Co-ordination Chemistry of Higher Oxidation States. Part 38.¹ Synthesis, Spectroscopic and Electrochemical Studies of some *trans*-Dihalogenoosmium Complexes. Crystal Structure of *trans*- $[Os(PMe_3)_4Cl_2]BF_4^{\dagger}$

Neil R. Champness, William Levason,^{*} Roy A. S. Mould, Derek Pletcher and Michael Webster Department of Chemistry, University of Southampton, Southampton SO9 5NH, UK

The complexes *trans*- $[Os(PMe_3)_4X_2]$ (X = CI or Br) have been obtained from $[Os(PPh_3)_3X_2]$ and PMe₃, and *trans*- $[OsL_4X_2]$ [L = PMe₂Ph, AsMe₃, SbPh₃ or pyridine (py)] by reduction of appropriate osmium(II) complexes in the presence of L. The complexes *cis*- $[Os(PR_3)_4X_2]$ are formed by isomerisation of the *trans* analogues in chlorinated solvents, and in other ways. Air oxidation of the osmium(II) complexes gives *trans*- $[OsL_4X_2]BF_4$ (L = PMe₃ or AsMe₃), but formation of *trans*- $[OsL_4X_2]BF_4$ (L = PMe₂Ph, SbPh₃ or py) and *cis*- $[Os(PMe_2Ph)_4Cl_2]BF_4$ requires HNO₃ as oxidant. Use of concentrated HNO₃ gives *trans*- $[OsL_4X_2]^{2+}$ (L = PMe₃, PMe₂Ph or AsMe₃) in solution, but these have not been isolated. The complexes have been characterised by IR, UV–VIS, and NMR spectroscopies, and the effect of stereochemistry and L and X upon the Os"–Os" and Os"–Os'v redox potentials probed by cyclic voltammetry. The crystal structure of *trans*- $[Os(PMe_3)_4Cl_2]BF_4$ has been determined: orthorhombic, space group *Fddd*, *a* = 8.104(4), *b* = 32.195(11), *c* = 38.540(9) Å, and *Z* = 16. The cation has Os–P 2.419(5) and 2.398(5) Å and Os–CI 2.352(4) Å, and shows deviations of the OsP₄ unit from planarity due to steric interactions. There is no evidence that *mer*- $[IrL_3Cl_3]$ (L = PEtPh₂, AsMe₂Ph, SbPh₃ or SMe₂) can be oxidised either chemically or electrochemically to stable iridium(IV) cations.

We have recently described ^{2,3} some systematic studies of the effects of varying the neutral ligands ($L = PR_3$, AsR₃, SbR₃, *etc.*) and halide (X = Cl or Br) upon the stability and redox potentials of the *trans*-[OsL₂X₄]–[OsL₂X₄]⁻ and *mer-* and *fac*-[OsL₃X₃]⁺–[OsL₃X₃] systems. The present paper extends these studies to complexes with four neutral ligands. Such complexes are rather rare for osmium, and most readily obtained for Os^{II} as [OsL₄X₂],^{4–11} although detailed characterisations have been provided only for the *trans* isomers where L = PMe₃ or PMe₂Ph and X = Cl.

Results and Discussion

Synthesis of Osmium(II) Complexes.—The trans-[Os-(PMe₃)₄X₂] complexes were made by phosphine exchange between [Os(PPh₃)₃X₂] and PMe₃.^{4,5} A similar route using PMe₂Ph was unsatisfactory, and trans-[Os(PMe₂Ph)₄X₂] were obtained directly from OsO₄ or Na₂[OsX₆], HX and excess of PMe₂Ph in ethanol.¹¹ The only previously reported arsine complexes with this stoichiometry are [OsL₄X₂] (L = AsMe₂Ph or AsMePh₂) obtained by Dwyer *et al.*,⁹ and characterised only by halide analysis. Several attempts to prepare the AsMe₂Ph complexes using their route gave materials which were identified by chemical analysis, IR and ¹H NMR spectroscopies as the halide-bridged dimers [Os₂(AsMe₂-Ph)₆X₃]H₂PO₂. The presence of the H₂PO₂⁻ anion results from the large excess of hypophosphorous acid used as a reducing agent. In the proton NMR spectra, each sample exhibited only a single AsMe resonance assignable to the dimer, which is expected to have the familiar⁶ [L₃Os(μ -X)₃OsL₃]⁺ structure. Halide analyses differ little for the two formulations. There was no apparent reaction between *trans*-[Os(SbPh₃)₄Cl₂] and AsMe₃ in hexane even after 3 d, in marked contrast to the facile reaction of PMe₃ with [Os(PPh₃)₃X₂], reflecting the very different kinetics of ligand replacement in the five-co-ordinate complex and the very inert t_{2g}^{6} configuration in O_h symmetry. The reduction of mixtures of [OsX₆]²⁻ and AsMe₃ in EtOH-water with H₃PO₂, or better the reduction of *mer*-[Os(AsMe₃)₃-X₃] in tetrahydrofuran with amalgamated zinc in the presence of AsMe₃, appeared to give *trans*-[Os(AsMe₃)₄X₂], but we were unable to isolate solid complexes. The products were clear yellow oils, with single ¹H NMR resonances, and weak absorptions at *ca*. 26 000 cm⁻¹ in the UV-VIS spectra consistent with the expected *trans* complexes. Air oxidation of the oils in acetone or ethanol solution in the presence of HBF₄ gave the corresponding osmium(III) complexes.

The trans- $[Os(SbPh_3)_4X_2]$ complexes were prepared by prolonged reflux of mer- $[Os(SbPh_3)_3X_3]$ with excess of SbPh₃ in 2-ethoxyethanol with addition of NaBH₄ as reducing agent. The formation of six-co-ordinate [OsL₄X₂] with SbPh₃, compared with the five-co-ordinate complexes obtained with PPh₃,^{12,13} is probably attributable to the significantly smaller cone angle of the stibine. In the cases of trans-[Os(py)₄X₂] (py = pyridine), Buckingham *et al.*'s method ⁷ from $K_2[OsX_6]$ and pyridine in glycerol was used, although with a modified work-up procedure. In this case the glycerol serves as both solvent and reducing agent.¹⁴ Attempts to prepare tetrakis-(ligand)osmium(II) complexes with Group 16 donors such as Me₂S have been unsuccessful so far, although trans-[Os(dmso)₄- X_2] (dmso = dimethyl sulphoxide) are known,¹⁵ and an X-ray study of the bromo complex showed the dmso ligands were S-coordinated to the osmium.16

The complexes *cis*- $[Os(PMe_2Ph)_4X_2]$ were made by heating OsO₄, HX, and excess of PMe₂Ph in 2-methoxyethanol,¹¹ and *cis*- $[Os(PMe_3)_4X_2]$ by isomerisation of the *trans* isomers in CH₂Cl₂ under nitrogen. The latter complexes were obtained by

trans-Dichlorotetrakis(trimethylphosphine)osmium(111) tetrafluoroborate.

Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1991, Issue 1, pp. xviii-xxii.

trans Isomers	Colour	$v(Os-X)^a/cm^{-1}$	$E_{\rm max}$ /10 ³ cm ⁻¹ ($\epsilon_{\rm mol}$ /dm ³ mol ⁻¹ cm ⁻¹) ^b
[Os(py) ₄ Cl ₂]	Dark red	300	21.74 (7570), 26.00 (17 460)
$\left[O_{s}(pv)_{4}Br_{3}\right]$	Orange-brown	196	17.70 (2000), 20.15 (12 000), 26.75 (16 250)
[Os(PMe ₂),Cl ₂]	Yellow	284	26.95 (240)
Os(PMe ₃) ₄ Br ₂]	Orange-yellow	187	25.51 (220)
Os(PMe ₂ Ph) ₄ Cl ₂]	Yellow	298	26.32 (470), 30.12 (sh)
Os(PMe ₂ Ph) ₄ Br ₂]	Yellow	n.o.	24.88 (230), 30.12 (sh)
[Os(SbPh ₃) ₄ Cl ₂]	Yellow-brown	n.o.	23.31 (820)
[Os(SbPh ₃) ₄ Br ₂]	Brown	n.o.	20.75 (sh), 22.22 (1110)
Os(py) ₄ Cl ₂ NO ₃	Khaki	330	22.70 (446), 25.77 (820), 29.41 (1190), 32.30 (sh)
$\left[O_{s}(py)_{4}Br_{2}\right]NO_{3}$	Brown	n.o.	20.80 (1330), 23.15 (3200), 24.40 (4130), 32.78 (11 200)
$[Os(PMe_3)_4Cl_2]BF_4$	Pink	308	19.19 (2100), 20.83 (sh), 31.06 (3860)
$[Os(PMe_3)_4Br_2]BF_4$	Purple	215	17.45 (3880), 19.16 (sh), 26.53 (2340)
$[Os(PMe_2Ph)_4Cl_2]BF_4$	Purple	311	17.99 (1910), 19.45 (sh), 28.33 (sh), 31.35 (3160)
$[Os(PMe_2Ph)_4Br_2]BF_4$	Green	225	16.50 (3850), 17.99 (sh), 25.38 (1780), 27.32 (1630)
$[Os(AsMe_3)_4Cl_2]BF_4$	Pink	312	19.42 (1100), 21.10 (sh), 27.78 (sh), 31.15 (1720)
$[Os(AsMe_3)_4Br_2]BF_4$	Blue-purple	227	17.70 (2870), 19.46 (700), 27.25 (1700), 31.65 (sh)
$[Os(SbPh_3)_4Cl_2]BF_4$	Green	311	15.06 (985), 15.95 (sh), 25.91 (1745), 33.58 (34 550)
$[Os(SbPh_3)_4Br_2]BF_4$	Green	n.o.	13.80 (3120), 15.27 (sh), 24.63 (2810), 32.78 (48 620)
cis Isomers			
$[Os(PMe_3)_4Cl_2]$	Yellow	283, 300	c
$[Os(PMe_3)_4Br_2]$	Yellow	n.o.	—
$[Os(PMe_2Ph)_4Cl_2]$	Pale yellow	244, 275	—
$[Os(PMe_2Ph)_4Br_2]$	Yellow	n.o.	NUMBER VY
$[Os(PMe_2Ph)_4Cl_2]BF_4$	Purple	272, 308	15.60 (410), 19.05 (1030), 27.55 (910), 33.56 (2880)

^a Nujol mull, n.o. = not observed or assigned. ^b In CH₂Cl₂. ^c cis Complexes have no clearly defined absorption at $< 30\ 000\ cm^{-1}$.

Fig. 1 The UV–VIS spectra of trans- $[Os(PMe_3)_4Cl_2](---)$, trans- $[Os(PMe_3)_4Cl_2]BF_4$ (----), all in CH₂Cl₂ solution

Werner and co-workers⁵ by reaction of the *trans* isomers with sodium dihydronaphthylide in tetrahydrofuran to form [Os- $(PMe_3)_3(\eta^2-Me_2PCH_2)H$], and treatment with HX. Unless oxygen is rigorously excluded the *cis* isomers are contaminated with *trans*-[Os(PMe_3)_4X_2]⁺.

Properties of Osmium(II) Complexes.—Selected spectroscopic data are given in Table 1. As expected for low-spin d⁶ Os^{II} the complexes are diamagnetic, and, the pyridine complexes apart, are pale yellow or brown solids. The pyridine complexes are deeply coloured, and their UV–VIS spectra reveal intense absorptions in the range 20 000–30 000 cm⁻¹. These are typical of d⁶ polypyridyl complexes ^{14,17} and can be assigned as metalto-ligand charge transfer (c.t.) transitions involving the metal t_{2g} and the pyridine π^* orbitals. In contrast the other *trans* complexes have only single weak absorptions at <30 000 cm⁻¹ which can be assigned as d–d transitions, specifically as ¹A_{1g} \rightarrow ¹E_g in D_{4h} symmetry. The ³¹P-{¹H} NMR spectra of the *trans* phosphine complexes contain single broad resonances which in the cases of *trans*-[Os(PMe₃)₄X₂] were little changed by cooling the solution to 190 K. However the single resonances

observed at room temperature for $trans-[Os(PMe_2Ph)_4X_2]$ broadened when the solutions were cooled, and at the lowest temperature achieved (190 K) showed evidence of several overlapping resonances. It was suggested by Coombe et al.¹¹ that the chloride was not a genuine P_4X_2 complex but that one phosphine was either π bonded to the metal or agostically bound. However since the complexes can be oxidised to trans- $[Os(PMe_2Ph)_4X_2]^+$ by nitric acid (below), all four phosphines must be P-bonded to the metal, and the spectral changes are explained by the presence of restricted rotation about the Os-P bonds due to the crowded nature of the cation, as observed for some iridium(III) analogues by Deeming et al.¹⁸ The smaller cone angle of PMe₃ presumably reduces the barriers to rotation (although the NMR resonances are unusually broad), and individual resonances are not resolved. On standing in solution in chlorocarbon solvents the PMe₂Ph complexes rapidly isomerise to the cis forms,¹¹ the reaction being complete in a few hours at room temperature. Isomerisation also occurs for the PMe₃ complexes, but complete conversion into the cis isomers (as monitored by ³¹P NMR spectroscopy) takes several days, and is complicated by the ease with which the trans isomers oxidise to Os^{III} in air. The arsine and stibine complexes show no sign of isomerisation in chlorocarbon solvents over several days.

