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Abstract 15 

New tetraphenylethene-based Schiff base ligand (TPE-ND) and its corresponding 16 

boronated complex (TPE-NDB) with aggregation-induced emission were designed 17 

and synthesized. Results showed that the inhibited C=N isomerization by N, O-18 

chelated BF2 caused the significant intramolecular charge transfer features, and more 19 

dramatic solvatochromism. In particular, the solid sample of TPE-NDB exhibited an 20 

obvious mechanofluorochromic behavior. Upon grinding with a spatula, the as-21 

prepared powder sample illustrated a remarkable red shift of 97 nm, with considerable 22 

color contrast from bright green (498 nm) to orange (595 nm). Its fluorescence color 23 

can be reversibly switched by repeating the grinding-fuming process. The 24 

mechanochromism is attributed to the phase transformation between amorphous and 25 

crystalline states. The practical application indicated that TPE-NDB has excellent 26 

mechanofluorochromic properties, and it can be utilized as optical recording materials. 27 

Keywords: Tetraphenylethene-based Schiff base, boron complex, 28 

mechanofluorochromism, intramolecular charge transfer, aggregation-induced 29 

emission.30 
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1. Introduction 31 

Luminescent organic dyes have attracted much attention due to their potential for 32 

sensors, memory storage, organic light-emitting devices, and data security protection 33 

[1-4]. To date, design and creation of efficient luminescent dyes in the solid and 34 

aggregate states is still a hot research topic. A formidable challenge to this 35 

development is the notorious aggregation-caused quenching (ACQ) effect, namely, 36 

the emission of a conventional luminophore is usually weakly emissive or completely 37 

quenched upon aggregation in the solid state because of the formation of excimers 38 

and exciplexes [5]. Fortunately, in 2001, Tang’s group developed a series of 39 

propeller-shaped silole compounds showing aggregation-induced emission (AIE) 40 

effect, which is exactly opposite to the troublesome ACQ phenomenon, and thus 41 

could overcome fluorescence quenching in aggregation [6]. Since then, numerous 42 

compounds with AIE properties have been explored, including tetraphenylethenes [7], 43 

fulvenes [8], 9,10-divinylanthracene derivatives [9], pyran derivatives [10], 44 

conjugated polymers [11] and others. In 2010, Park et al. reported the cyano-45 

distyrylbenzene derivative with stimuli-responsive and AIEE properties, which has 46 

opened a new avenue of mechanofluorochromic (MFC) compounds. Then a number 47 

of both MFC and AIE dyes were synthesized by Tang, Chi, Yang and their co-48 

workers [12-15]. In general, AIE-active compounds possess the strongly twisted 49 

skeleton bearing rotatable aryl units, which can afford loose packing patterns in the 50 

crystal states, could be easily destroyed under mechanical stimuli and cause the 51 

emitting color change. Currently, extended π-conjugated molecules with a D–A 52 

structure was very significant for the organic dyes to show MFC characteristics [16] 53 

and some D–A typed molecules always contribute to the realization of fluorescence 54 

change under mechanical force [17]. Tetraphenylethene (TPE) is a typical AIE unit, 55 
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which takes a nonplanar configuration and has electron donating characteristics. It to 56 

be a useful building block for the construction of D–A type dyes [12c, 13c, 18].  57 

Despite a variety of AIE systems possessing reversible MFC features have been 58 

developed, most of the MFC dyes so far exhibit spectral shifts within tens of 59 

nanometers upon simple mechanical stimuli [18a, 19]. Reports of the dyes with very 60 

large MFC shifts (>90 nm) and obvious color contrast are still rare. The prominent 61 

color contrast before and after the application of mechanical stimulus are great 62 

important for the effective application of MFC materials. Moreover, these dyes are 63 

often prepared through complicated synthetic routes. It is highly demand to exploit 64 

high contrast MFC dyes using facile synthetic procedures. Schiff bases have the 65 

advantages of a rather facile synthesis with high yield and flexible structure 66 

modification. They have been explored extensively as catalysts [20], ions sensors [21], 67 

and pharmacological components [22]. However, the exploration of their MFC 68 

potential is still in the early stages [23].  69 

 70 

 71 

Scheme 1.  Synthetic routes of TPE-ND and TPE-NDB. 72 
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In this perspective, we focus on the combination of tetraphenylethene (TPE) unit 73 

with conventional Schiff base functional segment to develop new MFC dyes with D-74 

