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ABSTRACT   

Protease-activated receptor 2 (PAR2) is a cell surface protein linked to G-protein dependent and 

independent intracellular signaling pathways that produce a wide range of physiological 

responses, including those related to metabolism, inflammation, pain and cancer. Certain 

proteases, peptides and nonpeptides are known to potently activate PAR2. However, no effective 

potent PAR2 antagonists have been reported yet despite their anticipated therapeutic potential. 

This study investigates antagonism of key PAR2-dependent signaling properties and functions 

by an imidazopyridazine compound, I-191, in cancer cells. At nanomolar concentrations, I-191 

inhibited PAR2 binding of, and activation by, structurally distinct PAR2 agonists (trypsin, 

peptide, nonpeptide) in a concentration-dependent manner in HT-29 cells. I-191 potently 

attenuated multiple PAR2-mediated intracellular signaling pathways leading to Ca2+ release, 

ERK1/2 phosphorylation, RhoA activation and inhibition of forskolin-induced cAMP 

accumulation. The mechanism of action of I-191 was investigated using binding and calcium 

mobilization studies in HT29 cells where I-191 was shown to be non-competitive and a negative 

allosteric modulator of the agonist 2f-LIGRL-NH2. The compound alone did not activate these 

PAR2-mediated pathways, even at high micromolar concentrations, indicating no bias in these 

signaling properties. I-191 also potently inhibited PAR2-mediated downstream functional 

responses, including expression and secretion of inflammatory cytokines, cell apoptosis and 

migration, in human colon (HT-29) and breast (MDA-MB-231) cancer cells. These findings 

indicate that I-191 is a potent PAR2 antagonist that inhibits multiple PAR2-induced signaling 

pathways and functional responses. I-191 may be a valuable tool for characterising PAR2 

functions in cancer and in other cellular, physiological and disease settings. 
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VISUAL ABSTRACT  
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INTRODUCTION  

         Protease-activated receptors are unusual rhodopsin-like G-protein coupled receptors in 

being activated by proteases (e.g. trypsin, thrombin), which cleave within the extracellular N-

terminus to expose an activating sequence (Arora et al, 2007; Coughlin, 2000; Tuteja, 2009; Yau 

et al, 2013). PAR2 is the most highly expressed PAR in certain immune and cancer cells. Upon 

activation, PAR2 mediates intracellular coupling to heterotrimeric G proteins that trigger 

pathway-dependent signaling (e.g. Ca2+ release, ERK1/2 phosphorylation, RhoA activation) as 

well as G protein-independent β-arrestin 1/2 signaling (Rothmeier and Ruf, 2012; Suen et al., 

2014). PAR2 signaling pathways are involved in circulatory, cardiovascular, central nervous, 

gastrointestinal, metabolic and respiratory systems (Ossovska and Bunnett, 2003; Lam and 

Schmidt, 2010; Rothmeier  and Ruf, 2012; Saito and Bunnett, 2005). The consequent modulation 

by PAR2 of a wide range of physiological and disease processes in these tissues, including 

inflammation, cancer, respiratory and central nervous system dysfunction, highlights PAR2 as a 

potential unexploited therapeutic target (Knight et al., 2001; Matej et al., 2007; Reed et al., 

2003). 

        PAR2 is mainly activated by serine proteases (e.g. trypsin, tryptase, TF-FVII-FXa, 

matriptase) (Darmoul et al., 2004; McLarty et al., 2011; Mihara et al., 2016; Ramachandran et 

al., 2011; Seitz et al., 2007), while some proteases cleave at a non-canonical site to produce a 

different activating sequence and different signaling profiles (Hollenberg et al., 2014; Zhao et 

al., 2015). Synthetic peptides also activate PAR2 (e.g. SLIGRL-NH2, 2-furoyl-LIGRL-NH2) 

(Barry et al., 2010; Kawabata et al., 2005; Yau et al., 2015), some being biased agonists (e.g. 2f-

LAAAAI-NH2, Isox-Cha-Chg-NH2, Isox-Cha-Chg-Ala-Arg-NH2) that signal more effectively 

through one pathway than another (Jiang et al., 2017). The beneficial effects of PAR2 activation 
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in vivo remain uncertain and context dependent, with pathway-selective biased ligands 

potentially being helpful in elucidating and harnessing therapeutic potential. 

          PAR2 antagonists might have disease-modifying properties but only a few weakly potent 

antagonists are known to test this possibility. ENMD-1068 weakly inhibits PAR2-mediated 

Ca2+signaling in vitro (IC50 5 mM) and joint inflammation in vivo (Kelso et al., 2006), although 

it is uncertain if this was via PAR2. A more potent peptidic PAR2 antagonist (K-14585) inhibits 

p38 MAPK activation and IL-8 secretion, but promotes them above 10 µM concentrations (Goh 

et al., 2009). GB83 and GB88 (IC50 1–10 µM) and analogues inhibit PAR2 activation by 

proteases (e.g. trypsin, tryptase), peptides (e.g. SLIGRL-NH2, 2-furoyl-LIGRLO-NH2) and 

nonpeptides (e.g. GB110) as measured by Ca2+ release in multiple cell types (Barry et al., 2010; 

Suen et al., 2012; Yau et al., 2016). However, while GB88 is an antagonist in inhibiting PAR2-

induced calcium mobilization but an agonist in stimulating RhoA activation, promoting ERK1/2 

phosphorylation, and reducing forskolin-stimulated cAMP (Suen et al., 2014). A different 

peptidomimetic C391 is a weak PAR2 antagonist of Ca2+ (IC50 1.3 µM) and pERK (IC50 14 µM) 

signaling, as well as pain responses in vivo (Boitano et al., 2015). Heptares and Astra-Zeneca 

reported an imidazole (AZ8838, IC50 4.2 µM vs trypsin; 2.3 µM vs SLIGRL) and a 

benzimidazole (AZ3451, IC50 6.6 µM vs trypsin; 5.4 nM vs SLIGRL) that bind at different sites 

in PAR2 crystal structures and inhibit Ca2+ (Cheng et al., 2017). In summary, most PAR2 

antagonists are active at only µM concentrations, do not inhibit all types of PAR2 agonists 

(proteases, peptides, nonpeptides), their activity can be context and cell dependent, or they have 

only been reported to date to be capable of inhibiting Ca2+ signaling (Yau et al., 2016).   

A diverse series of imidazopyridazine derivatives was recently claimed in a patent to 

antagonize PAR2-induced intracellular Ca2+ release at µM-nM concentrations (Farmer et al., 
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2015), although there was no evidence supporting selective binding to PAR2. Here we show that 

one imidazopyridazine derivative (I-191) displaces the binding of a fluorescent agonist from 

PAR2, and inhibits multiple PAR2-mediated signaling pathways and related functions in 

colorectal and breast carcinoma cells. I-191 is a full antagonist, with no agonist activity alone, of 

both trypsin- and peptide- (2f-LIGRL-NH2) induced Ca2+ release, ERK1/2 phosphorylation, 

RhoA activation and inhibition of forskolin-induced cAMP accumulation in HT-29 cells. 

Furthermore, I-191 also inhibits ERK1/2 phosphorylation, RhoA activation and inhibition of 

forskolin-stimulated cAMP accumulation induced by µM concentrations of biased ligand GB88. 

The antagonist function of I-191 is established here by: (1) inhibition of PAR2-induced 

expression of inflammatory genes and proteins that have been previously associated with PAR2 

activation, (2) inhibition of PAR2-reduced apoptosis-related caspase cleavages, and (3) 

inhibition of PAR2-triggered migration of HT-29 or MDA-MB-231 cancer cells. These findings 

indicate that I-191 is a potentially valuable tool in vitro for probing roles of PAR2 in physiology.  
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MATERIALS AND METHODS 
 

Cell Culture. All cell culture reagents were purchased from Invitrogen (Carlsbad, CA, 

USA) and Sigma Aldrich (St. Louis, MO, USA). HT-29 and MDA-MB-231 cells were a gift 

from the Queensland Medical Research Institute (Brisbane, Australia). HT-29 cells were 

maintained in DMEM at 37°C and 5% CO2 while MDA-MB-231 cells were cultured in 

Leibovitz’s L15 medium at 37°C without CO2. All media were supplemented with 10% FBS, 

100 units/mL penicillin and 100 units/mL streptomycin.  

