactivated (Hetero)aryl and Alkenyl halides. A Schlenk flask charged with the corresponding (hetero)aryl/alkenyl halide (0.1-0.17 mmol) was purged and backfilled with argon three times. TMSCF₃-derived CuC₂F₅ solution (0.4 M, 0.15–0.26 mmol) and 1,3-bis(trifluoromethyl)benzene (BTB, 0.05–0.08 mmol) were sequentially added under argon and the Schlenk flask was capped with a rubber septum. The reaction mixture was heated in a silicon oil bath at the indicated temperature and monitored by ¹⁹F NMR for quantitative analysis. The reaction crude was extracted with Et₂O, the solvent evaporated, supported on SiO₂ and filtrated through a short path of SiO₂.

1,5-Anhydro-3,4,6-tri-O-benzyl-2-deoxy-2-pentafluoroethyl-D-arabino-hex-1-enitol (2a). The title compound was prepared following the general procedure above, starting from 3,4,6-tri-O-benzyl-2-iodo-D-glucal $1a^{29}$ (57 mg, 0.105 mmol) and CuC₂F₅ (0.4 M in DMF, 0.5 mL, 0.22 mmol). After 39 h at 60 °C, standard workup and filtration through a short path of SiO₂ (1:9 EtOAc/hexane) afforded 2a (54 mg, 96%) as a colorless syrup. R_f (1:9 EtOAc/hexane): 0.33; $[\alpha]_D^{20}$ -21.9 (c 0.75, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.17 (m, 15H), 7.02 (bs, 1H), 4.64-4.57 (m, 1H), 4.56-4.38 (m, 6H), 4.02 (bs, 1H), 3.87 (bs, 1H), 3.78 (dd, J = 10.4 Hz, J = 7.4 Hz, 1H), 3.63 $(dd, J = 10.4 Hz, J = 5.5 Hz, 1H); {}^{13}C{}^{1}H} NMR (100.6 MHz,$ CDCl₃) δ 149.7 (t, J = 10.5 Hz), 137.8, 137.5, 137.4, 128.7, 128.5, 128.2, 128.1, 128.0, 127.9, 127.9, 127.8, 119.4 (qt, J = 286.0 Hz, J = 39.6 Hz), 114.0 (tq, J = 254.9 Hz, J = 39.6 Hz), 101.4 (t, J = 24.7 Hz), 76.5, 73.4, 72.2, 71.7, 70.3, 67.8, 67.8; ¹⁹F NMR (376.5 MHz, CDCl₃) δ -84.4 (t, J = 2.8 Hz, 3F), -112.4 (d, J = 273.6 Hz, 1F), -113.38 (d, J = 273.6 Hz, 1F); FTIR-ATR (neat, v_{max}) 3032, 2923, 2855, 1656, 1455, 1198, 1069, 1027, 800, 736, 696; HRMS (TOF ES⁺) m/z: [M+Na]⁺ Calcd for C₂₉H₂₇F₅NaO₄⁺ 557.1722; Found 557.1724.

Large Scale Preparation of 2a. The title compound was prepared following the general procedure above, starting from 3,4,6-tri-*O*-benzyl-2-iodo-D-glucal $1a^{29}$ (1.125 g, 2.074 mmol)

and CuC_2F_5 (0.4 M in DMF, 10.3 mL, 4.14 mmol). After 40 h at 60 °C, standard workup and filtration through a short path of SiO₂ (1:9 EtOAc/hexane) afforded **2a** (1.024 g, 92%) as a colorless syrup.

1,5-Anhydro-3,4,6-tri-O-acetyl-2-deoxy-2-pentafluoroethyl-*D-arabino-hex-1-enitol (2b)*. The title compound was prepared following the general procedure above, starting from 3,4,6-tri-O-acetyl-2-iodo-D-glucal 1b²⁹ (40 mg, 0.1 mmol) and CuC₂F₅ (0.4 M in DMF, 0.48 mL, 0.2 mmol). After 40 h at 60 °C, standard workup and filtration through a short path of SiO₂ (3:7 EtOAc/hexane) afforded 2b (37.9 mg, 97%) as a colorless syrup. R_f (3:7 EtOAc/hexane): 0.38; $[\alpha]_D^{20}$ –14.4 (*c* 0.25, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.12 (bt, J = 1.4 Hz, 1H), 4.50– 5.47 (m, 1H), 5.14 (appt, J = 2.9 Hz, 1H), 4.60–4.54 (m, 1H), 4.45 (dd, J = 11.9 Hz, J = 7.8 Hz, 1H), 4.19 (dd, J = 11.9 Hz, J = 4.7 Hz, 1H), 2.09 (s, 3H), 2.08 (s, 3H), 2.05 (s, 3H); ${}^{13}C{}^{1}H{}$ NMR (100.6 MHz, CDCl₃) δ 170.4, 169.3, 169.2, 151.3 (t, J = 10.3 Hz), 119.0 (qt, J = 286.3 Hz, J = 40.4), 113.1 (tq, J = 252.6Hz, J = 39.1 Hz), 99.8 (t, J = 24.3 Hz), 74.3, 65.4, 61.0, 60.7, 20.8, 20.8, 20.7; ¹⁹F NMR (376.5 MHz, CDCl₃) δ -84.8 (t, J = 2.6 Hz, 3F), -113.4 (d, J = 276.0 Hz, 1F), -114.6 (d, J = 276.0 Hz, 1F); FTIR-ATR (neat, v_{max}) 2965, 1746, 1655, 1371, 1196, 1077, 1024, 906; HRMS (TOF ES⁺) m/z: [M+Na]⁺ Calcd for $C_{14}H_{15}F_5NaO_7^+$ 413.0630; Found 413.0634.

1,5-Anhydro-3,4,6-tri-O-pivaloyl-2-deoxy-2-

pentafluoroethyl-D-arabino-hex-1-enitol (2c). The title compound was prepared following the general procedure above, starting from 3,4,6-tri-O-pivaloyl-2-iodo-D-glucal 1c³² (23 mg, 0.043 mmol) and CuC₂F₅ (0.4 M in DMF, 0.23 mL, 0.088 mmol). After 40 h at 60 °C, standard workup and filtration through a short path of SiO₂ (1:9 EtOAc/hexane) afforded 2c (21.5 mg, 95%) as a colorless syrup. R_f (1:9 EtOAc/hexane): 0.36; $[\alpha]_D^{20}$ -16.4 (c 1.13, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.14 (bd, J = 1.9 Hz, 1H), 5.45 (bs, 1H), 5.08 (m, 1H), 4.60–4.51 (m, 2H), 4.06 (dd, J = 9.9 Hz, J = 2.2 Hz, 1H), 1.22 (s, 9H), 1.21 (s, 9H), 1.18 (s, 9H); ¹³C{¹H} NMR (100.6 MHz, CDCl₃) δ 178.2, 176.7, 176.6, 151.2 (t, J = 10.8 Hz), 99.6 (dd, J= 25.7, J = 22.75 Hz), 74.27, 65.14, 61.27, 60.64, 39.0, 39.0, 38.9, 27.3, 27.0, 27.0; ¹⁹F NMR (376.5 MHz, CDCl₃) δ -84.70 (t, J = 2.3 Hz, 3F), -112.9 (d, J = 275.8 Hz, 1F), -114.8 (d, J = 2.3 Hz, 100 Hz,275.8 Hz, 1F); FTIR-ATR (neat, vmax) 2975, 2936, 2875, 1737, 1657, 1481, 1278, 1201, 1115, 1031, 800; HRMS (TOF ES⁺) m/z: [M+Na]⁺ Calcd for C₂₃H₃₃F₅NaO₇⁺ 539.2039; Found 539.2047.