A structure. We synthesized the tetraphenylethene-based Schiff base ligand (TPE-ND) 75 

and its corresponding boronated complex (TPE-NDB), and their synthetic routes are 76 

shown in Scheme 1. AIE and MFC characteristics of the two fluorescent dyes were 77 

systematically investigated, and the results indicated that the ligand TPE-ND 78 

demonstrated the intramolecular charge transfer (ICT) nature and AIE property, 79 

whereas boronated complex TPE-NDB exhibited strong ICT feature, and obvious 80 

AIE and MFC characteristics. More importantly, MFC behaviors of TPE-NDB 81 

displayed a large spectral shift of 97 nm before and after mechanical stimuli. The 82 

remarkable MFC characteristics are desirable owing to their practical applications in 83 

mechano-sensors, memory devices, and forensic science [24-26].  84 

2. Experimental 85 

2.1. Materials and instrumentation 86 

All reagents and solvents were purchased commercially (AR grade) and used without 87 

further purification unless otherwise noted. Tetrahydrofuran (THF) and toluene were 88 

distilled from sodium and benzophenone ketyl in a nitrogen atmosphere. 89 

Dichloromethane (DCM) was distilled from calcium hydride. The THF/H2O mixtures 90 

with different water fractions were prepared by slowly adding distilled water into the 91 

THF solution of samples under ultrasound at room temperature. 1H NMR and 13C 92 

NMR spectra were collected on a Bruker–400 MHz spectrometer with TMS as an 93 

internal standard. Mass spectra were measured on a Shimadzu MALDI-TOF MS 94 

spectrometer. UV-vis spectra were recorded on Shimadzu UV-2550 95 

spectrophotometer. Emission spectra were performed by a HITACHI fluorescence 96 

spectrometer (F-4600). The absolute fluorescence quantum yields and fluorescence 97 
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lifetime were measured on an Edinburgh FLS980 steady state spectrometer using an 98 

integrating sphere, and the lifetimes were calculated with the F900 Edinburgh 99 

instruments software. Crystal data of compound was selected on a Bruker D8 Focus 100 

Powder X-ray diffraction diffractometer. The geometry of the sample molecule was 101 

fully optimized using density functional theory (DFT) at the B3LYP/6-31G* level, 102 

employing the Gaussian 09W suit of programs. Dynamic light scattering (DLS) 103 

measurements were performed on the BI-200SM Laser Light Scattering System 104 

(Brookhaven). The morphologies of the nanoaggregates were investigated using a 105 

Tecnai G2S-Twin F20 TEM at an accelerating voltage of 200 kV. 106 

2.2. Synthesis  107 

2.2.1. Synthesis of Compounds 2 and 3 108 

The intermediates 2 and 3 were prepared according to the previously reported method 109 

[27], with all their characterization data matching the literature data.   110 

2.2.2. Synthesis of Compound TPE-ND 111 

Compound 3 (0.34 g, 1.0 mmol) and 2-hydroxy-1-naphthaldehyde (0.17 g, 1.0 mmol) 112 

in ethanol (30 mL) were refluxed for 10 min, then an orange solid was precipitated. 113 

The product was filtered and washed several times with ethanol and then collected 114 

with a high yield of 94 %. Mp: 203–204 °C. 1H NMR (400 MHz, DMSO-d6): δ 15.75 115 

(d, J = 5.1 Hz, 1H), 9.59 (d, J = 5.2 Hz, 1H), 8.45 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 9.2 116 