           Binding assay. Assays were performed as previously described (Hoffman et al., 2012; 

Suen et al., 2014). Cells were seeded overnight in a 384-well plate at 2.4 × 104 cells/well, 

followed by PBS with 2% BSA blocking for 1 h at 37° C. Cells were simultaneously exposed to 

2f-LIGRLO (diethylenetriaminepentaacetate-europium)-NH2 (300 nM) and PAR2 ligands for 30 

min. Cells were washed by PBS mixed with 20 µM EDTA, 0.01% Tween and 0.2% BSA. Cells 

were finally incubated with DELFIA enhancement solution (Perkin Elmer) for 90 min. 

Fluorescence was measured using a Pherastar FS fluorimeter (BMG, Germany). 

Intracellular calcium mobilization. Cells were seeded overnight in 96-well plates at 5 × 

104 cells/well and then incubated in dye loading buffer (HBSS with 4 µM Fluo-3, 0.04% 

pluronic acid, 1% FBS and 2.5 mM probenecid) for 1 h at 37 °C. Cells were washed with HBSS 

before adding antagonists for 30 min. Plates were transferred to a FLIPR Tetra instrument 

(Molecular Device, CA, USA). PAR2 agonists were added 10 s after reading commenced and 

calcium signals were measured in real time (excitation at 480 nm and emission at 520 nm). 

Receptor residence time was determined by washout experiments. Antagonists were pre-

incubated with cells for 30 min at 37 °C and then unbound antagonists were removed by washing 

with HBSS buffer. At every indicated time point, plates were read after agonist addition. 2f-
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LIGRL-NH2 alone (5 µM) was used to measure maximum fluorescence due to Ca2+ sequestration 

by Fluo-3, with individual results normalized accordingly.  

            Agonist concentration-response curves with increasing concentration of antagonists were 

fitted to an operational model of allosterism (Gregory et al., 2012; Kenakin, 2013).  

𝐸𝑓𝑓𝑒𝑐𝑡 =
𝐸![τ![𝐴](𝐾! + 𝛼β B + τ![B]𝐾!)]!

( 𝐴 𝐾! + 𝐾!𝐾! + 𝐾! 𝐵 + 𝛼 𝐴 𝐵 )! + [τ! 𝐴 𝐾! + 𝛼β B + τ![B]𝐾!]!
 

Em is the maximum possible response, [A] is the molar concentration of agonist 2f-

LIGRL-NH2, KA is the equilibrium dissociation constant of agonist 2f-LIGRL-NH2. [B] is the 

molar concentration and KB is the equilibrium dissociation constant for the allosteric modulator. 

The cooperativity factor α is related to the affinity of agonist, while β represents efficacy of 

agonist. τA and τB represent the capacity of agonist and allosteric modulator to regulate receptor 

activation, respectively. Since I-191 showed no agonist activity, τB = 0 and the formula 

simplified to: 

𝐸𝑓𝑓𝑒𝑐𝑡 =
𝐸![τ![𝐴](𝐾! + 𝛼β B )]!

( 𝐴 𝐾! + 𝐾!𝐾! + 𝐾! 𝐵 + 𝛼 𝐴 𝐵 )! + [τ! 𝐴 𝐾! + 𝛼β B ]! 

Parameters that were held constant for I-191: KA = 10-7, KB = 10-8, τA = 10, Em = 100. 

 

AlphaLISA Surefire pERK1/2 assay. Cells were seeded overnight in 384-well 

proxiplates at 2 × 103 cells/well and then serum-starved for 2 h at 37 °C, prior to treatment with 

PAR2 ligands dissolved in serum-free medium. Antagonists were pre-incubated for 10 min 

followed by stimulation with agonist for 10 min. Supernatant was removed and cell lysis buffer 

was added with shaking for 30 min at room temperature, followed by adding reaction mixture for 

2 h. Phosphorylation of ERK1/2 was measured according to manufacturer’s instructions 

(PerkinElmer, MA, USA) and read using a Pherastar FS fluorimeter (BMG Labtech). 
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G-LISA RhoA Activation. Cells were seeded at 2 × 105 cells/well and serum-starved for 

2 days. After treating with a PAR2 agonist for 20 min at 37°C, cells were lysed for RhoA 

detection. An antagonist was added to cells 1 h prior to the agonist. RhoA activation was 

measured using a G-LISA Biochem kit according to manufacturer’s instructions (Cytoskelelon 

Inc., Denver, CO, USA). Briefly, cell lysates were added to the binding buffer and incubated at 

4°C for 30 min. Antigen-presenting buffer was then added for 2 min after washing. Cells were 

incubated with anti-RhoA primary antibody for 45 min, and subsequently incubated with 

secondary antibodies for 45 min. The mixed HRP detection reagent was added for 15 min, then 

stopped with buffer before signal was read by measuring absorbance at 490 nm using a 

microplate spectrophotometer (Suen et al., 2014). 

cAMP accumulation assay. Cells were seeded overnight in 384-well proxiplates at 2.4 × 

103 cells/well. Antagonists were pre-incubated for 10 min, followed by stimulation with agonist 

for 30 min, prior to treatment with PAR2 agonists and forskolin for 30 min at room temperature, 

then followed by adding cAMP detection reagent for 1 h at room temperature. cAMP 

accumulation was measured according to manufacturer’s instructions (PerkinElmer, MA, USA) 

and read using a Pherastar FS fluorimeter (BMG Labtech). 

Cytokine-induced cleavage of caspases 3 and 8. As previously described (Iablokov et 

al., 2014), cells were seeded overnight at 5 × 105 cells per well. After serum starving for 1 h, 

cells were incubated for 30 min with different concentrations of a PAR2 antagonist, before 

addition of a PAR2 agonist. Caspase 3/8 cleavage was then induced through addition of IFN-γ 

(40 ng.mL-1) for 5 min before adding TNF (10 ng.mL-1) and incubated for a further 6 h.  

Immunoblot. After treatment, cell lysates were prepared using lysis buffer supplemented 

with a protease and phosphatase inhibitor cocktail (Cell Signaling Tech, MA, USA). Cell lysates 
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was separated by electrophoresis in a Blot Bistris Plus 4–12% gel, followed by electrical transfer 

using iBlot 2 Dry Blotting System. Membranes were incubated with primary antibodies and 

secondary antibodies (cleaved caspase 3, Cell Signaling Tech 9661; cleaved caspase 8, Cell 

Signaling Tech 9496; anti-rabbit antibody conjugated to HRP, Cell Signaling Tech) using the 

iBindTM Western System (Life Technologies, Camarillo, CA, USA) according to instructions. 

Exposure times were varied to eliminate signal saturation. GAPDH (Sigma Aldrich) was used as 

a loading control and band intensity was calculated with Image J. 

RT-PCR. Cells were seeded overnight at a density of 5 × 105 cells per well in 12-well 

plates. Cells were serum-starved overnight, then pre-incubated with different antagonist 

concentrations for 30 min before adding a PAR2 agonist for 1 h. Cells were then lysed and RNA 

was isolated using ISOLATE II RNA Mini Kit (Bioline). Total RNA was extracted from cells, 

random oligo dT were initially incubated at 70°C for 10 min, and then cooled on ice for at least 1 

min before being reverse transcribed with Superscript III (Invitrogen) at 50 °C for 50 min then at 

70 °C for 10 min. Quantitative real time PCR was performed using a ViiATM 7 Real-Time PCR 

System (Life Technologies), cDNA, SYBER Green master mix (Life Technologies; Carlsbad, 

CA, USA) and primers. Genes were amplified for 40 cycles. Relative-gene expression was 

normalised against HPRT1 (Forward, TCAGGCAGTATAATCCAAAGATGGT; Reverse, 

AGTCTGGCTTATATCCAAC ACTTCG). 

ELISA. Cells were seeded overnight at a density of 5 × 105 cells/ well in 12-well plates. 

Cells were serum-starved overnight before exposing to various concentrations of an antagonist 

for 30 min. Cells were then treated with a PAR2 agonist for 24 h. Cell supernatants were 

collected and cytokine secretion was measured using an ELISA for human IL-8, according to 

manufacturer’s instructions (BD Bioscience, CA, USA). 
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Cell migration in vitro. HT-29 cells were seeded overnight at a density of 2 × 105 

cells/well in 12 well plates. As described previously 26, after cells formed a confluent monolayer, 

a scratch gap was created using a p200 pipette tip. Cells were washed, to remove floating cells, 

and incubated with or without PAR2 agonists in serum-free medium. Antagonists were added for 

30 min. before scratching the monolayer. The images of the scratch gap were acquired (at 0, 24 

and 48 h) using a Nikon Ti-U inverted brightfield microscope. The scratch gap size was 

calculated using ImageJ. Scratch gap size was measured as the gap area at 48 h divided by the 

initial gap area at 0 h. 