Synthesis of Osmium(III) Complexes.—The trans-[Os- $(EMe_3)_4X_2$]BF₄ (E = P or As) complexes were easily made by air oxidation of the osmium(II) complexes in ethanol in the presence of HBF₄. However for the synthesis of the other complexes (Table 1) nitric acid was cautiously added to a suspension of the osmium(II) complex in aqueous HBF₄. The pyridine complexes were initially made as tetrafluoroborates, but these proved to be poorly soluble in organic solvents, and the nitrate salts were prepared instead by HNO₃ oxidation of the osmium(II) complexes in dilute aqueous HX. Nitric acid oxidation of the corresponding *cis* osmium(II) complex produced *cis*-[Os(PMe_2Ph)_4Cl_2]BF₄, but the analogous bromide was not obtained analytically pure.

Properties. The *trans*- $[OsL_4X_2]BF_4$ complexes are deeply coloured, air stable and readily soluble in most organic solvents, in which they are 1:1 electrolytes. The assignments of the UV-VIS spectra (Table 1, Fig. 1) follow from those of the

Table 1 Selected spectroscopic data

Fig. 2 The cation trans- $[Os(PMe_3)_4Cl_2]^+$ showing the atom numbering scheme. Hydrogen atoms are omitted for clarity and the thermal ellipsoids are drawn at the 40% probability level

Table 2 Bond lengths (Å) and angles (°) for trans-[Os(PMe_3)_4-Cl_2]BF_4

2.352(4)	B -F(1)	1.32(2)
2.419(5)	B-F(2)	1.32(2)
2.398(5)		
1.82(2)	P(2)-C(21)	1.81(2)
1.81(2)	P(2)-C(22)	1.84(2)
1.81(2)	P(2)-C(23)	1.84(2)
3.14	C-H (fixed)	0.95
3.42		
97.3(2)	P(1)-Os-P(2)	91.2(2)
82.6(2)	P(1)-Os- $P(1a)$	89.8(3)
96.8(2)	P(1)-Os- $P(2a)$	165.9(2)
83.3(2)	P(2)-Os-P(2a)	91.2(3)
179.3(3)		
115.4(6)	Os-P(2)-C(21)	117.5(7)
114.8(7)	Os-P(2)-C(22)	116.0(7)
118.0(7)	Os-P(2)-C(23)	115.3(7)
98.5(9)	C(21)-P(2)-C(22)	104.1(10)
105.7(10)	C(21)-P(2)-C(23)	104.1(11)
101.9(9)	C(22)-P(2)-C(23)	97.1(9)
108(1)	F(1)-B-F(2b)	109(1)
110(1)	F(2)-B-F(2b)	112(1)
0.25 - x, 0.25	5 - y, z; b 1.25 - x, y, 0.25	— <i>z</i> .
	$\begin{array}{c} 2.352(4)\\ 2.419(5)\\ 2.398(5)\\ 1.82(2)\\ 1.81(2)\\ 3.14\\ 3.42\\ 97.3(2)\\ 82.6(2)\\ 96.8(2)\\ 83.3(2)\\ 179.3(3)\\ 115.4(6)\\ 114.8(7)\\ 118.0(7)\\ 98.5(9)\\ 105.7(10)\\ 101.9(9)\\ 108(1)\\ 110(1)\\ 0.25 - x, 0.2: \end{array}$	$\begin{array}{ccccc} 2.352(4) & B-F(1) \\ 2.419(5) & B-F(2) \\ 2.398(5) \\ 1.82(2) & P(2)-C(21) \\ 1.81(2) & P(2)-C(22) \\ 1.81(2) & P(2)-C(23) \\ 3.14 & C-H (fixed) \\ 3.42 \\ \end{array}$ $\begin{array}{ccccc} 97.3(2) & P(1)-Os-P(2) \\ 82.6(2) & P(1)-Os-P(2a) \\ 83.3(2) & P(2)-Os-P(2a) \\ 83.3(2) & P(2)-Os-P(2a) \\ 115.4(6) & Os-P(2)-C(21) \\ 114.8(7) & Os-P(2)-C(22) \\ 118.0(7) & Os-P(2)-C(23) \\ 98.5(9) & C(21)-P(2)-C(23) \\ 98.5(9) & C(21)-P(2)-C(23) \\ 98.5(9) & C(21)-P(2)-C(23) \\ 101.9(9) & C(22)-P(2)-C(23) \\ 108(1) & F(1)-B-F(2b) \\ 110(1) & F(2)-B-F(2b) \\ 10.25 - x, 0.25 - y, z; b 1.25 - x, y, 0.25 \\ \end{array}$

Table 3 Ultraviolet-visible spectra of the trans osmium(1v) cations*

Complex	Colour	$E_{\rm max}$ /10 ³ cm ⁻¹
$[Os(PMe_3)_4Cl_2]^{2+}$	Blue	14.5, 15.25 (sh)
$\left[Os(PMe_3)_4Br_2\right]^{2+}$	Green	13.8
$\left[Os(PMe_2Ph)_4Cl_2\right]^{2+}$	Brown	13.0
$\left[Os(PMe_2Ph)_4Br_2\right]^{2+}$	Brown	12.7
$\left[Os(AsMe_3)_4Cl_2\right]^{2+}$	Green	14.0, 14.9 (sh)
$[Os(AsMe_3)_4Br_2]^{2+}$	Brown	13.4, 13.9
In situ in concentrated HNO	solution.	

osmium(III) complexes of types $[OsL_2X_4]^-$ and $[OsL_3X_3]^{2,3}$ For osmium(III) t_{2g}^5 complexes the major features are expected to be ligand $\longrightarrow t_{2g}(Os)$ c.t. transitions, and since the symmetry of the *trans* cations is relatively high (D_{4h}) , assignments in terms of separate L \rightarrow Os and X \rightarrow Os transitions are reasonable. From previous studies^{2,3} the strong features at > ca. 28 000 cm⁻¹ for the chlorides and >*ca.* 25 000 cm⁻¹ for the bromides are $\pi(X) \rightarrow t_{2g}(Os)$ charge-transfer bands. The strong features at <*ca.* 21 000 cm⁻¹ for the heavy Group 15 donor complexes are similarly readily assigned as $\sigma(P, As \text{ or } Sb) \rightarrow t_{2g}(Os)$. The spectra are very similar to those of the more familiar *trans*-[Os(diphosphine)_2X_2]⁺.¹⁹ The spectra of the pyridine complexes are different in that several strong bands are present between 20 000 and 30 000 cm⁻¹ and in addition to the $\pi(X) \rightarrow t_{2g}(Os), \pi(pyridine) \rightarrow t_{2g}(Os)$ c.t. bands are expected.²⁰

Structure of trans-[Os(PMe₃)₄Cl₂]BF₄.—The structure of a discrete cation is shown in Fig. 2 and Table 2 lists the bond lengths and angles. The osmium atom is located on a two-fold axis parallel to z and the cation has the trans configuration. The Os-Cl distance [2.352(4) Å] lies in the range found for other Os^{III}-Cl(trans Cl) distances {e.g. 2.363(2) Å in [Os(NH₃)- $(PPh_3)_2Cl_3]^{21}$ and supports the view that increasing osmium oxidation state is accompanied by decreasing Os-Cl distances. The Os-P distances seem unexceptional when compared with published data. The angles around the osmium are of some interest and this is most clearly illustrated by looking at the four Cl(1)-Os-P angles (Table 2). These show an alternating sequence greater than and less than 90° with on average a 7.0° change from the idealised value. The four P atoms thus form a very flattened tetrahedron with the two Cl atoms positioned over the two long (trans) edges. This is presumably a consequence of the steric requirements of the four trimethylphosphine ligands. A similar effect is found 18 in trans- $[Ir(PMe_2Ph)_4Cl_2]^+$. The Os-P-C angles have an average value of 116(1)° while the C–P–C angles [102(3)° (av.)] are essentially unchanged from the value 22 in free PMe₃ (99°). The BF₄ anion is well documented, and in the present example shows no evidence for the disorder that is commonly encountered. The B atom is on a two-fold axis.