Hz, 1H), 7.78 (d, J = 7.9 Hz, 1H), 7.52 (t, J = 7.7 Hz, 1H), 7.43 (d, J = 8.2 Hz, 2H), 117 

7.34 (t, J = 7.4 Hz, 1H), 7.22 –7.11 (m, 9H), 7.10 – 6.94 (m, 9H). (Fig. S6). 13C NMR 118 

(101 MHz, DMSO-d6): δ 171.53, 155.12, 143.61, 143.51, 142.15, 141.94, 141.39, 119 

140.32, 137.41, 133.62, 132.42, 131.20, 131.14, 131.09, 129.43, 128.53, 128.46, 120 

128.35, 128.26, 127.19, 127.12, 127.07, 127.03, 123.92, 122.79, 120.81, 120.29, 121 
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108.99. (Fig. S7). HRMS (MALDI-TOF) m/z: [M+H]+ Calcd for C37H27NO 502.2126; 122 

Found 502.2176 (Fig. S8). 123 

2.2.3. Synthesis of Compound TPE-NDB 124 

The corresponding boron complex TPE-NDB was synthesized by reaction of TPE-125 

ND with boron trifluoride etherate in the presence of triethylamine. The residual 126 

crude product was purified by silica gel chromatography to obtain a yellow boron 127 

complex. Yield: 89%. Mp: 215–216 °C 1H NMR (400 MHz, CDCl3): δ 9.06 (s, 1H), 128 

8.10 (d, J = 9.1 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.70 – 129 

7.62 (m, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.36 (d, J = 8.3 Hz, 2H), 7.32 – 7.26 (m, 2H), 130 

7.20 – 7.04 (m, 16H). (Fig. S9).13C NMR (101 MHz, CDCl3): δ 162.63, 157.40, 131 

144.85, 143.32, 143.19, 143.14, 142.35, 140.90, 140.83, 139.46, 132.54, 131.46, 132 

131.35, 131.27, 131.22, 129.76, 129.43, 128.08, 127.97, 127.86, 127.68, 126.93, 133 

126.75, 126.69, 125.09, 122.78, 120.51, 119.16, 108.74. (Fig. S10). 19F NMR (376 134 

MHz, CDCl3): δ -134.95, -134.98, -135.03, -135.06. (Fig. S11). HRMS (MALDI-135 

TOF) m/z: [M+H]+ Calcd for C37H26BF2NO 550.2109; Found 550.2183 (Fig. S12). 136 

2.3. Preparation of the samples for AIE measurements 137 

A 10−3 M stock solution of target molecules in THF was prepared. Aliquots (100 µL) 138 

of the stock solution were added to 10 mL volumetric flasks and diluted to volume 139 

with water and THF in the proper ratios under sonication at room temperature, the 140 

concentration was maintained at 1.0×10-5 M. The fluorescence emission spectral 141 

measurement of the mixture was performed immediately. 142 

2.4. Preparation of the samples for mechanofluorochromism study 143 

The grinding powders were obtained by grinding the as-synthesized crystals with a 144 

pestle in the mortar. The fumed samples were prepared by fuming the grinding 145 

powders with DCM for 2 min. 146 
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 147 

Fig. 1.  Normalized UV-vis absorption of TPE-NDB (a) and TPE-ND (b), and PL 148 

spectra of TPE-NDB (c) and TPE-ND (d) excited at 400 nm in different solvents (1.0 149 

× 10-5 mol L-1). Photographs of TPE-NDB (e) and TPE-ND (f) taken under UV 150 

illumination in different solvents, from left to right: hexane, cyclohexane, toluene, 151 