Transwell chemotaxis assay. The transwell system (polycarbonate filter insert with 8 

µm pore size membrane, Corning Inc., NY, USA) was used to investigate cell migration. Both 

sides of the membrane were coated with collagen I and air dried for 2 minutes. Cells were 

dissociated using non-enzymatic cell dissociation solution and re-suspended in serum-free L-15 

with 0.1% BSA. Cells were seeded (2.5x105/insert) and allowed to incubate for 3h at 37°C. 

PAR2 ligands were diluted in serum-free L-15 with 0.1% BSA and added to the bottom chamber 

to stimulate cell migration. Antagonists were pre-incubated for 30 min in the upper chamber 

prior to agonist addition. The transwell plates were incubated at 37°C and cells allowed to 

migrate for 24 h. After incubation, cells in the top chamber of the membrane were removed 

carefully using a cotton swab and fixed in 4% PFA. The membrane was washed twice with PBS 

and stained with DAPI. Migrated cells on the underside of the membrane were counted using a 

Nikon Ti-U inverted brightfield microscope. 

Statistical analysis. GraphPad Prism 7.0 was used to analyze all data (San Diego, CA). 

Statistical significance of differences between groups was measured using one-way ANOVA, 
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followed by Dunnett’s multiple comparisons test or Student’s t-test. Data are presented as means 

of entire data set ± SEM. 

Materials. Bovine trypsin was purchased from Sigma (Cat. No. T1426). I-191 (4-(8-

(tert-butyl)-6-(4-fluorophenyl)imidazo[1,2-b]pyridazine-2-carbonyl)-3,3-dimethylpiperazin-2-

one) was synthesized and characterized as described in the Supporting Information. PAR2 

activating peptide agonist 2f-LIGRL-NH2 and an Eu-tagged ornithine-containing peptide 2f-

LIGRLO(diethylenetriaminepentaacetate-europium)-NH2 were synthesized in house as described 

(Suen et al., 2012, Suen et al., 2014).   

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on December 20, 2017 as DOI: 10.1124/jpet.117.245027

 at A
SPE

T
 Journals on D

ecem
ber 25, 2017

jpet.aspetjournals.org
D

ow
nloaded from

 

http://jpet.aspetjournals.org/


JPET #245027 

	

	 15	

RESULTS 

Inhibition of PAR2 specific binding in HT-29 cells. 

 The compound I-191 (Figure 1A) is among a series of imidazopyridazine compounds 

recently described in a patent application by Vertex (Farmer et al., 2015).  Here we investigate 

PAR2 binding, signaling and functional properties for I-191 in HT-29 human colon 

adenocarcinoma cells, which express higher levels of PAR2 than other PARs (Figure 1B). A 

fluorescent analogue of the well-established PAR2 agonist peptide 2f-LIGRLO-NH2 (Suen et al., 

2014), labelled on the ornithine sidechain with europium diethylenetriaminepentaacetate, was 

used in competitive binding experiments to assess specific ligand binding to PAR2. The 

unlabelled 2f-LIGRL-NH2 was able to compete with the Eu-tagged peptide analogue for binding 

to HT-29 cells (Figure 1C) in a concentration-dependent manner (pIC50 6.4 ± 0.2). I-191 

similarly displaced the Eu-tagged peptide for binding to HT-29 cells (Figure 1C) in a 

concentration-dependent manner (pIC50 7.1 ± 0.2), consistent with specific binding of I-191 to 

PAR2 on HT-29 cells. However, unlike 2f-LIGRL-NH2, even the highest concentrations of the 

antagonist I-191 did not fully displace the binding of Eu-tagged 2f-LIGLRLO-NH2 (~25% 

remaining) from HT29 cells. The binding study is consistent with an insurmountable mechanism. 

 To investigate whether the mechanism of binding of I-191 to PAR2 was competitive or 

non-competitive with peptide agonist, we measured the binding affinity of varying 

concentrations of 2f-LIGRL-NH2 in the presence of Eu-tagged 2f-LIGRLO-NH2 (300 nM) and 

with increasing concentrations of I-191 (Figure 1D). There was no significant rightward shift in 

the plots and the IC50 for 2f-LIGRL-NH2 was almost invariant in the presence of increasing 

concentrations of I-191 (30 nM – 3 µM). At the highest concentrations of I-191 (10, 30 µM), the 
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agonist peptide was not completely displaced (only 75%) from the cells. This indicates that I-191 

is non-competitive with 2f-LIGRL-NH2 in binding to PAR2 on HT-29 cells.   

  

Inhibition of PAR2-mediated Ca2+ release in HT-29 cells. 

Next, we studied I-191 for inhibition of PAR2-induced calcium signaling. I-191 was a 

potent antagonist in inhibiting intracellular Ca2+ release induced by either 2f-LIGRL-NH2 (pIC50 

7.2 ± 0.1) or bovine trypsin (pIC50 6.7 ± 0.1) in HT-29 cells (Figure 2A).  I-191 was an order of 

magnitude more potent than our previously reported antagonist GB88 under the same conditions 

(Figure 2B, Table 1). I-191 did not induce any agonist-induced calcium response at 

concentrations up to 100 µM (Figure 2A) and it was about 100 fold more selective for PAR2 

than PAR1 in PC3 cells (Supplemental Figure 1) and HT29 cells (Farmer et al., 2015). The 

duration of inhibition, reflecting receptor residence time, was determined through washout 

experiments using the calcium assay (Figure 2C, 2D). After 1 h incubation, I-191 (1 µM) 

inhibited more than 50% of the intracellular Ca2+ release induced by 2f-LIGRL-NH2 (5 µM), and 

no antagonist activity was observed after 3h. The corresponding receptor residence time half-life 

was 51 min for I-191 at 37 °C, compared with ~200 min for GB88 (20 µM). Thus, I-191 is a 

potent full antagonist of PAR2 in inhibiting Ca2+ release in HT-29 colon cancer cells.  

 The mechanism of PAR2 antagonism by I-191 was further investigated for the Ca2+ 

signaling pathway in HT-29 cells through inhibitory effects on PAR2-induced calcium 

mobilization, following pre-treatment of cells with escalating concentrations of I-191. The 

agonist-induced calcium response curve showed a rightwards shift, but a depression in the 

maximum response at the highest concentration of 2f-LIGRL-NH2 supported a non-competitive 

and insurmountable mechanism of I-191 (Figure 2E). In addition, we measured the effect of I-
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191 on the Ca2+ response elicited by the native PAR2 agonist trypsin (Figure 2F). The inhibitory 

pattern for I-191 was similar against trypsin as for 2f-LIGRL-NH2. Further, at 1 µM - 30 µM of 

I-191 against 2f-LIGRL-NH2 (Figure 2E) or 2 µM-60 µM I-191 against trypsin (Figure 2F), no 

further antagonism of the Ca2+ response was obtained. This saturation effect is a hallmark of 

allosteric modulation. An allosteric modulator occupies its own binding site and, once the site is 

saturated, no further allosteric antagonist effect can be achieved (Kenakin, 2007; Kenakin et al., 

2006). Using an operational model of allosterism (Gregory et al., 2012; Kenakin, 2013; 

Watterson et al., 2017), we calculated the cooperativity for both affinity (α) and efficacy (β) of 

the “probe” 2f-LIGRL-NH2 in the calcium response. The finding that α = 0.85< 1.0 and β = 0.04 

< 1.0, suggests that I-191 may be a negative allosteric modulator of 2f-LIGRL-NH2-induced 

PAR2 activation in Ca2+ mobilisation. This calculated binding cooperativity (α = 0.85) is 

consistent with I-191 being non-competitive and insurmountable with the agonist probe 2f-

LIGRL-NH2. Together, the mechanistic data for binding and calcium release reveals that I-191 is 

a negative allosteric modulator that binds at a site on PAR2 that is distinct from 2f-LIGRL-NH2.  

 

Inhibition of other PAR2 signaling pathways in HT-29 cells.  

I-191 was also an antagonist in attenuating ERK1/2 phosphorylation (Figure 3A) 

induced by either 5 µM 2f-LIGRL-NH2 (pIC50 7.8 ± 0.2) or 50 nM bovine trypsin (pIC50 7.2 ± 

0.2). In addition, the agonist effect of the biased ligand GB88, which on its own stimulates 

ERK1/2 phosphorylation, was inhibited by I-191 (pIC50 7.4 ± 0.2). I-191 had greater antagonist 

activity in this ERK1/2 assay than in the calcium assay (5-fold greater against 2f-LIGRL-NH2 

and 3-fold against trypsin), suggesting it is a more potent ERK1/2 pathway inhibitor. 
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  Further, the PAR2 agonists 2f-LIGRL-NH2, trypsin, and the calcium-biased PAR2 

antagonist GB88, each significantly stimulated RhoA activation in HT-29 cells, with around a 3-

fold increase compared to untreated cells (Figure 3B). This activation of RhoA was inhibited by 

pre-incubation of HT29 cells with I-191 (10 µM), highlighting I-191 as an antagonist of PAR2-

mediated RhoA signaling.  