1,5-Anhydro-3,4,6-tri-O-benzyl-2-deoxy-2-pentafluoroethyl-D-lyxo-hex-1-enitol (2d). The title compound was prepared following the general procedure above, starting from 3,4,6-tri-Obenzyl-2-iodo-D-galactal 1d²⁹ (43 mg, 0.079 mmol) and CuC₂F₅ (0.4 M in DMF, 0.37 mL, 0.16 mmol). After 40 h at 60 °C, standard workup and filtration through a short path of SiO₂ (1:9 EtOAc/hexane) afforded 2d (40 mg, 95%) as a colorless syrup. R_f (1:4 EtOAc/hexane): 0.39; $[\alpha]_D^{20}$ -56.4 (c 0.22, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) & 7.40-7.22 (m, 15H), 6.86 (bs, 1H), 4.84–4.41 (m, 7H), 4.24 (bd, J = 2.6 Hz, 1H), 4.05–3.94 (m, 2H), 3.90 (dd, J = 11.7 Hz, J = 2.0 Hz, 1H); ¹³C{¹H} NMR $(100.6 \text{ MHz}, \text{CDCl}_3) \delta 149.4$ (t, J = 10.5 Hz), 138.3, 138.0, 137.4, 128.7, 128.5, 128.3, 128.2, 128.1, 127.9, 127.8, 127.7, 127.6. 119.2 (at. J = 286.4 Hz. J = 41.1 Hz). 113.6 (ta. J =252.6 Hz, J = 38.8 Hz), 102.9 (t, J = 23.7 Hz), 76.4, 73.4, 73.4, 73.5, 72.4, 67.8, 67.8; ¹⁹F NMR (376.5 MHz, CDCl₃) δ -84.5 (bs, 3F), -111.6 (d, J = 274.0 Hz, 1F), -112.8 (d, J = 274.0 Hz, 1F); FTIR-ATR (neat, vmax) 3064, 3032, 2920, 2865, 1773,

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

49

50

51

52

53

54

55

56

57 58 59

60

1724, 1651, 1455, 1196, 1071, 735, 697; HRMS (TOF ES⁺) m/z: [M+Na]⁺ Calcd for C₂₉H₂₇F₅NaO₄⁺ 557.1722; Found 557.1724.

1,5-Anhydro-3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-Oacetyl-β-D-galactopyranosyl)-2-pentafluoroethyl-D-arabino-

hex-1-enitol (2e). The title compound was prepared following the general procedure above, starting from 3,6-di-O-acetyl-2iodo-4-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-D-glucal $1e^{32}$ (59 mg, 0.086 mmol) and CuC₂F₅ (0.4 M in DMF, 0.39 mL, 0.17 mmol). After 48 h at 60 °C, standard workup and filtration through a short path of SiO₂ (1:1 EtOAc/hexane) afforded 2e (52 mg, 89%) as a colorless syrup. Rf (1:1 EtOAc/hexane): 0.25; [α]_D²⁰ +4.6 (*c* 1.02, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.09 (bs, 1H), 5.73 (bs, 1H), 5.37 (d, J = 3.4 Hz, J = 1.0 Hz, 1H), 5.17 (dd, J = 10.4 Hz, J = 7.9 Hz, 1H), 5.01 (dd, J = 10.4 Hz, J = 3.4 Hz, 1H), 4.70 (d, J = 7.9 Hz, 1H), 4.53–4.47 (m, 1H), 4.32 (dd, J = 12.0 Hz, J = 8.4 Hz, 1H), 4.21–4.07 (m, 3H), 4.02-3.97 (m, 2H), 2.14 (s, 3H), 2.11 (s, 3H), 2.03 (s, 6H), 2.02 (s, 3H), 1.97 (s, 3H); ¹³C{¹H} NMR (100.6 MHz, CDCl₃) δ 170.6, 170.5, 170.4, 170.2, 169.6, 169.2, 150.8 (t, J = 10.2 Hz), 119.0 (qt, J = 286.6 Hz, J = 40.4 Hz), 113.2 (tq, J = 253.9 Hz, J = 40.4 Hz), 101.7, 99.1 (t, J = 24.0 Hz), 74.8, 72.7, 71.3, 70.9, 68.9, 67.0, 61.4, 61.3, 61.2, 20.9, 20.8, 20.7, 20.7, 20.6; ¹⁹F NMR (376.5 MHz, CDCl₃) δ -84.7 (bs, 3F), -112.9 (d, J = 275.2 Hz, 1F), -115.6 (d, J = 274.3 Hz, 1F); FTIR-ATR (neat, vmax) 2984, 1742, 1656, 1369, 1204, 1075, 1046, 1019, 956, 899, 736; HRMS (TOF ES⁺) m/z: [M+Na]⁺ Calcd for C₂₆H₃₁F₅NaO₁₅⁺ 701.1475; Found 701.1476.

26 Methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-2,6-anhydro-3,5-27 dideoxy-3-pentafluoroethyl-D-glycero-D-galacto-non-2-enonate 28 (2f). The title compound was prepared following the general procedure above, starting from methyl 5-acetamido-4,7,8,9-29 tetra-O-acetyl-2,6-anhydro-3,5-dideoxy-3-iodo-D-glycero-α-D-30 galacto-non-2-enonate 1f³² (40 mg, 0.066 mmol) and CuC₂F₅ 31 (0.4 M in DMF, 0.30 mL, 0.13 mmol). After 40 h at 60 °C, 32 standard workup and filtration through a short path of SiO₂ (7:3 33 EtOAc/hexane) afforded **2f** (38.1 mg, 95%) as a white foam. R_f 34 (EtOAc): 0.47; $[\alpha]_D^{20}$ -14.4 (c 0.25, CH₂Cl₂); ¹H NMR (400 35 MHz, CDCl₃) δ 5.82 (d, J = 8.4 Hz, 1H), 5.76 (d, J = 6.5 Hz, 36 1H), 5.54 (dd, J = 6.0 Hz, J = 3.6 Hz, 1H), 5.22 (td, J = 6.0 Hz, 37 J = 3.0 Hz, 1H), 4.55–4.46 (m, 2H), 4.36 (dd, J = 12.5 Hz, J = 38 3.0 Hz, 1H), 4.11 (dd, J = 12.5 Hz, J = 6.0 Hz, 1H), 3.83 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H), 1.93 39 (s, 3H); ¹³C{¹H} NMR (100.6 MHz, CDCl₃) δ 170.7, 170.4, 40 169.8, 169.8, 161.2, 153.3 (dd, J = 7.1 Hz, J = 7.1 Hz), 118.8 41 (qt, J = 287.7 Hz, J = 40.2 Hz), 113.0 (dd, J = 256.9 Hz, J =42 40.2 Hz), 101.2 (dd, J = 25.3 Hz, J = 21.8 Hz), 77.7, 69.8, 66.8, 43 65.1, 61.8, 53.5, 47.1, 23.1, 20.9, 20.8, 20.7, 20.6; ¹⁹F NMR 44 $(376.5 \text{ MHz}, \text{CDCl}_3) \delta - 81.6 \text{ (bs, 3F)}, -106.1 \text{ (d, } J = 281.0 \text{ Hz},$ 45 1F), -110.6 (d, J = 281.0 Hz, 1F); FTIR-ATR (neat, v_{max}) 3276, 46 1749, 1656, 1541, 1438, 1371, 1207, 1048, 1027, 965; HRMS 47 $(TOF ES^+) m/z$: $[M+Na]^+$ Calcd for C₂₁H₂₆F₃NNaO₁₂⁺ 564.1299; Found 564.1307. 48