THF, chloroform, DMF, and DMSO. 152 

 153 

3. Results and discussion 154 

3.1. Synthesis  155 

The target ligand is conveniently synthesized by the reaction of compound 3 with 2-156 

hydroxy-1-naphthaldehyde in a high yield (94%). TPE-ND was allowed to react with 157 
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boron trifluoride etherate in the presence of triethylamine to give corresponding boron 158 

complex TPE-NDB with yield 89%.  159 

3.2. Optical Properties in solution 160 

In order to probe the optical properties of Schiff base ligand and boron complex in 161 

solvents with different polarities, UV-vis and fluorescence spectroscopy were carried 162 

out. The UV-vis absorption and fluorescence emission spectra were shown in Fig. 1, 163 

and the corresponding photophysical data are summarized in Table S1. The UV-vis 164 

absorption spectra of TPE-NDB (Fig. 1a) shown an absorption band from λ = 280nm 165 

to 350 nm. This band did not shift with increasing polarity of the solvents, which was 166 

attributed to π–π* local electron transitions of the conjugate system. The absorption 167 

band at λ = 360 – 520 nm exhibited a trend of red-shifted with the increasing solvent 168 

polarity, assigned to the ICT transition. From the absorption spectra of the ligand (Fig. 169 

1b), TPE-ND also had two main absorption bands at ca. 330 nm and ca. 410 nm in 170 

different solvents, which can be assigned to the π-π* transition of the conjugated 171 

system and ICT transitions, respectively [28]. The solvent-dependent PL spectra of 172 

TPE-NDB were shown in Fig.1c, it is clear that the emission bands were dramatically 173 

red-shifted with increasing solvent polarity, and was accompanying with large Stokes 174 

shift. In hexane, the TPE-NDB emission band located at 544 nm and its Stokes shift 175 

was 5948 cm-1, and with increasing polarity of the solvents, its emission band and 176 

Stokes shift reached 627 nm and 8621 cm-1 in DMSO, respectively. The result 177 

suggests that ICT transitions of TPE-NDB take place at excited state in more polar 178 

solvents [29]. It is worth mentioning that the fluorescence spectra of TPE-NDB 179 

became structured in non-polar solvents, such as hexane and cyclohexane, which 180 

indicated that the emission was typical from the locally excited (LE) state [30]. The  181 
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 182 

Scheme 2. Illustration of inhibited C=N isomerization by hydrogen bonding (TPE-183 

ND) and N, O-chelated boron complex (TPE-NDB) 184 

 185 

PL spectra of TPE-ND ligand demonstrated a small red shift of emission upon 186 

increased solvent polarity. The emission band located at 503 nm in hexane, and 187 

reached to 516 nm in DMSO. The results indicated that the ICT propterty of ligand 188 

was weaker than boron complex. Moreover, TPE-NDB exhibited significantly red-189 

shifted absorption bands as compared with the ligand in the same solution. For 190 

example, in THF the emission peak of ligand was centered at 509 nm (Φf = 0.03), by 191 

contrast, the emission band of boron chelated complex localed at 583 nm (Φf = 0.08), 192 

displayed a large red-shift of 74 nm. The extended π-conjugation skeleton produced 193 

by the embedded boron atom was responsible for this phenomenon (Scheme 2) [31]. 194 

In order to obtain a better insight of spectroscopic properties, we calculated frontier 195 

molecular orbital by using the density functional theory (DFT) method at the 196 

B3LYP/6-31G* level with the Gaussian 09W program. Fig. 2 showed the electron 197 
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 198 

 Fig. 2. Energy levels of HOMO and LUMO, energy gaps, and electron cloud 199 

distributions calculated by the B3LYP/6-31G* program, and the optimized 200 

conformation structures of TPE-NDB and TPE-ND. 201 

 202 

distribution of the highest occupied molecular orbital (HOMO) and the lowest 203 

occupied molecular orbital (LUMO) of TPE-NDB and TPE-ND [32]. It was found 204 

that the HOMO of TPE-NDB mostly localized on the major donor (i.e., the TPE unit), 205 

while the LUMO shifts to the right part of the molecule because of the strong electron 206 

withdrawing ability of the naphthalene boron moiety in terms of its strong push–pull 207 

structure, implying that light excitation would lead to ICT from the donor unit to the 208 
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acceptor unit as occurs in most D–A type molecules. The HOMO of TPE-ND ligand 209 