I-191 was also found to stimulate an inhibition curve in PAR2 agonist-reduced forskolin-

induced cAMP, under certain conditions where its concentration was below 10 µM, suggesting 

that it is an antagonist in another PAR2-dependent signaling pathway (Figure 3C).  

To summarize, I-191 is the first antagonist reported to date to potently inhibit all these 

signaling pathways in HT-29 cells. 

 

Inhibition of PAR2-mediated cytokine production and PAR2-attenuated cytokine-induced 

cleavage of caspases in HT-29 cells.  

        In addition to examining the effect of I-191 on three different PAR2 signaling pathways 

above, we also aimed to study its effects on related functional responses in cancer cells. First, we 

investigated whether I-191 could inhibit gene expression and secretion of the inflammatory 

cytokine, IL-8, that has been associated with ERK1/2 signaling in HT-29 cells (Jiang et al., 2017; 

Wang et al., 2010). For gene expression (Figure 4A), 2f-LIGRL-NH2 induced a 2.5-fold 

increase in CXCL8 mRNA expression (IL-8) in HT-29 cells. I-191 (1 and 10 µM) decreased this 

expression to baseline, but lower concentrations had little effect. Similar results were observed 

for IL-8 protein secretion induced by 2f-LIGRL-NH2, which was also inhibited by I-191 (IC50 

~100 nM, Figure 4B).  
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Although PAR2 agonists do not induce expression of certain cytokines like IFN-γ and 

TNF, they do inhibit caspase-3 and caspase-8 cleavage induced by a combination of IFN-γ and 

TNF. These caspase cleavages are hallmarks of cell apoptosis in HT-29 cells (Iablokov et al., 

2014), and we have previously linked PAR2 inhibition of these caspase cleavages to PAR2-

dependent ERK1/2 signaling in HT-29 cells (Jiang et al., 2017). Here, we studied the inhibitory 

effect of I-191 on this PAR2 attenuation of cytokine-triggered cleavage of caspase 3 (Figure 4C) 

and caspase 8 (Figure 4D). In the presence of 2f-LIGRL-NH2, the IFN-γ/TNF combination 

failed to induce any caspase cleavages, but pre-treatment with I-191 (0.1, 1 or 10 µM) resulted in 

caspase cleavages. Lower concentrations of I-191 (1, 10 nM) had no effect. These results for I-

191 support the conclusion that PAR2 antagonism can inhibit cytokine production, as well as 

cytokine-related caspase cleavages, via ERK1/2 signaling in HT-29 colon cancer cells.  

 

Inhibition of PAR2-activated migration of HT-29 cells.  

         Scratching of the surface of cell monolayers is a convenient and commonly used approach 

to measure the effects of compounds on cell migration, through monitoring the capacity of the 

cells over time to close the scratch gap (Liang et al., 2007). This effect has also been used to 

screen for compounds that can promote wound healing. Recently we reported the effects of 

PAR2 agonists in promoting cell migration and linked this property to the ERK1/2 pathway 

(Jiang et al., 2017). Here, we studied whether I-191 could inhibit PAR2-mediated migration of 

HT-29 cells into the scratch gap. In the absence of FBS, 2f-LIGRL-NH2 narrowed the scratch 

gap size to ~60% after 24h and ~36% after 48h (Figure 5). On the other hand, I-191 showed a 

concentration-dependent inhibition of this narrowing, with 1 µM and 10 µM almost halting 

migration after 48h (~80%) compared to the effect of 2f-LIGRL-NH2 alone (Figure 5). Even 100 
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nM I-191 could significantly reduce PAR2 stimulated cell migration after 48h (gap size ~56%) 

but there was no detectable effect at lower concentrations. Thus, I-191 potently attenuates PAR2 

agonist-triggered migration of HT-29 cells, a property we have associated with inhibition of 

PAR2-mediated signaling through ERK1/2 phosphorylation. 

 

Inhibition of PAR2-stimulated migration and cytokine expression in MDA-MB-231 

breast cancer cells.  

MDA-MB-231 breast cancer cells express PAR2 more highly than other PARs (Figure 

6A). PAR2 is activated in MDA-MB-231 cells by the agonists, 2f-LIGRL-NH2 or trypsin (Ge et 

al., 2004b; Matej et al., 2007) and this is inhibited by I-191 (Supplemental Figure 2). Therefore, 

I-191 was examined in transwell chambers to create two separate compartments for detecting 

PAR2-stimulated cell migration (chemotaxis). 2f-LIGRL-NH2 (100 nM) stimulated ~3-fold cell 

migration of MDA-MB-231 cells (Figure 6B). The biased antagonist GB88 (3 µM, 10 µM) that 

only inhibits the Gq-Ca2+-PKC signaling pathway (Suen et al., 2014) did not inhibit PAR2-

mediated migration nor was it an agonist alone in inducing migration (Supplemental Figure 3). 

In contrast, pre-treatment with I-191 (1 µM) led to inhibition of the migration of MDA-MB-231 

cells induced by 2f-LIGRL-NH2 (Figure 6B).  

           Further, four important signaling proteins that regulate physiological responses were used 

to probe the effect of I-191 (Figure 6C-F). 2f-LIGRL-NH2 significantly enhances gene 

expression of IL-6 (IL6, ~25-fold increase), IL-8 (CXCL8, ~90-fold increase), CTGF (CTGF, ~6-

fold increase) and GM-CSF (CSF2, ~14-fold increase) in MDA-MB-231 cells. I-191 (10 µM or 

1 µM) significantly inhibited the expression of all four cytokine genes induced by 2f-LIGRL-

NH2. These data for breast cancer cells are consistent with findings above for colorectal 
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carcinoma cells, supporting I-191 as an inhibitor of PAR2-induced chemotaxis and cytokine 

production in MDA-MB-231 breast cancer cells. 

 

DISCUSSION 

          G protein-coupled receptors play pivotal roles in cellular sensing and intracellular 

responses to extracellular ligands (Marinissen and Gutkind, 2001). About 30% of all 

pharmaceuticals target GPCRs and were developed to either turn their functions on or off. 

However, each membrane-spanning GPCR protein is linked to multiple G-protein dependent and 

independent signaling pathways, in turn linked to different physiological functions. Thus, 

although switching a GPCR on or off was once thought to activate all or none of the associated 

signaling pathways and functional responses linked to that GPCR, we now know that some 

ligands exhibit biased signaling and activate or inhibit only one or a subset of these pathways and 

functions. Biased signaling was originally thought to involve either G protein coupling or beta 

arrestin signaling, but it is now known to apply to differential modulation of all individual 

pathways linked to a GPCR (Hollenberg et al., 2014; Suen et al., 2014; Rankovic et al., 2016). It 

is therefore conceivable that ligands can be developed to modulate one or a few signaling 

pathways linked to a GPCR without affecting other pathways, or at least without similarly 

affecting all other signaling and functional responses. Indeed, antagonists may even be more 

beneficial if they only inhibited a single GPCR-linked pathway associated with a disease, 

without inhibiting other pathways linked to the same GPCR but responsible for beneficial 

functional responses in the cell.   

In the context of PAR2, it would be useful to have antagonists that can block all PAR2-

mediated signal transduction, as well as antagonists that block just one or a few downstream 
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signaling pathways (Suen et al., 2014). They could be helpful molecular tools for teasing out the 

relative merits of complete versus selective blockade of individual PAR2-linked signaling 

pathways in cells. In disease settings like cancer, where PAR2 is highly expressed it may be 

more desirable to inhibit multiple PAR2-dependent signaling associated with metastasis, 

proliferation, angiogenesis, and other functions promoting tumour development (Chanakira et 

al., 2017; Chang et al., 2013; Dorsam and Gutkind, 2007; Xie et al., 2015), whereas in other 

settings it may be more desirable to dampen some signaling such as that leading to pro-

inflammatory functions while still engaging signaling that leads to beneficial anti-inflammatory 

actions. To date, no antagonists have been found to potently inhibit all types of PAR2 agonists 

(proteases, peptides, nonpeptide), nor has any antagonist been shown to potently inhibit all 

known signaling pathways and functions activated by PAR2. Here we investigated whether a 

new imidazopyridazine compound I-191 (Farmer et al., 2015) binds to PAR2, acts as an 

antagonist of different agonists, the mechanism of antagonism, and whether it inhibits multiple 

PAR2 signaling functions or only blocks one or a subset of PAR2 signaling responses like GB88 

(Suen et al., 2014). 