5-Pentafluoroethyl-2'-deoxyuridine (2g).³⁷ The title compound was prepared following the general procedure above, starting from 5-iodo-2'-deoxyuridine 1g (44 mg, 0.124 mmol) and CuC₂F₅ (0.4 M in DMF, 0.61 mL, 0.25 mmol). After 6 h at 60 °C, standard workup and filtration through a short path of SiO₂ (9:1 CH₂Cl₂/MeOH) afforded 2g (34 mg, 79%) as a white solid. R_f (9:1 CH₂Cl₂/hexane): 0.26; ¹H NMR (400 MHz, CD₃OD) δ 8.82 (bs, 1H), 6.24 (t, J = 6.0 Hz, 1H), 4.41 (dd, J =9.3 Hz, J = 4.0 Hz, 1H), 3.98 (bd, J = 2.8 Hz, 1H), 3.83 (dd, J = 11.8 Hz, J = 2.5 Hz, 1H), 3.74 (d, J = 11.8 Hz, J = 2.5 Hz, 1H), 2.45 (m, 1H), 2.27 (m, 1H); ¹³C{¹H} NMR (100.6 MHz, CD₃OD) δ 160.9, 151.3, 145.9 (t, J = 9.4 Hz), 120.5 (appdt, J =285.0 Hz, 37.7 Hz), 103.0 (bs), 89.4, 87.7, 71.8, 62.1, 42.3; ¹⁹F NMR (376.5 MHz, CD₃OD) δ –85.6 (bs, 3F), –114.4 (m, 2F).

6-Pentafluoroethyl-1,3-dimethyluracil (2h). The title compound was prepared following the general procedure above, starting from 6-iodo-1,3-dimethyluracil 1h³⁸ (30.8 mg, 0.116 mmol) and CuC₂F₅ (0.4 M in DMF, 0.56 mL, 0.23 mmol). After 6 h at 50 °C, standard workup and filtration through a short path of SiO₂ (1:9 EtOAc/hexane) afforded 2h (24 mg, 80%) as a colorless syrup. Rf (1:9 EtOAc/hexane): 0.16; ¹H NMR (400 MHz, CDCl₃) δ 6.20 (s, 1H), 3.52 (t, J = 2.2 Hz, 3H), 3.38 (s, 3H); ¹³C{¹H} NMR (100.6 MHz, CDCl₃) δ 160.9, 152.0, 139.9 (t, J = 24.3 Hz), 118.2 (qt, J = 287.1 Hz, J = 40.1 Hz), 110.8 (tq)J = 259.4 Hz, J = 40.1 Hz, 105.5 (t, J = 8.1 Hz), 33.6 (m), 28.7; ¹⁹F NMR (376.5 MHz, CDCl₃) δ –81.6 (bs, 3F), –111.4 (m, 2F); FTIR-ATR (neat, vmax) 3110, 2960, 2917, 1849, 1719, 1667, 1440, 1369, 1200, 1146, 1078, 998, 938, 831, 744; HRMS (QTOF EI⁺) *m/z*: [M]⁺ Calcd for C₈H₇F₅N₂O₂⁺ 258.0428; Found 258.0430.

2-(*Pentafluoroethyl*)-1*H*-indole (2i).³⁹ The title compound was prepared following the general procedure above, starting from 2-iodoindole $1i^{40}$ (26 mg, 0.107 mmol) and CuC₂F₅ (0.4 M in DMF, 0.52 mL, 0.22 mmol). After 6 h at 50 °C standard workup and filtration through a short path of SiO₂ (1:9 EtOAc/hexane) afforded **2i** (21.5 mg, 86%) as a white solid. *R_f* (1:9 EtOAc/hexane): 0.37; ¹H NMR (400 MHz, CDCl₃) δ 8.41 (bs, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.46 (m, 1H), 7.35 (m, 1H), 7.22 (m, 1H), 6.98 (bs, 1H); ¹³C{¹H} NMR (100.6 MHz, CDCl₃) δ 136.1, 127.0, 125.0, 124.0 (t, *J* = 29.1 Hz), 122.2, 121.3, 119.0 (qt, *J* = 285.7 Hz, *J* = 38.9 Hz), 111.8, 111.0 (tq, *J* = 251.3 Hz, *J* = 38.9 Hz), 106.2 (t, *J* = 4.9 Hz); ¹⁹F NMR (376.5 MHz, CDCl₃) δ -84.5 (t, *J* = 3.2 Hz, 3F), -111.9 (m, 2F).

tert-Butyl-5-fluoro-3-(pentafluoroethyl)-1H-indole-1-

carboxvlate (2i). The title compound was prepared following the general procedure above, starting from $1j^{41}$ (27 mg, 0.076 mmol) and CuC₂F₅ (0.4 M in DMF, 0.43 mL, 0.18 mmol). After 16 h at 40 °C, standard workup and filtration through a short path of SiO₂ (hexane) afforded 2j (21 mg, 86%) as a white solid. R_f (1:9 EtOAc/hexane): 0.50; mp 74–76 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (bdd, J = 9.1 Hz, J = 4.4 Hz, 1H), 7.94 (bs, 1H), 7.33 (bd, J = 8.8 Hz, 1H), 7.10 (td, J = 9.1 Hz, J = 2.6 Hz, 1H), 1.69 (s, 9H); ${}^{13}C{}^{1}H$ NMR (100.6 MHz, CDCl₃) δ 159.7 (d, J = 240.9 Hz), 148.7, 131.9, 128.7 (t, J = 8.1 Hz), 127.0 (dt, J = 240.9 Hz),J = 11.2 Hz, J = 2.6 Hz), 119.3 (qt, J = 285.7 Hz, J = 40.1 Hz), 116.8 (d, J = 9.3 Hz), 113.9 (d, J = 25.2 Hz), 113.0 (tq, J =250.4 Hz, J = 40.1 Hz), 109.4 (td, J = 28.0 Hz, J = 4.1 Hz), 106.2 (d, J = 26.2 Hz), 85.8, 28.2; ¹⁹F NMR (376.5 MHz, CDCl₃) δ -84.8 (t, J = 2.7 Hz, 3F), -111.2 (bs, 2F), -118.63 (td, J = 8.8 Hz, J = 4.7 Hz, 1F); FTIR-ATR (neat, v_{max}) 2984, 1751, 1479, 1454, 1385, 1256, 1203, 1152, 1067, 1026, 962, 854, 811, 738; HRMS (QTOF EI⁺) m/z: [M]⁺ Calcd for C₁₅H₁₃F₆NO₂⁺ 353.0850; Found 353.0848.