was mostly located at the whole molecule, and the LUMO was mainly distributed at 210 

naphthalene boron unit, resulting in a weak ICT performance. This information is 211 

helpful in understanding the absence of the MFC behavior of TPE-ND. The 212 

asymmetrical electron cloud distribution of the HOMO and LUMO of TPE-NDB 213 

resulted in an energy gap of 3.03 eV, which was lower than ligand alone (3.33eV), 214 

further confirming the ICT property of TPE-NDB was stronger than TPE-ND. The 215 

decrease in the HOMO−LUMO energy band gap of TPE-NDB boron complex 216 

compared to the ligand was due to that the C=N isomerization was inhibited by the 217 

complexation of B(III) , produced more rigid boron-bridged π-framework (Scheme 2). 218 

It was assumed that more rigid structure significantly reduces the energies of singlet 219 

excited states and a much lower singlet-triplet (ST) energy splitting for TPE-NDB. 220 

The optimized geometries of TPE-NDB and TPE-ND showed twisted nonplanar 221 

shapes, respectively. Dihedral angles between the O−H···N hydrogen bonds ring A 222 

and phenyl group B in TPE-ND was 32.2°, and it increases to 41.2° after the 223 

covalently bridged C=N structure by N, O-chelated BF2 of TPE-NDB. The dihedral 224 

angles between phenyl rings in tetraphenylethene units, including B–C, B–D, and B–225 

E remain unchanged (Tab. S3). The introduction of boron group thus leaded to the 226 

enhanced the degree of molecular distortions. The above theoretical results further 227 

illustrate the occurrence of the ICT process, which is consistent with the observed 228 

optical property (Fig. 1). The features of twisted spatial conformation and ICT 229 

transition of TPE-NDB and TPE-ND may endow them with vivid color emission in 230 

the condensed/solid state [33]. 231 

  232 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

13 

 

 233 

Fig. 3. PL spectra of TPE-NBD (a) and TPE-ND (c) in THF–water with different 234 

water fractions (vol., 0-95%), λex = 400 nm. Normalized fluorescent emission 235 

intensities of TPE-NBD (b) and TPE-NB (d) in THF–water with different fw. The 236 

inset graphs in (b) and (d) are the solutions of TPE-NBD and TPE-ND in THF-water 237 

under irradiation of UV lamp at 365 nm, from left to right (fw): 0%, 10%, 20%, 30%, 238 

40%, 50%, 60%, 70%, 80%, 90%, 95%. 239 

 240 

3.3. Aggregation induced emission (AIE) 241 

The AIE effects of the synthesized ligand and boron complex were examined by 242 

comparing the fluorescence emission spectra of THF/H2O solution with different 243 

water fraction (fw, the volume percentage of water). As shown in Fig. 3, in dilute THF 244 

solution, the emission band of TPE-NDB was broad with a center at 586 nm, and Φf 245 

is very low (0.08), which might be due to active intramolecular rotations of the 246 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 

 

compound. The boron complex TPE-NDB served as relaxation channels for the 247 

excited state in this situation. When an appropriate amount of water was added to the 248 

THF solution, the emission peaks decreased and eventually disappeared. The 249 

fluorescence quenching was attributed to the ICT effect in polar solvent for TPE-250 

NDB with D–A structure [15e]. When fw was above 70%, TPE-NDB displayed a 251 

sudden increase in the emission intensity due to molecular aggregation. As fw was 252 

95%, the emission peak located at 571 nm, and the PL intensity is approximately 2.5 253 

times higher than that in the pure THF. The fluorescence enhancement phenomenon 254 

could be ascribed to the restriction of the intramolecular rotations, which blocked the 255 

non-irradiative channels and caused clear enhancement of emission in aggregated 256 

states [15]. The emission of TPE-ND exhibited an enhancement in the emission 257 

intensity with gradual increase from fw = 0% to fw = 50%, and showed a rapid decrease 258 

at fw = 70%. At an fw of 80%, a significant increase in the emission intensity was 259 

observed, which can be attributed to the AIE effect caused by the formation of 260 

molecular aggregates when water is added into the THF solution. The PL intensity for 261 