This study provides evidence that I-191 binds to PAR2, since it acts in a concentration-

dependent manner to displace a PAR2 ligand, fluorescence labeled 2f-LIGRLO-NH2, for binding 

to PAR2 in HT-29 colon cancer cells. I-191 had a surprisingly short residence time on PAR2 

(Figure 2C), but was still able to attenuate calcium release induced in HT-29 cells by either a 

proteolytic (trypsin) or peptidic (2f-LIGRL-NH2.) agonist of PAR2. The potency of I-191 was 

about ten-fold higher than antagonist GB88 under the same conditions (Table 1). Furthermore, I-

191 showed no agonist activity even at high µM concentrations. This capacity to antagonize both 
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proteolytic and non-proteolytic agonists of PAR2, as well as not displaying agonist activity at 

high concentrations, is not shared by all reported antagonists of PAR2 (Yau et al, 2013).  

 The antagonist mechanism for I-191 was also investigated. I-191 inhibited the binding of 

Eu-tagged 2f-LIGRLO-NH2 to PAR2 in a concentration-dependent manner, but it could not 

completely displace the agonist even at high concentrations. This non-competitive and 

insurmountable binding suggested that I-191 may be an allosteric modulator (Christopoulos, 

2002). Increasing concentrations of I-191 in PAR2 agonist-induced calcium release revealed a 

saturation phenomenon, supporting allosteric binding of I-191 to PAR2. A characteristic of 

allosterism is cooperativity between orthosteric and allosteric ligands, known as “probe 

dependence” (Valant et al., 2012). Allosteric modulators can use different mechanisms of 

inhibition against different agonists of GPCRs (Watterson et al., 2017). However, for PARs it is 

difficult to characterize allosteric mechanisms since there is no exogenous orthosteric ligand. 

Instead it is the protease-cleaved N-terminus of the receptor itself that acts as the tethered 

orthosteric agonist. Therefore, the close surrogate 2f-LIGRL-NH2 was used as agonist and the 

definition of orthosteric versus allosteric relates specifically to whether I-191 binds to the same 

or different site on PAR2 as 2f-LIGRL-NH2. I-191 proved to be a negative allosteric modulator 

(α = 0.85< 1.0, β = 0.04 < 1.0) of 2f-LIGRL-NH2 based on an operational model of allosterism 

(Gregory et al., 2012; Kenakin, 2013). 

This mechanistic interpretation needs qualification. Firstly, the agonist is not the 

endogenous PAR2 agonist. Most synthetic agonists are analogues of the tethered sequence 

SLIGKV, such as SLIGRL-NH2, 2f-LIGRL-NH2, GB110, AY77. Structurally diverse PAR2 

agonists may enhance our understanding of PAR2 activation mechanisms and permit better 

mechanistic descriptions of antagonist mechanisms. Secondly, Ca2+ mobilisation induced by 2f-
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LIGRL-NH2 (or SLIGRL-NH2) versus trypsin is differentially influenced by PAR2 mutagenesis 

(Suen et al., 2017), suggesting that even synthetic peptide agonists might bind to a different site 

on PAR2 than the tethered ligand unmasked by trypsin. Our results indicate that I-191 is a 

negative allosteric modulator that may bind at a site on PAR2 that is different from that occupied 

by 2f-LIGRL-NH2 or tethered agonist. Thirdly, allosteric behaviour is context dependent and 

these ligands may behave differently under different conditions, in other cell types and signalling 

pathways (Gao and Jacobson, 2017). The description here of allosteric modulation may be 

context and system dependent.  

I-191 is also the first PAR2 antagonist reported to potently inhibit ERK1/2 phosphorylation, 

RhoA and cAMP activation induced by PAR2 agonists. Three different PAR2 agonists (trypsin, 

2f-LIGRL-NH2, GB88) were used to produce these reporters in HT-29 cells and to measure 

inhibition by I-191. I-191 is also the first antagonist reported to inhibit PAR2 activation of 

ERK1/2, RhoA and cAMP by the biased ligand GB88. It was a more potent antagonist than the 

recently reported C391 (IC50 14 µM, pERK1/2) (Boitano et al., 2015). RhoA and cAMP 

signaling is mediated by PAR2 activation (Greenberg et al, 2003; Sriwai et al, 2013; Suen et al., 

2014), but no PAR2 antagonist has been reported to inhibit this pathway until now.  

  Finally, we demonstrate that I-191 antagonises different cellular functions stimulated by 

PAR2 agonists in colon and breast cancer cells. PAR2 activation is known to induce migration, 

cytokine release and apoptosis in HT-29 cells (Darmoul et al, 2004; Iablokov et al., 2014; Wang 

et al, 2010). PAR2 agonists may therefore have some benefit in promoting cell survival in 

normal cells, whereas antagonists might promote apoptosis but inhibit cytokine release in, and 

migration of, cancer cells and prevent disease progression. I-191 was found here to affect three 

PAR2-intiated functions linked previously to ERK1/2 phosphorylation in HT-29 cells (Jiang et 
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al., 2017). Consistent with I-191 being a potent PAR2 antagonist of ERK1/2 phosphorylation in 

HT-29 cells, I-191 was found to inhibit (a) PAR2 agonist-induced IL-8 gene expression and 

protein secretion, (b) PAR2 agonist-attenuation of IFN-γ/TNF-induced caspase 3/8 cleavages 

related to apoptosis, and (c) cell migration into a scratch gap in HT29 cell monolayers.  

           Breast cancer progression and metastasis is another consequence of PAR2 activation (Ge 

et al, 2004a; Matej et al, 2007; Parisis et al, 2013). PAR2 is overexpressed in 72% of breast 

cancer tissues but only 21% of normal tissues. MDA-MB-231 cells overexpress PAR2 and 

migrate along a PAR2 agonist gradient (Su et al., 2009). Inhibitory effects of I-191 on PAR2-

induced migration of MDA-MB-231 breast cancer cells are consistent with observations for HT-

29 colon cancer cells, indicating potent antagonist properties in different cancer cell lines. Unlike 

the biased ligand GB88, which does not inhibit ERK1/2 activation or PAR2-induced migration, 

I-191 strongly inhibited 2f-LIGRL-NH2-induced migration of MDA-MB-231 cells. When MDA-

MB-231 cells were pretreated with I-191, the latter antagonized 2f-LIGRL-NH2 stimulated 

expression of cytokines (IL-6, IL-8, GM-CSF, CTGF). I-191 also inhibited PAR2-induced 

calcium release in normal human cells that highly express PAR2, such as HEK293 and HUVEC 

cells but was not cytotoxic (Supplemental Figure S4). 

In conclusion, this study supports I-191 as a potent, unbiased and full antagonist of human 

PAR2 in cancer cell lines. It inhibited PAR2-induced signaling activated in vitro by three 

different types of PAR2 agonists (protease, peptide, nonpeptide). It is the first potent antagonist 

in vitro of PAR2-mediated intracellular signaling through different pathways in HT29 cells, 

namely Ca2+ mobilization, ERK1/2 phosphorylation, RhoA activation and foskolin-induced 

cAMP accumulation. These PAR2 antagonist properties are manifested in inhibition in vitro of 

known PAR2-activated functional responses, namely cytokine expression, apoptosis and cell 
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migration in colorectal or breast cancer cells (Figure 7). This establishes I-191 as a potentially 

valuable new molecular tool for interrogating and better understanding the roles of PAR2 in 

physiology and disease settings, and this study could lay the groundwork for developing a new 

therapeutic agent for treating PAR2-mediated disease. 

 

ACKNOWLEDGMENTS  

We thank Professor Kum Kum Khanna and Dr Glenn Boyle (Queensland Institute of Medical 

Research, Brisbane, Australia) for MDA-MB-231 and HT-29 cells, respectively; and the 

Australian Cancer Research Foundation (ACRF) for a Cancer Biology Imaging Facility 

(Brisbane, Qld, Australia) enabling access to microscopes. 