General Procedure for Quantitative ¹⁹F NMR Analysis. An NMR tube charged with the corresponding solid (hetero)aryl halide (0.171 mmol) was purged and backfilled with argon three times. CuC₂F₅ (0.4 M in DMF, 0.4 mL, 0.26 mmol) and 1,3bis(trifluoromethyl)benzene (BTB, 13 μ L, 0.084 mmol) were sequentially added under argon and the NMR tube was capped with a rubber septum. The reaction mixture was heated in a silicon oil bath at the indicated temperature and monitored by ¹⁹F NMR for quantitative analysis. For liquid compounds, the NMR tube was purged and backfilled with argon three times prior to the addition of all reagents.

1-(Pentafluoroethyl)-4-(trifluoromethyl)benzene (2k).¹² The title compound was prepared following the general procedure above, starting from 1-iodo-4-(trifluoromethyl)benzene 1k (25.1 μ L, 0.171 mmol), CuC₂F₅ (0.4 M in DMF, 0.4 mL, 0.26 mmol), and 1,4-difluorobenzene (17.5 μ L, 0.171 mmol). After 48 h at 60 °C, quantitative ¹⁹F NMR analysis of the reaction mixture indicated 2k was obtained in >98% yield. ¹⁹F NMR (376.5 MHz, CDCl₃) δ –63.3 (s, 3F), –85.1 (bs, 3F), –115.2 (bs, 2F).

*1-(Pentafluoroethyl)-4-nitrobenzene (21).*¹⁸ The title compound was prepared following the general procedure above, starting from 1-bromo-4-nitrobenzene **11** (34.9 mg, 0.171 mmol), CuC₂F₅ (0.4 M in DMF, 0.4 mL, 0.26 mmol), and 1,3-bis(trifluoromethyl)benzene (BTB, 13 μ L, 0.084 mmol). After 48 h at 90 °C, quantitative ¹⁹F NMR analysis of the reaction mixture indicated **21** was obtained in >98% yield. ¹⁹F NMR (376.5 MHz, CDCl₃) δ -84.9 (bs, 3F), -115.1 (bs, 2F).

4-(Pentafluoroethyl)benzaldehyde (2m).¹² The title compound was prepared following the general procedure above, starting from 4-bromobenzaldehyde 1m (32.3 mg, 0.171 mmol), CuC₂F₅ (0.4 M in DMF, 0.4 mL, 0.26 mmol), and 1,3bis(trifluoromethyl)benzene (BTB, 13 μ L, 0.084 mmol). After 24 h at 90 °C, quantitative ¹⁹F NMR analysis of the reaction mixture indicated 2m was obtained in 86% yield. ¹⁹F NMR (376.5 MHz, CDCl₃) δ –85.0 (bs, 3F), –115.2 (bs, 2F).

4-(Pentafluoroethyl)-1,1'-biphenyl (2n).¹³ The title compound was prepared following the general procedure above, starting from 4-bromobiphenyl 1n (39.9 mg, 0.171 mmol), CuC₂F₅ (0.4 M in DMF, 0.4 mL, 0.26 mmol), and 1,3bis(trifluoromethyl)benzene (BTB, 13 μ L, 0.084 mmol). After 48 h at 90 °C and 16 h at 110 °C, quantitative ¹⁹F NMR analysis of the reaction mixture indicated 2n was obtained in >98% yield. ¹⁹F NMR (376.5 MHz, CDCl₃) δ –85.2 (bs, 3F), –114.5 (bs, 2F).

1-Methoxy-4-(pentafluoroethyl)benzene (20).¹³ The title compound was prepared following the general procedure above, starting from 1-bromo-4-methoxybenzene **10** (21.6 μ L, 0.171 mmol), CuC₂F₅ (0.4 M in DMF, 0.4 mL, 0.26 mmol), and 1,3-bis(trifluoromethyl)benzene (BTB, 13 μ L, 0.084 mmol). After 48 h at 90 °C and 16 h at 110 °C, quantitative ¹⁹F NMR analysis of the reaction mixture indicated **2n** was obtained in 94% yield. ¹⁹F NMR (376.5 MHz, CDCl₃) δ –85.4 (bs, 3F), –113.5 (bs, 2F).

1-Benzyloxy-4-(pentafluoroethyl)benzene (**2***p*).⁴² The title compound was prepared following the general procedure above, starting from 1-benzyloxy-4-bromobenzene **1p** (46.9 mg, 0.171 mmol), CuC₂F₅ (0.4 M in DMF, 0.4 mL, 0.26 mmol), and 1,3-bis(trifluoromethyl)benzene (BTB, 13 μ L, 0.084 mmol). After 48 h at 90 °C and 16 h at 110 °C, quantitative ¹⁹F NMR analysis of the reaction mixture indicated **2p** was obtained in >98% yield. ¹⁹F NMR (376.5 MHz, CDCl₃) δ –85.4 (bs, 3F), –113.6 (bs, 2F).

1-Methoxy-2-(pentafluoroethyl)benzene (2q).¹³ The title compound was prepared following the general procedure above, starting from 1-bromo-2-methoxybenzene **1q** (22.0 μ L, 0.171 mmol), CuC₂F₅ (0.4 M in DMF, 0.4 mL, 0.26 mmol), and 1,3-bis(trifluoromethyl)benzene (BTB, 13 μ L, 0.084 mmol). After 48 h at 90 °C, quantitative ¹⁹F NMR analysis of the reaction mixture indicated **2n** was obtained in >98% yield. ¹⁹F NMR (376.5 MHz, CDCl₃) δ -84.2 (bs, 3F), -111.5 (bs, 2F).

2'-(Pentafluoroethyl)acetophenone (2r).⁴³ The title compound was prepared following the general procedure above, starting from 2'-bromoacetophenone 1r (30.7 μL, 0.171 mmol), CuC₂F₅ (0.4 M in DMF, 0.4 mL, 0.26 mmol), and 1,3bis(trifluoromethyl)benzene (BTB, 13 μL, 0.084 mmol). After 48 h at 90 °C, quantitative ¹⁹F NMR analysis of the reaction mixture indicated 2n was obtained in 98% yield. ¹⁹F NMR (376.5 MHz, CDCl₃) δ-83.9 (bs, 3F), -107.7 (bs, 2F).