Complexes.—The electrochemical Osmium(IV) studies (below) show that the osmium(III) phosphine and arsine complexes undergo reversible 1e oxidations. The trans-[Os- $(PMe_3)_4X_2$]BF₄ complexes dissolve in cold concentrated nitric acid to give deep blue (X = Cl) or green (X = Br) solutions which are stable for some hours at room temperature. The UV-VIS spectra contain broad absorptions at 13 000-15 000 cm⁻¹ with clearly defined shoulders on the high-energy side, which are very similar to those observed ¹⁹ for trans-[Os(diphosphine) $_{2}X_{2}]^{2+}$, and show that *trans*- $[Os(PMe_{3})_{4}X_{2}]^{2+}$ have been formed. Dilution of these solutions with water causes immediate decomposition to the osmium(III) analogues. All attempts to isolate these osmium(IV) complexes by the addition of HBF₄ or even 70% HClO₄ at -20 °C have failed. Similar osmium(IV) complexes are formed in solution by PMe₂Ph and AsMe₃ (Table 3), and again dilution with water regenerates the osmium(III) complexes. However there was no evidence for the formation of such complexes by SbPh3, and whilst trans- $[Os(py)_4X_2]$ dissolve in concentrated HNO₃ to give greenbrown solutions these have ill defined peaks in the UV-VIS spectra, and the osmium(III) complexes are not reformed on dilution or reduction. It seems likely that the species present are not trans- $[Os(py)_4X_2]^{2+}$. The cis- $[Os(PR_3)_4X_2]$ complexes similarly appear to decompose on dissolution in concentrated HNO₃.

Electrochemical Studies.—Cyclic voltammetry was used to determine the formal potentials of the Os^{II} — Os^{III} , and in some cases the Os^{III} — Os^{IV} , couples. Voltammograms were recorded at potential scan rates over the range 0.05–0.2 V s⁻¹, at a polished, vitreous carbon-disc electrode for 0.5×10^{-3} mol dm⁻³ solutions of the complexes in CH₂Cl₂ or MeCN, containing 0.1 mol dm⁻³ NBuⁿ₄BF₄. The results are listed in Table 4 and a typical example is shown in Fig. 3.

All of the complexes *trans*- $[OsL_4X_2]^{0/+}$ (L = PR₃, AsR₃ or py) gave reversible Os^{II}-Os^{III} couples. Reversible couples were

Table 4	Electrochemical	data.	E°	/V	vs. SCE
1 4010 7	Licentoenenneur	uutu,	L		<i>vo.</i> bCL

	Os ^{II} –Os ^{III}		
trans Isomers	CH ₂ Cl ₂ ^a	MeCN ^b	MeCN
$[Os(PMe_{2}Ph)_{4}Cl_{2}]^{0/+}$	+0.26	+0.19	+1.41
$\left[Os(PMe_2Ph)_4Br_2\right]^{0/+}$	_	+0.23	+1.37
$\left[Os(PMe_3)_4Cl_2\right]^{0/4}$		+0.02	+1.28
$[Os(PMe_3)_4Br_2]^{0/+}$		+0.12	+1.29
$[Os(AsMe_{3})_{4}Cl_{2}]^{0/+}$		-0.03	+1.28
$[Os(AsMe_3)_4Br_2]^{0/+}$		+0.03	+1.25
$[Os(SbPh_3)_4Cl_2]^{0/+}$	+0.43	(+0.46)°	$(+1.63)^{d}$
$[Os(SbPh_3)_4Br_2]^{0/+}$	+0.48	(+0.47)°	$(+1.60)^{d}$
$[Os(py)_4Cl_2]^{0/+}$	+0.45		—
$[Os(py)_4Br_2]^{0/+}$	+0.49	+0.33	
cis Isomers			
$[Os(PMe_2Ph)_4Cl_2]^{0/+}$	+0.73	+ 0.63	
$[Os(PMe_2Ph)_4Br_2]^{0/+}$	+0.80	_	
$[Os(PMe_3)_4Cl_2]^{0/+}$	+0.69		
$[Os(PMe_3)_4Br_2]^{0/+}$	+0.73		

^{*a*} Recorded in CH_2Cl_2 ; ferrocene couple at +0.57 V. ^{*b*} Recorded in MeCN; ferrocene couple at +0.41 V. ^{*c*} Quasi-reversible. ^{*d*} Irreversible.

Fig. 3 Cyclic voltammogram of trans-[Os(PMe_3)_4Br_2] in MeCN run at potential scan rates of 0.05, 0.1 and 0.2 V s^{-1}

also observed for *trans*-[Os(SbR₃)₄X₂] in CH₂Cl₂, but *trans*-[Os(SbPh₃)₄X₂]⁺ gave irreversible couples in MeCN, possibly due to the very low solubility of the osmium(II) complexes in this solvent. Reversible Os^{III}-Os^{IV} couples were also observed for the phosphine and arsine complexes, but *trans*-[Os(SbPh₃)₄X₂]⁺ gave only quasi-reversible oxidations. The *trans*-[Os(py)₄X₂]⁺ complexes gave a number of oxidations at more positive potentials, but the Os^{III}-Os^{IV} couple not be identified.

The cis- $[OsL_4X_2]^{0/+}$ complexes gave reversible $Os^{II}-Os^{III}$ couples at potentials 0.7–0.8 V, more positive than those of the *trans* analogues. No $Os^{III}-Os^{IV}$ couples were identified out to +2 V in MeCN, but a reversible couple was evident at more positive potentials than those of the $Os^{II}-Os^{III}$ couples. From the small peak height and the observed value of E° these couples were identified as due to small amounts of *mer*- $[OsL_3X_3]^3$ formed as a decomposition product (UV–VIS spectra of the starting materials ruled out their initial presence).

It can be seen from the data in Table 4 that varying the halide has little effect upon the redox potentials. However, as previously observed,^{2,3} replacing alkyl substituents by phenyl groups shifts the potentials to more positive values, and this appears to be a greater effect than changing P for As as donor. The more positive Os^{II}–Os^{III} potential for the stibine complexes could be partly due to this effect, but unfortunately the osmium trialkylstibine complexes are unknown, previous attempts to prepare them² producing intractable oils. The differences in redox potential between corresponding *cis* and *trans* complexes show that the stereochemistry has a large effect.^{2,3} We note that for the few examples where redox potentials have been reported previously^{6,11} the results are in agreement with those reported here.