 

 

 

AUTHORSHIP CONTRIBUTIONS 

Participated in research design: Jiang, Yau, Lim, Suen, Fairlie 

Conducted experiments: Jiang, Yau, Lim, Wu 

Contributed new reagents or analytic tools: Yau 

Performed data analysis: Jiang, Xu, Yau, Lim, Wu, Fairlie 

Wrote or contributed to the writing of the manuscript: Jiang, Yau, Lim, Wu, Xu, Suen, Fairlie 

 

 

 

 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on December 20, 2017 as DOI: 10.1124/jpet.117.245027

 at A
SPE

T
 Journals on D

ecem
ber 25, 2017

jpet.aspetjournals.org
D

ow
nloaded from

 

http://jpet.aspetjournals.org/


JPET #245027 

	

	 27	

 

REFERENCES  
 
Arora P, Ricks TK, Trejo J (2007). Protease-activated receptor signalling, endocytic sorting and 
dysregulation in cancer. J Cell Sci 120: 921-928. 
 
Barry GD, Suen JY, Le GT, Cotterell A, Reid RC, Fairlie DP (2010). Novel agonists and 
antagonists for human protease activated receptor 2. J Med Chem 53: 7428-7440. 
 
Boitano S, Hoffman J, Flynn AN, Asiedu MN, Tillu DV, Zhang Z, Sherwood CL, Rivas CM, 
DeFea KA, Vagner J, Price TJ (2015). The novel PAR2 ligand C391 blocks multiple PAR2 
signalling pathways in vitro and in vivo. Br J Pharmacol 172: 4535-4545. 
 
Chanakira A, Westmark PR, Ong IM, Sheehan JP (2017). Tissue factor-factor VIIa complex 
triggers protease activated receptor 2-dependent growth factor release and migration in ovarian 
cancer. Gynecol Oncol 145: 167-175. 
 
Chang LH, Pan SL, Lai CY, Tsai AC, Teng CM (2013). Activated PAR-2 regulates pancreatic 
cancer progression through ILK/HIFα induced TGFα expression and MEK/VEGF-A–mediated 
angiogenesis. Am J Pathol 183: 566-575. 
 
Cheng RK, Fiez-Vandal C, Schlenker O, Edman K, Aggeler B, Brown DG, Brown GA, C Cooke 
RM, Dumelin CE, Doré AS, Geschwindner S, Grebner C, Hermansson NO, Jazayeri A, 
Johansson P, Leong L, Prihandoko R, Rappas M, Soutter H, Snijder A, Sundström L, Tehan B, 
Thornton P, Troast D, Wiggin G, Zhukov A, Marshall FH, Dekker N (2017). Structural insight 
into allosteric modulation of protease-activated receptor 2. Nature 545: 112-115. 
 
Christopoulos A (2002). Allosteric binding sites on cell-surface receptors: novel targets for drug 
discovery. Nat Rev Drug Discov 1: 198-210. 
 
Coughlin SR (2000). Thrombin signalling and protease-activated receptors. Nature 407: 258-
264. 
 
Darmoul D, Gratio V, Devaud H, & Laburthe M (2004). Protease-activated receptor 2 in colon 
cancer trypsin-induced MAPK phosphorylation and cell proliferation are mediated by epidermal 
growth factor receptor transactivation. J Biol Chem 279: 20927-20934. 
 
Dorsam RT and Gutkind JS (2007). G-protein-coupled receptors and cancer. Nat Rev Cancer 7: 
79-94. 
 
Farmer LJ, Fournier PA, Lessard S, Liu B, St-Onge M, Sturino C, Szychowski J, Yannopoulos 
C, Vallee F, Lacoste JE, Martel J, Bubenik M, Ramtohul Y, Sayegh C (2015). 
Imidazopyridazines useful as inhibitors of the PAR2 signaling pathway. Patent WO2015048245. 
 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on December 20, 2017 as DOI: 10.1124/jpet.117.245027

 at A
SPE

T
 Journals on D

ecem
ber 25, 2017

jpet.aspetjournals.org
D

ow
nloaded from

 

http://jpet.aspetjournals.org/


JPET #245027 

	

	 28	

Gao ZG and Jacobson KA (2017). Distinct signaling patterns of allosteric antagonism at the 
P2Y1 receptor. Mol Pharmacol 92: 613-626. 
 
Ge L, Shenoy SK, Lefkowitz RJ, DeFea K (2004). Constitutive protease-activated receptor-2-
mediated migration of MDA MB-231 breast cancer cells requires both beta-arrestin-1 and -2. J 
Biol Chem 279: 55419-55424. 
 
Goh FG, Ng PY, Nilsson M, Kanke T, Plevin R (2009). Dual effect of the novel peptide 
antagonist K-14585 on proteinase-activated receptor-2-mediated signalling. Br J Pharmacol 158: 
1695-1704. 
 
Greenberg DL, Mize GJ, Takayama TK (2003). Protease-activated receptor mediated RhoA 
signaling and cytoskeletal reorganization in LNCaP cells. Biochemistry 42: 702-709. 
 
Gregory KJ, Noetzel MJ, Rook JM, Vinson PN, Stauffer SR, Rodriguez AL, Emmitte YZ, Aspen 
CC, Andrew SF, Brian AC, Craig WL, Colleen MN, P. JC(2012). Investigating metabotropic 
glutamate receptor 5 allosteric modulator cooperativity, affinity, and agonism: enriching 
structure-function studies and structure-activity relationships. Mol Pharmacol 82: 860-875. 
 
Hoffman J, Flynn AN, Tillu DV, Zhang Z, Patek R, Price TJ, Vagner J, Boitano S (2012). 
Lanthanide labeling of a potent protease activated receptor-2 agonist for time-resolved 
fluorescence analysis. Bioconjug Chem 23: 2098-2104. 
 
Iablokov V, Hirota CL, Peplowski MA, Ramachandran R, Mihara K, Hollenberg MD, 
MacNaughton WK(2014). Proteinase-activated receptor 2 (PAR2) decreases apoptosis in colonic 
epithelial cells. J Biol Chem 289: 34366-34377. 
 
Jiang Y, Yau M-K, Kok WM, Lim J, Wu K-C, Liu L, et al. (2017). Biased signaling by agonists 
of protease activated receptor 2. ACS Chem Biol 12: 1217-1226. 
 
Kawabata A, Oono Y, Yonezawa D, Hiramatsu K, Inoi N, Sekiguchi F,	Honjo M, Hirofuchi M, 
Kanke T, Ishiwata H (2005). 2-Furoyl-LIGRL-NH2, a potent agonist for proteinase-activated 
receptor-2, as a gastric mucosal cytoprotective agent in mice. Br J Pharmacol 144: 212-219. 
 
Kelso EB, Lockhart JC, Hembrough T, Dunning L, Plevin R, Hollenberg MD, Sommerhoff CP, 
McLean JS, Ferrell WR (2006). Therapeutic promise of proteinase-activated receptor-2 
antagonism in joint inflammation. J Pharmacol Exp Ther 316: 1017-1024. 
 
Kenakin T (2007). Allosteric theory: taking therapeutic advantage of the malleable nature of 
GPCRs. Curr Neuropharmacol 5: 149-156. 
 
Kenakin T (2013). Analytical pharmacology and allosterism: the importance of quantifying drug 
parameters in drug discovery. Drug Discov Today: Technol 10: e229-e235. 
 
Kenakin T, Jenkinson S, Watson C (2006). Determining the potency and molecular mechanism 
of action of insurmountable antagonists. J Pharmacol Exp Ther 319: 710-723. 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on December 20, 2017 as DOI: 10.1124/jpet.117.245027

 at A
SPE

T
 Journals on D

ecem
ber 25, 2017

jpet.aspetjournals.org
D

ow
nloaded from

 

http://jpet.aspetjournals.org/


JPET #245027 

	

	 29	

 
Knight DA, Lim S, Scaffidi AK, Roche N, Chung KF, Stewart GA, Thompson PJ (2001). 
Protease-activated receptors in human airways: upregulation of PAR-2 in respiratory epithelium 
from patients with asthma. J Allergy Clin Immunol 108: 797-803. 
 
Lam D and Schmidt B (2010). Serine proteases and protease-activated receptor 2-dependent 
allodynia: a novel cancer pain pathway. Pain 149: 263-272. 
 
Liang C-C, Park AY, Guan J-L (2007). In vitro scratch assay: a convenient and inexpensive 
method for analysis of cell migration in vitro. Nat Protocols 2: 329-333. 
 
M D Hollenberg KM, D Polley, J Y Suen, A Han,  D P Fairlie, R Ramachandran (2014). Biased 
signalling and proteinase-activated receptors (PARs): targeting inflammatory disease. Br J 
Pharmacol 171: 1180–1194. 
 
Marinissen MJ and Gutkind JS (2001). G-protein-coupled receptors and signaling networks: 
emerging paradigms. Trends Pharmacol Sci 22: 368-376. 
 