2-(Pentafluoroethyl)-1,1'-biphenyl (2s).¹⁰ The title compound was prepared following the general procedure above, starting from 2-bromobiphenyl 1s (39.9 mg, 0.171 mmol), CuC₂F₅ (0.4 M in DMF, 0.4 mL, 0.26 mmol), and 1,3-bis(trifluoromethyl)benzene (BTB, 13 μ L, 0.084 mmol). After 48 h at 90 °C and 16 h at 110 °C, quantitative ¹⁹F NMR analysis of the reaction mixture indicated 2s was obtained in 94% yield. ¹⁹F NMR (376.5 MHz, CDCl₃) δ –84.1 (bs, 3F), –106.3 (bs, 2F).

*1-(Pentafluoroethyl)naphthalene (2t).*¹³ The title compound was prepared following the general procedure above, starting from 1-iodonaphthalene **1t** (25.7 μ L, 0.171 mmol), CuC₂F₅ (0.4 M in DMF, 0.4 mL, 0.26 mmol), and 1,3-bis(trifluoromethyl)benzene (BTB, 13 μ L, 0.084 mmol). After 48 h at 60 °C, quantitative ¹⁹F NMR analysis of the reaction mixture indicated **2t** was obtained in >98% yield. ¹⁹F NMR (376.5 MHz, CDCl₃) δ -83.8 (bs, 3F), -108.2 (bs, 2F).

3-(Pentafluoroethyl)pyridine (2u).¹³ The title compound was prepared following the general procedure above, starting from 3-bromopyridine 1u (16.6 μ L, 0.171 mmol), CuC₂F₅ (0.4 M in DMF, 0.4 mL, 0.26 mmol), and 1,3-bis(trifluoromethyl)benzene (BTB, 13 μ L, 0.084 mmol). After 24 h at 90 °C and 24 h at 110 °C, quantitative ¹⁹F NMR analysis of the reaction mixture indicated 2u was obtained in >98% yield. ¹⁹F NMR (376.5 MHz, CDCl₃) δ -85.4 (bs, 3F), -115.7 (bs, 2F).

2-(Pentafluoroethyl)pyridine (2v).¹⁸ The title compound was prepared following the general procedure above, starting from 2-bromopyridine **1v** (16.6 μ L, 0.171 mmol), CuC₂F₅ (0.4 M in DMF, 0.4 mL, 0.26 mmol), and 1,3-bis(trifluoromethyl)benzene (BTB, 13 μ L, 0.084 mmol). After 16 h at 90 °C, quantitative ¹⁹F NMR analysis of the reaction mixture indicated **2v** was obtained in 83% yield. ¹⁹F NMR (376.5 MHz, CDCl₃) δ –83.4 (bs, 3F), – 116.8 (bs, 2F).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website. ¹H, ¹³C{¹H}, and ¹⁹F NMR spectra for all new compounds, stability studies, and additional optimization experiments (PDF).

AUTHOR INFORMATION

Corresponding Author

*E-mail: omar.boutureira@urv.cat

ACKNOWLEDGMENTS

We thank the Spanish Government-MCIU and the national agency of investigation-AEI (CTQ2017-89750-R and CTQ2017-90088-R), the European Regional Development Fund, and the Universitat Rovira i Virgili (Martí Franquès Research Fellowship Programme; 2012BPURV-67 to J.M.) for financial support. We also thank Dr. Vladimir V. Grushin for providing the C_2F_5 H-derived CuC₂F₅ reagent and Dr. Miguel A. Rodríguez (COS, URV-Eurecat) for the ¹⁹F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

DOSY NMR experiments. O.B. is a Ramón y Cajal Fellow (RYC-2015-17705).

REFERENCES

(1) (a) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Next generation of fluorinecontaining pharmaceuticals, compounds currently in phase II-III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas. Chem. Rev. 2016, 116, 422-518. (b) Yerien, D. E.; Bonesi, S.; Postigo, A. Fluorination methods in drug discovery. Org. Biomol. Chem. 2016, 14, 8398-8427. (c) Richardson, P. Fluorination methods for drug discovery and development. Expert Opin. Drug Discov. 2016, 11, 983-999. (d) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. Applications of fluorine in medicinal chemistry. J. Med. Chem. 2015, 58, 8315-8359. (e) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem. Rev. 2014, 114, 2432-2506. (f) Fujiwara, T.; O'Hagan, D. Successful fluorine-containing herbicide agrochemicals. J. Fluorine Chem. 2014, 167, 16-29. (g) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 2008, 37, 320-330. (h) Kirk, K. L. Fluorination in medicinal chemistry: methods, strategies, and recent developments, Org. Process Res. Dev. 2008, 12, 305-321. (i) Hagmann, W. K. The many roles for fluorine in medicinal chemistry. J. Med. Chem. 2008, 51, 4359-4369.

(2) (a) Orsi, D. L.; Altman, R. A. Exploiting the unusual effects of fluorine in methodology. *Chem. Commun.* **2017**, *53*, 7168–7181. (b) Ni, C.; Hu, J. The unique fluorine effects in organic reactions: recent facts and insights into fluoroalkylations. *Chem. Soc. Rev.* **2016**, *45*, 5441–5454.

(3) (a) Fustero, S.; Sedgwick, D. M.; Román, R.; Barrio, P. Recent advances in the synthesis of functionalised monofluorinated compounds. *Chem. Commun.* **2018**, *54*, 9706–9725. (b) Champagne, P. A.; Desroches, J.; Hamel, J.-D.; Vandamme, M.; Paquin, J.-F. Monofluorination of organic compounds: 10 years of innovation. *Chem. Rev.* **2015**, *115*, 9073–9174. (c) Liang, T.; Neumann, C. N.; Ritter, T. Introduction of fluorine and fluorine-containing functional groups. *Angew. Chem. Int. Ed.* **2013**, *52*, 8214–8264. (d) Hollingworth, C.; Gouverneur, V. Transition metal catalysis and nucleophilic fluorination. *Chem. Commun.* **2012**, 48, 2929–2942.

(4) (a) Li, G.; Zhang, C.; Song, C.; Ma, Y. Progress in coppercatalyzed trifluoromethylation. *Beilstein J. Org. Chem.* 2018, 14, 155– 181. (b) Charpentier, J.; Früh, N.; Togni, A. Electrophilic trifluoromethylation by use of hypervalent iodine reagents. *Chem. Rev.* 2015, 115, 650–682. (c) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. *Chem. Rev.* 2015, 115, 826–870. (d) Furuya, T.; Kamlet, A. S.; Ritter, T. Catalysis for fluorination and trifluoromethylation. *Nature* 2011, 473, 470–477.

(5) (a) Song, H.-X.; Han, Q.-Y.; Zhao, C.-L.; Zhang, C.-P. Fluoroal-kylation reactions in aqueous media: a review. *Green Chem.* 2018, 20, 1662–1731. (b) Zhao, Y.; Liu, F. Recent advance in radical fluoroalkylation with sulfinate salts. *Tetrahedron Lett.* 2018, 59, 180–187. (c) Barata-Vallejo, S.; Bonesi, S. M.; Postigo, A. Perfluoroalkylation reactions of (hetero)arenes. *RSC Adv.* 2015, 5, 62498–62518.