TPE-ND showed a zig-zag pattern (Fig. 1d). This phenomenon was often observed in 262 

the determination of the AIE effect, but the reasons remain unclear [34]. There are 263 

two possible explanations for this phenomenon [35]. First, when water is added, the 264 

solute molecules can aggregate into crystal particles or amorphous particles 265 

suspensions [36]. The crystal particles suspension results in an enhancement in the PL 266 

intensity, in contrast, the amorphous particles suspension leads to a decrease of PL 267 

intensity. Second, only the molecules on the surface of the nanoparticles emitted light 268 

after the aggregation, which lead to a decrease in PL intensity. However, the 269 

restriction of intramolecular rotations of the aromatic rings in the aggregation state 270 

could enhance light emission. The net output of these antagonistic processes depends 271 
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on which process plays a key role in affecting the fluorescent behavior of the 272 

aggregated molecules [37]. Thus, the measured PL intensity often shows no regularity 273 

in high water content. To further reveal the AIE behavior of TPE-NBD and TPE-ND, 274 

dynamic light scattering (DLS) and transition electron microscopy (TEM) were 275 

employed to study the microstructures in the aggregate state. As shown in Fig. S1, 276 

TPE-NDB aggregates were obtained when fw was 95%, with the size from 20 to 120 277 

nm. When fw was 80%, TPE-ND aggregates also emerged with the size of 20−150 nm. 278 

The TEM images indicated that the nanoparticles were in amorphous state both for 279 

TPE-NDB and TPE-ND (Fig. S2). These results clearly implied that TPE-NBD and 280 

TPE-ND are AIE-active molecules.  281 

In many works, the Schiff base ligands don’t possess AIE behavior due to the 282 

intramolecular rotations of C=N bond, which could produce the non-irradiative 283 

channels [38]. In this work, the Schiff base ligand TPE-ND exhibited AIE 284 

characteristics, although the fluorescence is weak. This phenomenon could be 285 

ascribed to the intramolecular hydrogen bond O−H···N is formed to yield a six-286 

membered pseudo ring, such structure helps the molecules to further rigidify their 287 

conformation and to restrict molecular vibration, thus producing the AIE feature 288 

(Scheme 2). When the covalently bridged C=N structure by N, O-chelated BF2, the 289 

rigid molecular structure is improved. The rigid boron-bridged π-frameworks tend to 290 

undergo very rapid nonradiative decay and intensify the AIE performance. 291 

3.4. Mechanochromic properties 292 

Generally, the compound possessing non-planar geometries and D-A conjugated 293 

systems with ICT properties is expected to undergo MFC behavior. The fluorescent 294 

performance of the solid sample TPA-NDB in response to external pressure was 295 

investigated. The crude product was purified on a silica-gel column to afford a yellow  296 
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 297 

Fig. 4. (a) Normalized fluorescent spectra of TPE-NDB in different solid-states: as-298 

prepared, grinding and fuming, λex = 365 nm. Photographs of TPE-NDB color 299 

changes upon grinding and fuming stimuli by naked eyes (b) and under UV light (365 300 

nm) (c).  301 

 302 

powder. As shown in Fig. 4, the as-prepared TPE-NBD powder demonstrated bright 303 

green emission under 365 nm UV-light illumination. Interestingly, after grinding with 304 

a mortar and pestle, the powder changed its emission color into orange. The force-305 

induced color switch could be fully restored by fuming with DCM for 2 minutes at 306 

room temperature. The fluorescence converted rapidly to bright green, similar to their 307 

original powders. The color changes could be observed with the naked eye (Fig. 4b). 308 

In addition, this process of fluorescence color change could be repeated many times 309 