Iridium Complexes.-Previous studies²³ have shown that

J. CHEM. SOC. DALTON TRANS. 1991

iridium(IV) complexes of types [IrLCl₅]⁻, trans-[IrL₂X₄] and cis-[Ir(L-L)X₄] (L = PR₃, AsR₃, SR₂, etc.; X = Cl or Br; L-L = dithioether, diimine, etc.) are readily obtained, but the only reported examples with less than four co-ordinated halide ligands are the aqua species mer- and $fac-[Ir(H_2O)_3Cl_3]^$ obtained in solution only.²⁴ In view of the osmium results (above and ref. 3), we re-examined a series of iridium(III) complexes [IrL₃Cl₃] to see if there was evidence for the formation of the iridium(IV) analogues. The complexes mer- $[IrL_3Cl_3]$ (L = PEtPh₂, AsMe₂Ph, SMe₂, py or SbPh₃) and fac-[Ir(PEtPh₂)₃Cl₃] were made by literature methods. Cyclic voltammetry in CH₂Cl₂ solution showed no evidence for any oxidation process within the potential range 0-1.6 V vs. saturated calomelelectrode (SCE) for mer- and fac-[Ir(PEtPh₂)₃-Cl₃], mer-[Ir(AsMe₂Ph)₃Cl₃] and mer-[Ir(py)₃Cl₃]. For mer-[Ir(SMe₂)₃Cl₃] and mer-[Ir(SbPh₃)₃Cl₃] there was evidence of some completely irreversible oxidation at highly positive potentials, but the lack of a corresponding reduction wave showed the products were not stable on the time-scale of cvclic voltammetry. Attempted chemical oxidation of these complexes with either Cl₂ in CH₂Cl₂ or concentrated HNO₃ was also unsuccessful. The triphenylstibine complex was completely decomposed to $[IrCl_6]^{2-}$ by excess of Cl_2 , but no reaction was apparent in the other cases.

Experimental

The osmium starting materials were obtained and physical measurements were made as described previously.³ All syntheses were carried out under a nitrogen atmosphere. Recrystallisations of the osmium(II) complexes were also performed with exclusion of oxygen.

trans-[Os(py)₄Cl₂].—This was made by a modification of the method of Buckingham *et al.*⁷ Powdered [NH₄]₂[OsCl₆] (1.0 g, 2.3 mmol) was suspended in glycerol (20 cm³), pyridine (5 cm³) was added, and the mixture stirred at 80–90 °C for 3 h. The dark red solution was poured into water (100 cm³), and extracted with CH₂Cl₂ (3 × 50 cm³). The CH₂Cl₂ extracts were dried (MgSO₄) and evaporated to *ca.* 10 cm³. On standing at 0 °C overnight dark red crystals separated (0.5 g, 40%). A further crop could be obtained by concentrating the solution, but was contaminated with *fac*-[Os(py)₃Cl₃] (Found: C, 41.7; H, 3.4; N, 9.3. C₂₀H₂₀Cl₂N₄Os requires C, 41.6; H, 3.5; N, 9.7%). The complex *trans*-[Os(py)₄Br₂] was made similarly from K₂[OsBr₆] in 55% yield (Found: C, 36.0; H, 3.2; N, 8.5. C₂₀H₂₀Br₂N₄Os requires C, 36.0; H, 3.0; N, 8.4%).

trans-[Os(PMe₃)₄Cl₂].—This complex was made using the method of Werner and Gotzig,⁵ namely reaction of green [Os(PPh₃)₃Cl₂]¹² with PMe₃ at room temperature in hexane. The solid product was filtered off, washed with hexane and recrystallised from deoxygenated actone. ³¹P-{¹H} NMR (CH₂Cl₂): δ -49 (s) (W_{\pm} = 300 Hz). The complex *trans*-[Os(PMe₃)₄Br₂] was prepared similarly from [Os(PPh₃)₃-Br₂]¹² (35%) (Found: C, 21.8; H, 5.4. C₁₂H₃₆Br₂OsP₄ requires C, 22.0; H, 5.5%). ³¹P-{¹H} NMR (CH₂Cl₂): δ -56.0 (s) (W_{\pm} = 360 Hz).

trans-[Os(PMe₂Ph)₄Cl₂].—A deoxygenated ethanol (35 cm³) solution of OsO₄ (0.3 g, 1.18 mmol) and concentrated hydrochloric acid (3 cm³) was treated with PMe₂Ph (1.64 g, 11.9 mmol) and the mixture heated to reflux under nitrogen for *ca*. 4 h and then cooled. After standing for 16 h at room temperature a yellow solid separated from the red solution and was filtered off, washed with ethanol until free from red powder and dried *in vacuo* (0.23 g, 24%) (Found: C, 47.4; H, 5.3. C₃₂H₄₄Cl₂OsP₄ requires C, 47.2; H, 5.4%). ³¹P-{¹H} NMR (CH₂Cl₂): δ – 52.8 (s) (W_{\pm} = 680 Hz).

trans-[Os(PMe₂Ph)₄Br₂].—The salt Na₂[OsBr₆] (1.0 g, 1.4

mmol) and PMe₂Ph (1.5 g, 11 mmol) were refluxed under nitrogen in a mixture of ethanol (25 cm³) and water (15 cm³) until the ³¹P-{¹H} NMR spectrum of a portion of the mixture showed that it contained largely the desired product. The reaction mixture was cooled, filtered and the solid dried *in vacuo* (0.9 g, 71%) (Found: C, 42.7; H, 5.1. C₃₂H₄₄Br₂OsP₄ requires C, 42.6; H, 4.9%). ³¹P-{¹H} NMR (CH₂Cl₂): δ – 59.6 (s) ($W_{\frac{1}{2}}$ = 240 Hz).

cis-[Os(PMe₃)₄Cl₂].—The corresponding *trans* isomer was dissolved in deoxygenated CH₂Cl₂ and the solution allowed to stand for 7 d with rigorous exclusion of oxygen. The solvent was removed *in vacuo*, the yellow powder washed with diethyl ether and dried (Found: C, 25.7; H, 6.3. C₁₂H₃₆Cl₂OsP₄ requires C, 25.5; H, 6.4%). ³¹P-{¹H} NMR (CH₂Cl₂): δ -44 (t) and -48.2 (t) [²J(PP) = 17 Hz]. The complex *cis*-[Os(PMe₃)₄Br₂] was made similarly (Found: C, 22.2; H, 5.6. C₁₂H₃₆Br₂OsP₄ requires C, 22.0; H, 5.5%). ³¹P-{¹H} NMR (CH₂Cl₂): δ -50.9 (t) and -54.3 (t) [²J(PP) = 18 Hz].