(6) (a) Prakash, G. K. S.; Wang, Y.; Mogi, R.; Hu, J.; Mathew, T.; Olah, G. A. Nucleophilic perfluoroalkylation of imines and carbonyls: perfluoroalkyl sulfones as efficient perfluoroalkyl-transfer motifs. *Org. Lett.* 2010, *12*, 2932–2935. (b) Yagupolskii, Y. L.; Kirij, N. V.; Shevchenko, A. V.; Tyrra, W.; Naumann, D. Perfluoroalkylation of heterocumulenes with trimethyl(perfluoroalkyl)silanes in the presence of fluoride ions: synthesis of perfluoroalkanesulfinyl amides from *N*-organylsulfinyl amines. *Tetrahedron Lett.* 2002, *43*, 3029–3031. (c) Sevenard, D. V.; Kirsch, P.; Röschenthaler, G.-V.; Movchun, V. N.; Kolomeitsev, A. A. A facile new method for the two-step substitution of hydroxy groups in primary alcohols for trifluoromethyl and pentafluoroethyl moieties. *Synlett* 2001, 379–381. (d) Krishnamurti, R.;

Bellew, D. R.; Prakash, G. K. S. Preparation of trifluoromethyl and other perfluoroalkyl compounds with (perfluoroalkyl)trimethylsilanes. *J. Org. Chem.* **1991**, *56*, 984–989. (e) Gassman, P. G.; O'Reilly, N. J. Nucleophilic addition of the pentafluoroethyl group to aldehydes, ketones, and esters. *J. Org. Chem.* **1987**, *52*, 2481–2490.

(7) (a) Fu, W.-Z.; Huang, Y.; Xu, X.-H.; Qing, F.-L. Synthesis of αtrifluoromethyl-β-keto phosphonates by electrophilic trifluoromethylation with Togni reagent. *Synth. Commun.* **2016**, *46*, 415–420. (b) Macé, Y.; Magnier, E. The new age of electrophilic perfluoro-alkylation reactions. *Eur. J. Org. Chem.* **2012**, 2479–2494. (c) Xiao, J.-C.; Zhang, C.-P.; Cao, H.-P.; Wang, Z.-L.; Zhang, C.-T.; Chen, Q.-Y. New electrophilic bromodifluoromethylation and pentafluoroethylation reagents. *Synlett* **2010**, 1089–1092. (d) Sevenard, D. V.; Kirsch, P.; Lork, E.; Röschenthaler, G.-V. 2-Trifluoromethyl-1,3-dithianylium triflate: a convenient 'masked' electrophilic pentafluoroethylation reagent. *Tetrahedron Lett.* **2003**, *44*, 5995–5998.

(8) (a) Zhong, S.; Hafner, A.; Hussal, C.; Nieger, M.; Bräse, S. Metal-free radical perfluoroalkylation of (hetero)arenes. *RSC Adv.* **2015**, *5*, 6255–6258. (b) Barata-Vallejo, S.; Bonesi, S. M.; Postigo, A. Photocatalytic fluoroalkylation reactions of organic compounds. *Org. Biomol. Chem.* **2015**, *13*, 11153–11183. (c) Cui, L.; Matusaki, Y.; Tada, N.; Miura, T.; Uno, B.; Itoh, A. Metal-free direct C–H perfluoroalkylation of arenes and heteroarenes using a photoredox organocatalyst. *Adv. Synth. Catal.* **2013**, *355*, 2203–2207.

(9) Ferguson, D. M.; Bour, J. R.; Canty, A. J.; Kampf, J. W.; Sanford, M. S. Stoichiometric and catalytic aryl-perfluoroalkyl coupling at tri-*tert*-butylphosphine palladium(II) complexes. *J. Am. Chem. Soc.* **2017**, *139*, 11662–11665.

(10) (a) Ohashi, M.; Ishida, N.; Ando, K.; Hashimoto, Y.; Shigaki, A.; Kikushima, K.; Ogoshi, S. Cu^I-catalyzed pentafluoroethylation of aryl iodides in the presence of tetrafluoroethylene and cesium fluoride: determining the route to the key pentafluoroethyl Cu^I intermediate. *Chem. Eur. J.* **2018**, *24*, 9794–9798. (b) Li, L.; Ni, C.; Xie, Q.; Hu, M.; Wang, F.; Hu, J. TMSCF₃ as a convenient source of CF₂=CF₂ for pentafluoroethylation, (aryloxy)tetrafluoroethylation, and tetrafluoroethylation. *Angew. Chem. Int. Ed.* **2017**, *56*, 9971–9975. (c) Bao, X.; Liu, L.; Li, J.; Fan, S. Copper-catalyzed oxidative perfluoroalkylation of aryl boronic acids using perfluoroalkylzinc reagents. *J. Org. Chem.* **2017**, *83*, 463–468. (d) Popov, I.; Lindeman, S.; Daugulis, O. Copper-catalyzed arylation of 1*H*-perfluoroalkanes. *J. Am. Chem. Soc.* **2011**, *133*, 9286–9289.

(11) (a) Xia, Y.; Guo, T.; Baldridge, K. K.; Siegel, J. S. Trifluoromethyl/perfluoroalkyl corannulenes: directed synthesis and photophysical characterization. *Eur. J. Org. Chem.* **2017**, 875–879. (b) Yamashita, Y.; Ishitani, H.; Shimizu, H.; Kobayashi, S. Highly *anti*-selective asymmetric aldol reactions using chiral zirconium catalysts. Improvement of activities, structure of the novel zirconium complexes, and effect of a small amount of water for the preparation of the catalysts. *J. Am. Chem. Soc.* **2002**, *124*, 3292–3302. (c) Urata, H.; Fuchikami, T. A novel and convenient method for trifluoromethylation of organic halides using CF₃SiR'₃/KF/Cu(I) system. *Tetrahedron Lett.* **1991**, *32*, 91–94.

(12) (a) Serizawa, H.; Aikawa, K.; Mikami, K. Direct synthesis of pentafluoroethyl copper from pentafluoropropionate as an economical C₂F₅ source: application to pentafluoroethylation of arylboronic acids and aryl bromides. *Org. Lett.* **2014**, *16*, 3456–3459. (b) Carr, G. E.; Chambers, R. D.; Holmes, T. F.; Parker, D. G. Sodium perfluoroalkane carboxylates as sources of perfluoroalkyl groups. J. Chem. Soc., Perkin Trans. 1 **1988**, 921–926.