Matej R, Mand akova P, Netikova I, Pouckova P, Olejár T (2007). Proteinase-activated receptor-
2 expression in breast cancer and the role of trypsin on growth and metabolism of breast cancer 
cell line MDA MB-231. Physiol Res 56: 475. 
 
McLarty JL, Meléndez GC, Brower GL, Janicki JS, Levick SP (2011). Tryptase/protease-
activated receptor 2 interactions induce selective mitogen-activated protein kinase signaling and 
collagen synthesis by cardiac fibroblasts. Hypertension 58: 264-270. 
 
Mihara K, Ramachandran R, Saifeddine M, Hansen KK, Renaux B, Polley D, et al. (2016). 
Thrombin-mediated direct activation of proteinase-activated receptor-2: Another target for 
thrombin signaling. Mol Pharmacol 89: 606-614. 
 
Ossovskaya VS and Bunnett NW (2004). Protease-activated receptors- contribution to 
physiology and disease. Physiol Rev 84: 579-621. 
 
Parisis N, Metodieva G, Metodiev MV (2013). Pseudopodial and β-arrestin-interacting 
proteomes from migrating breast cancer cells upon PAR2 activation. J Proteomics 80: 91-106. 
 
Ramachandran R, Mihara K, Chung H, Renaux B, Lau CS, Muruve DA, et al. (2011). 
Neutrophil elastase acts as a biased agonist for proteinase-activated receptor-2 (PAR2). J Biol 
Chem 286: 24638-24648. 
 
Rankovic Z, Brust TF,  Bohn LM (2016). Biased agonism: An emerging paradigm in GPCR drug 
discovery. Bioorg Med Chem Lett 26: 241-250. 
 
Reed DE, Barajas-Lopez C, Cottrell G, Velazquez-Rocha S, Dery O, Grady EF, et al. (2003). 
Mast cell tryptase and proteinase-activated receptor 2 induce hyperexcitability of guinea-pig 
submucosal neurons. J Physiol 547: 531-542. 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on December 20, 2017 as DOI: 10.1124/jpet.117.245027

 at A
SPE

T
 Journals on D

ecem
ber 25, 2017

jpet.aspetjournals.org
D

ow
nloaded from

 

http://jpet.aspetjournals.org/


JPET #245027 

	

	 30	

 
Rothmeier AS and Ruf W Protease-activated receptor 2 signaling in inflammation. Semin 
Immunopathol 34 (1):133-149. 
 
Saito T and Bunnett NW (2005). Protease-activated receptors. Neuromolecular Med 7: 79-99. 
 
Seitz I, Hess S, Schulz H, Eckl R, Busch G, Montens HP,	Brandl R, Seidl S, Shomig A, Ott I 
(2007). Membrane-type serine protease-1/matriptase induces interleukin-6 and-8 in endothelial 
cells by activation of protease-activated receptor-2. Potential implications in atherosclerosis. 
Arterioscler Thromb Vasc Biol 27: 769-775. 
 
Sriwai W, Mahavadi S, Al-Shboul O, Grider JR, Murthy KS (2013). Distinctive G protein-
dependent signaling by protease-activated receptor 2 (PAR2) in smooth muscle: feedback 
inhibition of RhoA by cAMP-independent PKA. PloS One 8: e66743. 
 
Su S, Li Y, Luo Y, Sheng Y, Su Y, Padia R, Pan ZK, Dong Z, Huang S (2009). Proteinase-
activated receptor 2 expression in breast cancer and its role in breast cancer cell migration. 
Oncogene 28: 3047-3057. 
 
Suen J, Adams M, Lim J, Madala P, Xu W, Cotterell A, He Y, Yau M-K, Hooper JD, Fairlie DP 
(2017). Mapping transmembrane residues of proteinase activated receptor 2 (PAR2) that 
influence ligand-modulated calcium signaling. Pharmacol Res 117: 328-342. 
 
Suen JY, Barry GD, Lohman RJ, Halili MA, Cotterell AJ, Le GT, Fairlie DP (2012). Modulating 
human proteinase activated receptor 2 with a novel antagonist (GB88) and agonist (GB110). Br J 
Pharmacol 165: 1413-1423. 
 
Suen JY, Cotterell A, Lohman RJ, Lim J, Han A, Yau MK, Liu L, Cooper MA, Vesey DA, 
Fairlie DP (2014). Pathway-selective antagonism of proteinase activated receptor 2. Br J 
Pharmacol 171: 4112-4124. 
 
Tuteja N (2009). Signaling through G protein coupled receptors. Plant Signal Behav 4: 942-947. 
 
Valant C, Felder CC, Sexton PM, Christopoulos A (2012). Probe-dependence in the allosteric 
modulation of a G protein-coupled receptor: Implications for detection and validation of 
allosteric ligand effects. Mol Pharmacol 81:41-52 
 
Wang H, Moreau F, Hirota CL, MacNaughton WK (2010). Proteinase-activated receptors induce 
interleukin-8 expression by intestinal epithelial cells through ERK/RSK90 activation and histone 
acetylation. FASEB J 24: 1971-1980. 
 
Watterson KR, Hansen SV, Hudson BD, Alvarez-Curto E, Raihan SZ, Azevedo CM, Martin G, 
Dunlop J, Yarwood SJ, Ulven Tm Milligan G (2017). Probe-dependent negative allosteric 
modulators of the long-chain free fatty acid receptor FFA4. Mol Pharmacol 91: 630-641. 
 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on December 20, 2017 as DOI: 10.1124/jpet.117.245027

 at A
SPE

T
 Journals on D

ecem
ber 25, 2017

jpet.aspetjournals.org
D

ow
nloaded from

 

http://jpet.aspetjournals.org/


JPET #245027 

	

	 31	

Xie L, Duan Z, Liu C, Zheng Y, Zhou J (2015). Protease‑activated receptor 2 agonist increases 
cell proliferation and invasion of human pancreatic cancer cells. Exp Ther Med 9: 239-244. 
 
Yau M-K, Lim J, Liu L, Fairlie DP (2016) Protease activated receptor 2 (PAR2) modulators: a 
patent review (2010–2015). Expert Opin Thera Patents 26: 471-483. 
 
Yau M-K, Liu L, Suen JY, Lim J, Lohman R-J, Jiang Y, Cotterell AJ, Barry GD, Mak JYW, 
Vesey DA, Reid RC, Fairlie DP (2016). PAR2 modulators derived from GB88. ACS Med Chem 
Lett 7: 1179-1184. 
 
Yau M-K, Suen JY, Xu W, Lim J, Liu L, Adams MN, He YW, Hopper JD, Reid RC, David DP 
(2015). Potent small agonists of protease activated receptor 2. ACS Med Chem Lett 7:105-110. 
 
Yau MK, Liu L, Fairlie DP (2013). Toward drugs for protease-activated receptor 2 (PAR2). J 
Med Chem 56: 7477-7497. 
 
Zhao P, Lieu T, Barlow N, Sostegni S, Haerteis S, Korbmacher C, et al. (2015). Neutrophil 
elastase activates PAR2 and TRPV4 to cause inflammation and pain. J Biol Chem 290:13875-
13887. 
 
 
 
 
 
 
 
 
  

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on December 20, 2017 as DOI: 10.1124/jpet.117.245027

 at A
SPE

T
 Journals on D

ecem
ber 25, 2017

jpet.aspetjournals.org
D

ow
nloaded from

 

http://jpet.aspetjournals.org/


JPET #245027 

	

	 32	

FOOTNOTES 

Unnumbered footnote providing the source of financial support:  

This work was supported by the National Health and Medical Research Council for Senior 

Principal Research Fellowships (Grant 1027369, 1117017) and project grants (Grant 1084083, 

1047759) and the Australian Research Council (Grant DP130100629, CE140100011) to D.P.F. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on December 20, 2017 as DOI: 10.1124/jpet.117.245027

 at A
SPE

T
 Journals on D

ecem
ber 25, 2017

jpet.aspetjournals.org
D

ow
nloaded from

 

http://jpet.aspetjournals.org/


JPET #245027 

	

	 33	

FIGURE LEGENDS 

 

Figure 1. Specific binding of I-191 to PAR2 in HT-29 cells. (A) Structure of PAR2 ligand, I-

191. (B). Relative human mRNA expression of PAR1-4 genes (F2R, F2RL1, F2RL2, F2RL3) in 

HT-29 cells, PAR2 having the highest expression. (C) Concentration-dependent binding with 

300 nM Eu-labelled 2f-LIGRLO-NH2 of 2f-LIGRL-NH2 (pIC50 6.4 ± 0.2) or I-191 (pIC50 7.1 ± 

0.2). 2f-LIGRLO-NH2 and 2f-LIGRL-NH2 are well-established PAR2-selective agonist ligands. 