cis-[Os(PMe₂Ph)₄Cl₂].—The complex mer-[Os(PMe₂Ph)₃-Cl₃] (0.49 g, 0.69 mmol) was heated to reflux with PMe₂Ph (0.5 cm³) in 2-ethoxyethanol (25 cm³) for 1 h until the mixture had become yellow, and was then evaporated under reduced pressure to ca. 10 cm³. Acetone (5 cm³) was added and the mixture refrigerated. The yellow solid was filtered off, washed with acetone (5 cm³) and dried *in vacuo* (0.36 g, 64%) (Found: C, 47.1; H, 5.5. C₃₂H₄₄Cl₂OsP₄ requires C, 47.2; H, 5.4%). ³¹P-{¹H} NMR (CHCl₃): δ – 43.3 and – 44.2 (broad with ill defined coupling).¹¹

The complex *cis*-[Os(PMe₂Ph)₄Br₂] was prepared similarly from *mer*-[Os(PMe₂Ph)₃Br₃] (53%) (Found: C, 42.8; H, 5.0. $C_{32}H_{44}Br_2OsP_4$ requires C, 42.6; H, 4.9%). ³¹P-{¹H} NMR (CH₂Cl₂): δ - 48.8 (t) and -53.8 (t) [²J(PP) = 16 Hz].

trans-[Os(SbPh₃)₄Cl₂].—The complex mer-[Os(SbPh₃)₃-Cl₃] (0.3 g, 0.22 mmol)¹⁰ was dissolved in CH₂Cl₂ (10 cm³) and SbPh₃ (ca. 0.2 g) in 2-ethoxyethanol (10 cm³) was added. After gentle warming, NaBH₄ was slowly added until the colour change from green to yellow was complete. Cooling of the mixture, followed by filtration, yielded a yellow solid which was rinsed with water and hydrochloric acid and recrystallised from a chloroform–ethanol mixture (0.22 g, 60%) (Found: C, 51.9; H, 3.7. C₇₂H₆₀Cl₂OSSb₄ requires C, 51.7; H, 3.6%). The complex trans-[Os(SbPh₃)₄Br₂] was similarly made from mer-[Os(SbPh₃)₃Br₃]³ (45%) (Found: C, 49.0; H, 3.4. C₇₂H₆₀Br₂-OSSb₄ requires C, 49.1; H, 3.4%).

 $[Os_2(AsMe_2Ph)_6X_3]H_2PO_2$ (X = Cl or Br).—These complexes were formed in attempts to make trans-[Os(AsMe2Ph)4- X_2] using the method of Dwyer et al.⁹ A nitrogen-purged solution of $Na_2[OsX_6]$ (0.7 mmol) and aqueous HX (5 cm³) in ethanol (15 cm³) was treated with AsMe₂Ph (0.6 g) under a stream of nitrogen. Hypophosphorous acid (3 cm³) was added and the solution heated to reflux under nitrogen. Reflux was continued, with $ca. 2 \text{ cm}^3$ additional H₃PO₂ being added every 30 min, until the solution became yellow, whereupon excess of water was added and the mixture shaken with light petroleum (b.p. 40-60 °C, 15 cm³). The yellow solid thus formed was filtered off and dried in vacuo: X = Cl (Found: C, 34.7; H, 4.1. C₄₈H₆₈As₆Cl₃O₂Os₂P requires C, 35.0; H, 4.1%); ¹H NMR (CDCl₃): δ 1.75 (s, 6 H) and 7.4 (m, 5 H); IR: v(P-H) 2322 cm⁻¹ (H₂PO₂). X = Br (Found: C, 32.4; H, 4.2. C48H68As6Br3O2Os2P requires C, 32.4; H, 3.8%); ¹H NMR (CDCl₃): δ 1.8 (s, 6 H) and 7.5 (m, 5 H); IR: v(P-H) 2322 cm^{-1} (H₂PO₂).

trans-[Os(PMe₂Ph)₄Cl₂]BF₄.—The complex trans-[Os-(PMe₂Ph)₄Cl₂] (0.41 g, 0.5 mmol) was suspended in 40% HBF₄ (15 cm³), cooled in ice, and concentrated HNO₃ (1 cm³) added. The mixture was stirred at 0 °C for 10 min, the purple solid

2781

filtered off, rinsed with water, and dried *in vacuo* (0.27 g, 60%) (Found: C, 42.8; H, 5.0. $C_{32}H_{44}BCl_2F_4OsP_4$ requires C, 42.7; H, 4.9%). The complex *trans*-[Os(PMe_2Ph)_4Br_2]BF_4 was prepared analogously, except that the oxidation to the green product was carried out at room temperature, complete reaction being achieved in 5 min (75%) (Found: C, 38.8; H, 4.4. C_{32} - $H_{44}BBr_2F_4OsP_4$ requires C, 38.8; H, 4.4%), Λ_m (10⁻³ mol dm⁻³ MeCN) = 130 ohm⁻¹ cm² mol⁻¹.

trans-[Os(PMe₃)₄Cl₂]BF₄.—To a nitrogen-purged solution of OsO₄ (0.3 g, 1.18 mmol) and concentrated HCl (3 cm³) in ethanol (30 cm³) was added a 1.0 mol dm⁻³ solution (10 cm³) of PMe₃ (10 mmol) in toluene and the mixture refluxed under nitrogen for 3 h, producing *mer*-[Os(PMe₃)₃Cl₃] in solution. More ligand solution (5 cm³) was then added and the reflux continued until the solution became yellow. After standing in air for *ca*. 16 h the mixture had become pink and addition of 40% aqueous HBF₄ (10 cm³) followed by concentration to 30 cm³ under reduced pressure and refrigeration for 3 d produced pink crystals of suitable quality for X-ray analysis. These were filtered off and dried *in vacuo* (0.43 g, 56%) (Found: C, 21.9; H, 5.4. C₁₂H₃₆BCl₂F₄OsP₄ requires C, 22.0; H, 5.5%), Λ_m (10⁻³ mol dm⁻³ MeCN) = 151 ohm⁻¹ cm² mol⁻¹.

trans-[Os(PMe₃)₄Br₂]BF₄.—The acetone solution remaining from the recrystallisation of *trans*-[Os(PMe₃)₄Br₂] was treated with 40% aqueous HBF₄ (20 cm³) and concentrated under reduced pressure until precipitation occurred. The purple solid was isolated by filtration, washed with distilled water and dried *in vacuo* (30%) (Found: C, 20.0; H, 5.3. C₁₂H₃₆BBr₂-F₄OsP₄ requires C, 19.4; H, 4.9%).