(13) (a) Panferova, L. I.; Miloserdov, F. M.; Lishchynskyi, A.; Martínez Belmonte, M.; Benet-Buchholz, J.; Grushin, V. V. Well-defined CuC₂F₅ complexes and pentafluoroethylation of acid chlorides. *Angew. Chem. Int. Ed.* **2015**, *54*, 5218–5222. (b) Lishchynskyi, A.; Mazloomi, Z.; Grushin, V. V. Trifluoromethylation and pentafluoroethylation of vinylic halides with low-cost R_fH-derived CuR_f (R_f = CF₃, C₂F₅). *Synlett* **2015**, *26*, 45–50. (c) Lishchynskyi, A.; Grushin, V. V. Cupration of C₂F₅H: isolation, structure, and synthetic applications of [K(DMF)2][(*t*-BuO)Cu(C₂F₅)]. Highly efficient pentafluoroethylation of unactivated aryl bromides. *J. Am. Chem. Soc.* **2013**, *135*, 12584–12587. (14) (a) Mormino, M. G.; Fier, P. S.; Hartwig, J. F. Copper-mediated perfluoroalkylation of heteroaryl bromides with (phen)CuR_F. Org. Lett. **2014**, *16*, 1744–1747. (b) Litvinas, N. D.; Fier, P. S.; Hartwig, J. F. A general strategy for the perfluoroalkylation of arenes and arylbromides by using arylboronate esters and [(phen)CuR^F]. Angew. Chem. Int. Ed. **2012**, *51*, 536–539. (c) Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. A broadly applicable copper reagent for trifluoromethylations and perfluoroalkylations of aryl iodides and bromides. Angew. Chem. Int. Ed. **2011**, *50*, 3793–3798.

(15) Price corresponding to the largest batch available in Aspira Scientific.

(16) Wiemers, D. M.; Burton, D. J. Pregeneration, spectroscopic detection and chemical reactivity of (trifluoromethyl)copper, an elusive and complex species. *J. Am. Chem. Soc.* **1986**, *108*, 832–834.

(17) (a) Nakamura, Y.; Fujiu, M.; Murase, T.; Itoh, Y.; Serizawa, H.; Aikawa, K.; Mikami, K. Cu-catalyzed trifluoromethylation of aryl iodides with trifluoromethylzinc reagent prepared in situ from trifluoromethyl iodide. Beilstein J. Org. Chem. 2013, 9, 2404-2409. (b) Tomashenko, O. A.; Escudero-Adán, E. C.; Belmonte, M. M.; Grushin, V. V. Simple, stable, and easily accessible well-defined CuCF₃ aromatic trifluoromethylating agents. Angew. Chem. Int. Ed. 2011, 50, 7655-7659. (c) Hafner, A.; Bräse, S. Efficient trifluoromethylation of activated and non-activated alkenyl halides by using (trifluorome-thyl)trimethylsilane. Adv. Synth. Catal. 2011, 353, 3044–3048. (d) Kremlev, M. M.; Mushta, A. I.; Tyrra, W.; Yagupolskii, Y. L.; Naumann, D.; Möller, A. Me₃SiCF₃/AgF/Cu—A new reagents combination for selective trifluoromethylation of various organic halides by trifluoromethylcopper, CuCF₃. J. Fluorine Chem. 2012, 133, 67-71. (e) Su, D.-B.; Duan, J.-X.; Yu, A.-J.; Chen, Q.-Y. Synthesis of functionalized long-chain perfluoroalkanes from methyl halodifluoroacetates: a process of difluorocarbene insertion into copper-carbon bonds. J. Fluorine Chem. 1993, 65, 11-14. (f) Kobayashi, Y.; Kumadaki, I. Studies on organic fluorine compounds. Part 27. Abnormal reactions in the trifluoromethylation of aromatic compounds with trifluoromethyl iodide and copper powder. J. Chem. Soc., Perkin Trans. 1 1980, 661-664.

(18) Kremlev, M. M.; Tyrra, W.; Mushta, A. I.; Naumann, D.; Yagupolskii, Y. L. The solid complex Zn(CF₃)Br·2DMF as an alternative reagent for the preparation of both, trifluoromethyl and pentafluoroethyl copper, CuCF₃ and CuC₂F₅. *J. Fluorine Chem.* **2010**, *131*, 212– 216.

(19) Mestre Ventura, J. PhD thesis, Universitat Rovira i Virgili (Spain), 2017.

(20) Xie, Q.; Li, L.; Zhu, Z.; Zhang, R.; Ni, C.; Hu, J. From C_1 to C_2 : TMSCF₃ as a precursor for pentafluoroethylation. *Angew. Chem. Int. Ed.* **2018**, *57*, 13211–13215.

(21) Complexes lacking externally added N- or P-ligands (or additives).

(22) (a) Konovalov, A. I.; Lishchynskyi, A.; Grushin, V. V. Mechanism of trifluoromethylation of aryl halides with CuCF₃ and the ortho effect. J. Am. Chem. Soc. **2014**, 136, 13410–13425. (b) Lishchynskyi, A.; Novikov, M. A.; Martin, E.; Escudero-Adán, E. C.; Novák, P.; Grushin, V. V. Trifluoromethylation of aryl and heteroaryl halides with fluoroform-derived CuCF₃: scope, limitations, and mechanistic features. J. Org. Chem. **2013**, 78, 11126–11146.

(23) Martínez de Salinas, S.; Mudarra, Á. L.; Odena, C.; Martínez Belmonte, M.; Benet-Buchholz, J.; Maseras, F.; Perez-Temprano. M. H. Exploring the role of coinage metalates in trifluoromethylation: a combined experimental and theoretical study. *Chem. Eur. J.* 2019, *25*, 9390–9394.

(24) Dubinina, G. G.; Ogikubo, J.; Vicic, D. A. Structure of bis(trifluoromethyl)cuprate and its role in trifluoromethylation reactions. *Organometallics* **2008**, *27*, 6233–6235.

(25) (a) Kütt, A.; Movchun, V.; Rodima, T.; Dansauer, T.; Rusanov,
E. B.; Leito, I.; Kaljurand, I.; Koppel, J.; Pihl, V.; Koppel, I.;
Ovsjannikov, G.; Toom, L.; Mishima, M.; Medebielle, M.; Lork, E.;
Röschenthaler, G.-V.; Koppel, I. A.; Kolomeitsev, A. A.
Pentakis(trifluoromethyl)phenyl, a sterically crowded and electronwithdrawing group: synthesis and acidity of pentakis(trifluoromethyl)benzene, -toluene, -phenol, and -aniline. J. Org. Chem. 2008, 73, 2607–2620. (b) Willert-Porada, M. A.; Burton, D. J; Baenziger, N. C. Synthesis and X-ray structure of bis(trifluoromethyl)(N,N-diethyldithiocarbamato)-copper; a remarkably stable perfluoroalkylcopper(III) complex. J. Chem. Soc.; Chem. Commun. 1989, 1633–1634.

(26) Zanardi, A.; Novikov, M. A.; Martin, E.; Benet-Buchholz, J.; Grushin, V. V. Direct cupration of fluoroform. J. Am. Chem. Soc. 2011, 133, 20901–20913.