(D). Concentration-dependent response of 2f-LIGRL-NH2 in displacing 300 nM Eu-tagged 2f-

LIGRLO-NH2 binding to PAR2, in the presence of increasing concentrations of I-191 in HT-29 

cells. Statistical analysis by one-way ANOVA followed by Dunnett’s multiple comparisons test, 

each data point represents the mean ± SEM. *** p < 0.001 (n ≥ 3). 

 

Figure 2. I-191 attenuates PAR2-induced Ca2+ signaling in HT-29 cells.  

(A) I-191 attenuates Ca2+ induced in HT-29 cells by 5 µM 2f-LIGRL-NH2 (pink) or 50 nM 

bovine trypsin (blue), but alone shows no agonist activity (black).  (B) Known antagonist GB88 

similarly attenuates Ca2+ in HT-29 cells but at ten-fold higher concentrations.  (C, D) Duration of 

inhibition by (C) I-191 (1 µM) or (D) GB88 (20 µM) of Ca2+ release induced by 2f-LIGRL-NH2 

(5 µM) in HT-29 cells. (E) I-191 is a non-competitive and insurmountable antagonist inhibiting 

2f-LIGRL-NH2-induced Ca2+ release in HT-29 cells. The affinity parameter α = 0.85 and 

efficacy parameter β = 0.04 indicate that I-191 is a negative allosteric modulator of the agonist 

2f-LIGRL-NH2. (F). I-191 is a non-competitive and insurmountable antagonist in blocking 

trypsin-induced Ca2+ release in HT-29 cells. Statistical analysis by one-way ANOVA followed 

by Dunnett’s multiple comparisons test, each data point represents the mean ± SEM (n ≥ 3). 
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Figure 3. I-191 inhibits PAR2-induced ERK1/2, RhoA and cAMP signaling in HT-29 cells.   

(A). I-191 inhibits ERK1/2 phosphorylation induced in HT-29 cells by three PAR2 agonists, 2f-

LIGRL-NH2 (5 µM, pink), bovine trypsin (50 nM, blue) or biased ligand GB88 (10 µM, green), 

in a concentration-dependent manner. (B) I-191 (10 µM) inhibits RhoA activation induced in 

HT-29 cells by 2f-LIGRL-NH2 (10 µM), bovine trypsin (10 nM) or GB88 (50 µM). (C). I-191 

inhibits  PAR2-reduced 100 nM forskolin-induced cAMP accumulation by 1 µM 2f-LIGRL-NH2 

(pink), 50 nM bovine trypsin (blue), or 5µM GB88 (green) in a concentration-dependent manner, 

under conditions where the I-191 concentration was below 10 µM. Statistical analysis by one-

way ANOVA followed by Dunnett’s multiple comparisons test, each data point represents the 

mean ± SEM, * p < 0.05, ** p < 0.01 (n ≥ 3).  

 

Figure 4. I-191 inhibits PAR2-induced cytokine gene expression, cytokine protein secretion, 

and PAR2-inhibited cytokine-induced caspase cleavages in HT-29 cells. (A-B). 

Concentration-dependent inhibition by I-191 of (A) CXCL8 gene expression and (B) IL-8 protein 

secretion induced by 2f-LIGRL-NH2 (10 µM). (C-D). PAR2 agonist 2f-LIGRL-NH2 (1 µM) 

blocks apoptosis induced by the combination of IFN-γ (40 ng. mL-1) and TNF (10 ng. mL-1) 

through inhibiting: (C) caspase 3 and (D) caspase 8 cleavages, whereas I-191 inhibits these 

effects in a concentration-dependent manner. Statistical analysis by one-way ANOVA followed 

by Dunnett’s multiple comparisons test, *p < 0.05, **p < 0.01, *** p < 0.001 (n ≥ 3). 

 

Figure 5. I-191 attenuates PAR2-induced migration of HT-29 cells in a concentration-

dependent manner. (A) Concentration dependent inhibition by I-191 of cell migration induced 

by PAR2 agonist 2f-LIGRL-NH2 (1 µM) into a scratch gap over 48 h. (B) Temporal effect on 
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cell migration into a scratch gap over 48h by 2f-LIGRL-NH2 (1 µM) alone and with varying 

concentrations of I-191 (1 nM, 10 nM, 100 nM, 1 µM, 10 µM). (C) Concentration-dependent 

inhibition by I-191 of cell migration over 48 h induced by PAR2 agonist 2f-LIGRL-NH2 (1 µM) 

into a scratch gap. Statistical analysis by one-way ANOVA followed by Dunnett’s multiple 

comparisons test, ** p < 0.01, *** p < 0.001 (n ≥ 3).  

 

Figure 6. I-191 inhibits PAR2-induced migration and cytokine gene expression in MDA-

MB-231 cells. (A) Cells expressed the PAR2 mRNA more highly than PAR1, PAR3 and PAR4. 

(B) Cell migration induced by PAR2 agonist 2f-LIGRL-NH2 (100 nM) is inhibited by I-191 (1 

µM). (C-F) 2f-LIGRL-NH2 (1 µM) induces mRNA expression of (C) IL6, (D) CXCL8, (E) 

CTGF or (F) CSF2, which are inhibited by I-191 (1µM or 10 µM). Statistical analysis by one-

way ANOVA followed by Dunnett’s multiple comparisons test, * p < 0.05, ** p < 0.01, *** p < 

0.001 (n ≥ 3).  

 

Figure 7. Effect of I-191 (red cross) on intracellular signaling and cell functions induced by 

three different types of PAR2 agonist.  
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TABLES 

Table 1. Comparative inhibition of PAR2-induced signals in HT-29 cells. 
 

Compound (agonist) iCa2+   
(pIC50 ± SEM) 

pERK1/2  
(pIC50 ± SEM) 

cAMP  
(pIC50 ± SEM) 

RhoA 
(pIC50) 

I-191 (2f-LIGRL-NH2)a 7.2 ± 0.1 7.8 ± 0.2 6.8± 0.3 ~ 5.5e 

I-191 (Trypsin)b 6.7 ± 0.1 7.2 ± 0.2 6.6± 0.3 ~ 5.5e 

I-191 (GB88)c - 7.4 ± 0.2 6.5± 0.3 ~ 5.5e 

GB88 (2f-LIGRL-NH2)d 6.0 ± 0.1 - - - 

GB88 (Trypsin)d 5.7± 0.1 - - - 
 
aI-191 inhibits PAR2 signaling pathways activated by 2f-LIGRL-NH2. bI-191 inhibits PAR2 signaling 
pathways activated by bovine trypsin. cI-191 inhibits PAR2 signaling pathways activated by GB88. 
dGB88 inhibits iCa2+ release induced by 2f-LIGRL-NH2 or bovine trypsin. eEstimated from Figure 3B. n 
≥ 3 for all data.  
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FIGURES 

 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 5 
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Figure 6 

 
 
 
 

 

 

 

 

 

 

 

 

0.0

0.5

1.0

1.5

2.0

IL
6 

m
R

N
A

2f-LIGRL-NH2 (1µM)

I-191 (µM)

-

-

+

-

+

1

+

10

***
***

0

10

20

30

40

C
TG
F 

m
R

N
A

2f-LIGRL-NH2 (1µM)

I-191 (µM)

-

-

+

-

+

1

+

10

*
*

0

2

4

6

8

10

C
XC
L8

 m
R

N
A

2f-LIGRL-NH2 (1µM)

I-191 (µM)

-

-

+

-

+

1

+

10

***
***

0.0

0.5

1.0

1.5

C
SF
2 

m
R

N
A

2f-LIGRL-NH2 (1µM)

I-191 (µM)

-

-

+

-

+

1

+

10

***
**

 B

C D

E

F2L F2L1 F2L2 F2L3
0.0

0.5

1.0

1.5

2.0

2.5

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n
(n

or
m

al
iz

ed
 w

ith
 H

PR
T)

*** ***
***

A

0

1

2

3

4

C
he

m
ot

ac
tic

 in
de

x
(F

ol
d 

C
ha

ng
e)

2f-LIGRL-NH2 (100nM)

I-191 (1µM)

-
-

-
+

+
-

+

+

**

F

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on December 20, 2017 as DOI: 10.1124/jpet.117.245027

 at A
SPE

T
 Journals on D

ecem
ber 25, 2017

jpet.aspetjournals.org
D

ow
nloaded from

 

http://jpet.aspetjournals.org/


JPET #245027 

	

	 43	

Figure 7 
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