trans- $[Os(AsMe_3)_4Cl_2]BF_4$.—The salt $K_2[OsCl_6]$ (0.48 g, 1.0 mmol) was suspended in water (5 cm³)-butanol (15 cm³), AsMe₃ (0.48 g, 4.0 mmol) added and the mixture heated to reflux. Hypophosphorous acid (1 cm³) was added and the reflux continued for 2 h, after which the solvents were removed in vacuo, to yield a crude orange solid, mer-[Os(AsMe₃)₃Cl₃]. This was redissolved in tetrahydrofuran (15 cm³) under Ar, and AsMe₃ (0.24 g, 2.0 mmol) and amalgamated zinc (ca. 2 g) added. The mixture was refluxed for 1 h, by which time a clear yellow solution had formed. The zinc was removed, and the filtrate concentrated in vacuo to a clear pale yellow oil. This was dissolved in the minimum volume of acetone, HBF₄ (40%, 10 cm³) was added, and the mixture stirred in air overnight. The resulting red solution was concentrated to ca. 5 cm³, and on standing at 0 °C deposited red crystals (40%) (Found: C, 17.5; H, 4.5. C₁₂H₃₆As₄BCl₂F₄Os requires C, 17.4; H, 4.3%). The complex trans-[Os(AsMe₃)₄Br₂]BF₄ was made similarly (35%) (Found: C, 15.6; H, 4.1. C₁₂H₃₆As₄BBr₂F₄Os requires C, 15.7; H, 3.9%).

trans-[Os(SbPh₃)₄X₂]BF₄.—These complexes were prepared similarly to trans-[Os(PMe₂Ph)₄Cl₂]BF₄, by room-temperature oxidation of the osmium(II) compound suspended in aqueous HBF₄ with concentrated HNO₃. The yields were ca. 40%. X = Cl (Found: C, 48.7; H, 3.5. $C_{72}H_{60}BCl_2F_4OsSb_4$ requires C, 49.1; H, 3.4%), Λ_m (10⁻³ mol dm⁻³ MeCN) = 120 ohm⁻¹ cm² mol⁻¹. X = Br (Found: C, 47.0; H, 3.3. C_{72} - $H_{60}BBr_2F_4OsSb_4$ requires C, 46.8; H, 3.2%).

trans-[Os(py)₄Cl₂]NO₃.—Powdered [Os(py)₄Cl₂] (0.3 g, 0.52 mmol) was suspended in 0.1 mol dm⁻³ hydrochloric acid (10 cm³) and concentrated nitric acid added dropwise (*ca.* 1 cm³), with vigorous stirring. The solid rapidly became yellowbrown, and after 15 min was filtered off, rinsed with water $(3 \times 5 \text{ cm}^3)$ and dried *in vacuo* (0.45 g, 70%) (Found: C, 37.8; H, 3.1; N, 10.6. C₂₀H₂₀Cl₂N₅O₃Os requires C, 37.5; H, 3.1; N, 11.0%). The complex *trans*-[Os(py)₄Br₂]NO₃ was made similarly (Found: C, 33.4; H, 2.9; N, 9.6. C₂₀H₂₀Br₂N₅O₃Os requires C, 33.0; H, 2.7; N, 9.6%).

Table 5 Atomic coordinates * for trans-[Os(PMe₃)₄Cl₂]BF₄

Atom	x	у	Z
Os	0.1250	0.1250	0.254 70(2)
Cl(1)	0.359 7(5)	0.082 0(1)	0.255 1(1)
P(1)	-0.0265(6)	0.0881(1)	$0.210\ 3(1)$
P(2)	0.032 0(7)	0.0772(1)	0.298 2(1)
C(11)	-0.0927(24)	0.119 4(6)	0.173 6(4)
C(12)	-0.2270(23)	0.068 9(6)	0.223 7(5)
C(13)	0.066 2(25)	0.042 1(6)	0.191 8(5)
C(21)	-0.1696(27)	0.086 0(6)	0.316 8(5)
C(22)	0.029 3(28)	0.021 9(5)	0.285 6(5)
C(23)	0.168 1(30)	0.071 7(6)	0.336 0(5)
B`́	0.6250	0.027 2(9)	0.1250
F(1)	0.525 5(22)	0.003 7(4)	0.106 5(4)
$\dot{F(2)}$	0.712 8(28)	0.0501(4)	0.103 5(4)

* The origin of the atomic coordinates was chosen to be on the centre of symmetry.

cis-[Os(PMe₂Ph)₄Cl₂]BF₄.—This complex was prepared in a similar manner to the *trans* isomer, but using 40% HNO₃ at room temperature to effect the oxidation (32%) (Found: C, 42.6; H, 5.0. C₃₂H₄₄BCl₂F₄OsP₄ requires C, 42.7; H, 4.9%).

mer-[Ir(py)₃Cl₃].—The salt Na₃[IrCl₆] (1.0 g, 2.1 mmol), concentrated hydrochloric acid (*ca.* 0.1 cm³) and pyridine (5 cm³) were heated to reflux in 2-methoxyethanol (20 cm³) for 2 h and cooled. More pyridine (5 cm³) was added and the solution refluxed for 1 h and cooled; this procedure was repeated until no solid was observed on cooling the mixture. The solution was concentrated under reduced pressure until precipitation occurred, when the solid was filtered off. This first crop was found to be contaminated with pyridinium salts but further concentration and refrigeration produced a second crop of microcrystals, which were isolated by filtration and shown by spectroscopic measurements to be pure. A third crop of pure *mer*-[Ir(py)₃Cl₃] was also obtained (total pure yield *ca.* 50%) (Found: C, 33.6; H, 3.0; N, 7.7. C₁₅H₁₅Cl₃IrN₃ requires C, 33.6; H, 2.8; N, 7.8%).

The complexes *mer*-[Ir(PEtPh₂)₃Cl₃], *mer*-[Ir(AsMe₂Ph)₃-Cl₃],²³ *mer*-[Ir(SMe₂)₃Cl₃]²⁵ and *fac*-[Ir(PEtPh₂)₃Cl₃]²⁶ were made by literature routes.

Crystal Structure Determination.-Red air-stable needle crystals of trans-[Os(PMe₃)₄Cl₂]BF₄ were isolated from EtOH-water, mounted in thin-walled glass capillaries, and examined photographically by X-ray diffraction. The crystals were weak scatterers. Using an Enraf-Nonius CAD4 diffractometer equipped with molybdenum radiation and a graphite monochromator, accurate cell dimensions were obtained from 25 carefully centred reflections, and diffracted intensities (3072) were recorded from a crystal 0.45 \times 0.075 \times 0.05 mm (ω -2 θ scans, $1.5 < \theta < 21^{\circ}$, h = 0-8, k = -32 to 32, l = 0-38, ambient temperature). The three intensity controls showed no decay during the experiment and after the data reduction there remained 1355 unique reflections ($R_{int} = 0.019$) of which 1040 with $F > 2\sigma(F)$ were used in the analysis and refinement. An empirical ψ -scan absorption correction was applied to the data (transmission: minimum 81.3, maximum 99.9%) along with the usual Lorentz and polarisation corrections. The density was measured by flotation in CCl₄-C₂H₄Br₂ mixtures.