(27) Kremlev, M. M.; Mushta, A. I.; Tyrra, W.; Yagupolskii, Y. L.; Naumann, D.; Schäfer, M. Approaches to prepare perfluoroalkyl and pentafluorophenyl copper couples for cross-coupling reactions with organohalogen compounds. *Dalton Trans.* **2015**, *44*, 19693–19699.

(28) Tye, J. W.; Weng, Z.; Johns, A. M.; Incarvito, C. D.; Hartwig, J. F. Copper complexes of anionic nitrogen ligands in the amidation and imidation of aryl halides. *J. Am. Chem. Soc.* **2008**, *130*, 9971–9983.

(29) (a) Cobo, I.; Matheu, M. I.; Castillón, S.; Boutureira, O.; Davis, B. G. Phosphine-free Suzuki–Miyaura cross-coupling in aqueous media enables access to 2-C-aryl-glycosides. Org. Lett. 2012, 14, 1728–1731.
(b) Rodríguez, M. A.; Boutureira, O.; Díaz, Y.; Matheu, M. I.; Castillón, S.; Seeberger, P. H. Synthesis of 2-iodoglycals, glycals, and 1,1'-disaccharides from 2-deoxy-2-iodopyranoses under dehydrative glycosylation conditions. J. Org. Chem. 2007, 72, 8998–9001. (c) Dharuman, S.; Vankar, Y. D. N-Halosuccinimide/AgNO₃-efficient reagent systems for one-step synthesis of 2-haloglycals from glycals: application in the synthesis of 2C-branched sugars via Heck coupling reactions. Org. Lett. 2014, 16, 1172–1175.

(30) (a) Moon, J.; Lee, S. Palladium catalyzed-dehalogenation of aryl chlorides and bromides using phosphite ligands. *J. Organomet. Chem.* **2009**, *694*, 473–477. (b) Demchuk, O.; Snieckus, V.; Yoruk, B.; Blackburn, T. A Mixed naphthyl-phenyl phosphine ligand motif for Suzuki, Heck, and hydrodehalogenation reactions. *Synlett* **2006**, 2908– 2913. (c) Navarro, O.; Kaur, H.; Mahjoor, P.; Nolan, S. P. Crosscoupling and dehalogenation reactions catalyzed by (*N*-heterocyclic carbene)Pd(allyl)Cl complexes. *J. Org. Chem.* **2004**, 69, 3173–3180. (d) Kobayashi, Y.; Yamamoto, K.; Asai, T.; Nakano, M.; Kumadaki, I. Studies on organic fluorine compounds. Part 35. Trifluoromethylation of pyrimidine- and purine-nucleosides with trifluoromethyl–copper complex. *J. Chem. Soc., Perkin Trans. 1* **1980**, 2755–2761.

(31) (a) Vankar, Y. D.; Linker, T. Recent developments in the synthesis of 2-C-branched and 1,2-annulated carbohydrates. *Eur. J. Org. Chem.* **2015**, 7633–7642. (b) Srinivas, B.; Reddy, T. R.; Krishna, P. R.; Kashyap, S. Copper(II) triflate as a mild and efficient catalyst for Ferrier glycosylation: synthesis of 2,3-unsaturated *O*-glycosides. *Synlett* **2014**, *25*, 1325–1330. (c) Gómez, A. M.; Lobo, F.; Uriel, C.; López, J. C. Recent developments in the Ferrier rearrangement. *Eur. J. Org. Chem.* **2013**, 7221–7262.

(32) Mestre, J.; Lishchynskyi, A.; Castillón, S.; Boutureira, O. Trifluoromethylation of electron-rich alkenyl iodides with fluoroformderived "ligandless" CuCF₃. *J. Org. Chem.* **2018**, *83*, 8150–8160.

(33) De Clercq, E. Antiviral drugs in current clinical use. J. Clin. Virol. 2004, 30, 115–133.

(34) Tanabe, Y.; Matsuo, N.; Ohno, N. Direct perfluoroalkylation including trifluoromethylation of aromatics with perfluoro carboxylic acids mediated by xenon difluoride. *J. Org. Chem.* **1988**, *53*, 4582– 4585.

(35) Lin, T. S.; Gao, Y. S. Synthesis and biological activity of 5-(trifluoromethyl)- and 5-(pentafluoroethyl)pyrimidine nucleoside analogs. J. Med. Chem. **1983**, 26, 598–601.

(36) (a) Dong, X.; Hu, Y.; Xiao, T.; Zhou, L. Synthesis of 2trifluoromethyl indoles *via* visible-light induced intramolecular radical cyclization. *RSC Adv.* **2015**, *5*, 39625–39629. (b) Shen, D.; Han, J.; Chen, J.; Deng, H.; Shao, M.; Zhang, H.; Cao, W. Mild and efficient one-pot synthesis of 2-(perfluoroalkyl)indoles by means of sequential Michael-type addition and Pd(II)-catalyzed cross-dehydrogenative coupling (CDC) reaction. *Org. Lett.* **2015**, *17*, 3283–3285. (c) Cao, L.; Shen, D.; Wei, J.; Chen, J.; Deng, H.; Shao, M.; Shi, J.; Zhang, H.; Cao, W. Facile synthesis of 2-(perfluoroalkyl)indoles through a Michael

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

2014, 2460-2467.

5153.

1268.

addition/CuI-catalyzed annulation process. Eur. J. Org. Chem.

kylated DNA. Bioorg. Med. Chem. 2009, 17, 3653-3658.

(37) Holzberger, B.; Marx, A. Enzymatic synthesis of perfluoroal-

(38) Saito, I.; Ikehira, H.; Matsuura, T. Photochemistry of 5- and 6-

(39) Miyashita, K.; Kondoh, K.; Tsuchiya, K.; Miyabe, H.; Imanishi,

iodouracils in the presence of alylsilanes and alkenes. A convenient

route to C5- and C6-substituted uracils. J. Org. Chem. 1986, 51, 5148-

T. Novel indole-ring formation by thermolysis of 2-(N-acylamino)-

benzylphosphonium salts. Effective synthesis of 2-

trifluoromethylindoles. J. Chem. Soc.; Perkin Trans. 1, 1996, 1261-

ACS Paragon Plus Environment

(40) Bergman, J.; Venemalm, L. Efficient synthesis of 2-chloro-, 2-bromo-, and 2-iodoindole. J. Org. Chem. **1992**, *57*, 2495–2497.

(41) Tasch, B. O. A.; Merkul, E.; Müller, T. J. J. One-pot synthesis of diazine-bridged bisindoles and concise synthesis of the marine alkaloid hyrtinadine A. *Eur. J. Org. Chem.* **2011**, 4532–4535.

(42) Qi, Q.; Shen, Q.; Lu, L. Copper-mediated aerobic fluoroalkylation of arylboronic acids with fluoroalkyl iodides at room temperature. *J. Am. Chem. Soc.* **2012**, *134*, 6548–6551.

(43) Clark, J. H.; Denness, J. E.; McClinton, M. A.; Wynd, A. J. The trifluoromethylation of chloroaromatics using the copper- CF_2Br_2 - dialkylamide reaction system. *J. Fluorine Chem.* **1990**, *50*, 411–426.