Crystal data. $C_{12}H_{36}BCl_2F_4OsP_4$, M = 652.28, orthorhombic, space group *Fddd* (no. 70), a = 8.104(4), b = 32.195(11), c = 38.540(9) Å, U = 10055.4 Å³, $D_m = 1.74(2)$ g cm⁻³, Z = 16, $D_c = 1.723$ g cm⁻³, F(000) = 5104, Mo-K α radiation ($\lambda = 0.71069$ Å), μ (Mo-K α) = 55.1 cm⁻¹.

The systematic absences established the space group and the origin was chosen to lie on the centre of symmetry. The structure was solved independently by two means: one involved

J. CHEM. SOC. DALTON TRANS. 1991

inspection of the Patterson function and location of the osmium, the second used the direct-methods technique in SHELXS 86.27 The problem in developing the solution arose from the very small heights of P and Cl in the difference electrondensity map phased on the osmium atom. Repeated structurefactor and electron-density syntheses located the remaining non-H atoms. The osmium is located on the 16g position and the boron atom on the 16f position, both with two-fold point symmetry. At the later stages of refinement a number of H atoms were indicated in the difference electron-density synthesis. Hydrogen atoms of the phosphine ligand were introduced into the molecule in calculated positions [d(CH) =0.95 Å] with a common fixed thermal parameter. Full-matrix least-squares refinement minimising $\Sigma w \Delta^2$ converged to R =0.060 {1040 reflections, 107 parameters, anisotropic (Os, Cl, P, C, F) and isotropic (B, H) atoms, $w^{-1} = [\sigma^2(F) + 0.0007F^2]$, maximum shift/error = 0.09, S = 1.32, R' = 0.053}. The residual electron density was in the range 1.02 to -1.52 e Å⁻³. Atomic scattering factors for neutral atoms and anomalous dispersion corrections were taken from SHELX 76²⁸ (Cl, P, F, B, C, H) and ref. 29 (Os) and all calculations were carried out using the programs SHELX 76,²⁸ SHELXS 86,²⁷, ORTEP II,³⁰ PLUTO ³¹ and PARST ³² on an IBM 3090 computer. Table 5 gives the atomic coordinates.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates and thermal parameters.

Acknowledgements

We thank the SERC, B.P. Chemicals, and the University of Southampton for support, and Professor M. B. Hursthouse for X-ray data collection using the SERC/QMWC service.

References

- 1 Part 37, W. Levason, M. D. Spicer and M. Webster, *Inorg. Chem.*, 1991, **30**, 967.
- 2 R. A. Cipriano, W. Levason, R. A. S. Mould, D. Pletcher and M. Webster, J. Chem. Soc., Dalton Trans., 1990, 339.
- 3 R. A. Cipriano, W. Levason, R. A. S. Mould, D. Pletcher and M. Webster, J. Chem. Soc., Dalton Trans., 1990, 2609.
- 4 A. S. Alves, D. S. Moore, R. A. Andersen and G. Wilkinson, *Polyhedron*, 1982, 1, 83.
- 5 H. Werner and J. Gotzig, J. Organomet. Chem., 1985, 284, 73; J. Gotzig, R. Werner and H. Werner, J. Organomet. Chem., 1985, 285, 99.
- 6 P. E. Fanwick, F. Fraser, S. M. Tetrick and R. A. Walton, *Inorg. Chem.*, 1987, 26, 3786.
- 7 D. A. Buckingham, F. P. Dwyer, H. A. Goodwin and A. M. Sargeson, *Aust. J. Chem.*, 1964, 17, 315.
- 8 L. Vaska, Chem. Ind., 1961, 1402.
- 9 F. P. Dwyer, R. S. Nyholm and B. T. Tyson, Proc. R. Soc. New South Wales, 1947, 81, 272.
- 10 A. Araneo and C. Bianchi, Gazz. Chim. Ital., 1967, 97, 885.
- 11 V. T. Coombe, G. A. Heath, T. A. Stephenson, J. D. Whitelock and L. J. Yellowlees, J. Chem. Soc., Dalton Trans., 1985, 947.
- 12 P. R. Hoffman and K. G. Caulton, J. Am. Chem. Soc., 1975, 97, 4221. 13 A. R. Chakravarty, F. A. Cotton and D. A. Tocher, Acta Crystallogr.,
- Sect. C, 1986, 41, 689.
- 14 J. Behrensdorf, W. Hasenpusch and W. Preetz, Z. Naturforsch., Teil B, 1979, 34, 1341.
- 15 P. G. Antonov, Y. N. Kukushkin and V. I. Konnov, *Koord. Khim.*, 1980, 6, 1585.
- 16 P. D. Robinson, C. C. Hinkley and A. Ikuo, *Acta Crystallogr., Sect. C*, 1989, **45**, 1079.
- 17 E. M. Kober, J. V. Caspar, B. P. Sullivan and T. J. Meyer, *Inorg. Chem.*, 1988, 27, 4587 and refs. therein.
- 18 A. J. Deeming, S. Doherty, J. E. Marshall and N. I. Powell, J. Chem. Soc., Chem. Commun., 1989, 1351.
- 19 S. K. Harbron, Ph.D. Thesis, Southampton University, 1988; N. R. Champness, unpublished work, 1991.
- 20 G. M. Bryant and J. E. Fergusson, Aust. J. Chem., 1971, 24, 275.
- 21 D. Bright and J. A. Ibers, Inorg. Chem., 1969, 8, 1078.
- 22 L. S. Bartell and L. O. Brockway, J. Chem. Phys., 1960, 32, 512.

- J. CHEM. SOC. DALTON TRANS. 1991
- 23 R. A. Cipriano, W. Levason, D. Pletcher, N. A. Powell and M. Webster, J. Chem. Soc., Dalton Trans., 1987, 1901; R. A. Cipriano, W. Levason, R. A. S. Mould, D. Pletcher and N. A. Powell, J. Chem. Soc., Dalton Trans., 1988, 2677.
- 24 I. A. Poulson and C. S. Garner, J. Am. Chem. Soc., 1962, 84, 2032; A. A. El-Awady, E. J. Bounsall and C. S. Garner, Inorg. Chem., 1965, 4, 209.
- 25 E. A. Allen and W. Wilkinson, J. Chem. Soc., Dalton Trans., 1972, 613. 26 P. R. Brookes, C. Masters and B. L. Shaw, J. Chem. Soc. A, 1971,
- 3756. 27 G. M. Sheldrick, SHELXS 86, Program for Crystal Structure
- Determination, University of Göttingen, 1986. 28 G. M. Sheldrick, SHELX 76, Program for Crystal Structure
- Determination, University of Cambridge, 1976.
- 29 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, pp. 99–101, 149–150.
 30 C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge
- National Laboratory, Tennessee, 1976.
- 31 W. D. S. Motherwell and W. Clegg, PLUTO, Program for plotting molecular and crystal structures, Universities of Cambridge and Göttingen, 1978.
- 32 M. Nardelli, PARST, A System of Computer Routines for Calculating Molecular Parameters from Results of Crystal Structure Analysis, University of Parma, 1983.

Received 21st February 1991; Paper 1/00843I