(Fig. S3). The dye displayed excellent reversibility without any fatigue in response 310 
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throughout the six cycles, demonstrating the obvious and reversible MFC behavior of 311 

the TPE-NDB. The PL spectra measurement was applied to monitor such a reversible 312 

color switching under external stimuli. As depicted in Fig. 4a, the emission peak of 313 

as-prepared powder centered at 498 nm, and red-shifted to 595 nm after grinding, 314 

which suggested that the grinding treatment has induced a significant spectral red-315 

shift of 97 nm. The Φf of as-prepared and ground sample for TPE-NDB in solid state 316 

were 0.35 and 0.19, respectively (Tab. S2).  High intensity solid-state emission and 317 

the prominent color contrast before and after the application of mechanical stimulus 318 

are very significant for the effective application of MFC materials. The MFC 319 

properties of TPE-ND were also tested by grinding treatment. However, there was 320 

almost no change in the main fluorescence peak of the compound TPE-ND and could 321 

not lead to the color change before and after grinding, suggesting that TPE-ND has 322 

no MFC activity. These observations are consistent with the assumption that while 323 

boron has immensely enhanced the rigid molecular structure since it can result in the 324 

increase of molecular distortion degree and ICT feature, which endows TPE-NDB 325 

with obvious MFC behavior, in contrast, the ligand TPE-ND has no MFC property. 326 

These phenomena are accord with the observed optical property and DFT result.  327 

The luminescent decay profiles of TPE-NDB in solid state were carried out (Fig. 328 

S5) and the corresponding data were illustrated in Tab. S2. The lifetime of TPE-NDB 329 

and TPE-ND were 4.53 ns and 2.10 ns, respectively. The excited-state decay of as-330 

prepared TPE-NDB fitted one exponential function. The data of ground sample TPE-331 

NDB fitted a double-exponential decay, which revealed the mixture of two 332 

distinguished emission states in the amorphous phase.  333 
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 334 

Fig. 5. Photos of the luminescence writing/erasing process of TPE-NDB on filter 335 

papers under UV light (365 nm): (a) fluorescence emission of as-synthesized powder; 336 

(b) mechanochromic fluorescence of the letter of “A” was written with a spatula; (c) 337 

the paper was erased by vapor fuming (the letter “A” becoming invisible); (d) 338 

rewritable mechanochromic fluorescence of the letter of “Y” generated with a spatula. 339 

 340 

Switchable mechanochromic dye of TPE-NDB with a large shift of 97 nm 341 

prompts us to evaluate it as a kind of smart material with numerous potential 342 

applications. An example of such applications is demonstrated in Fig. 5, after being 343 

simply pressed by streaking a metal spatula on a piece filter paper with sprayed as-344 

synthesized powder, an orange letter appeared on the bright green background due to 345 

the amorphization of TPE-NDB in the written “A” area under UV light illumination 346 

(Fig. 5b). Interestingly, after vapor fuming the letter “A” can be merged in the 347 

background because of the crystallization of TPE-NDB in area of “A” (Fig. 5c), and a 348 

clear orange letter “Y” can be written again (Fig. 5d). Such writing and erasing 349 

process can be repeated many times through repeating writing and fuming processes. 350 

On the basis of its excellent MFC properties, TPE-NDB may be utilized as optical 351 

recording materials. 352 
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 353 

Fig. 6. XRD patterns of TPE-NDB in different solid-states: as-prepared, grinding and 354 

fuming. 355 

With the aim of getting insight into the mechano-induced emission color changes, 356 

powder X-ray diffraction (XRD) was used to study the synthesized TPE-NDB in 357 

different solid states. As shown in Figure 6, many sharp and intense reflection peaks 358 

were observed in the diffraction pattern of the untreated sample, indicating that the as-359 

prepared TPE-NDB was well-ordered arrangement crystalline structure. In sharp 360 

contrast, all of the diffraction peaks displayed diffuse and depressed reflections after 361 

grinding, verifying that the ground sample was amorphous. The transformation from 362 

the crystalline structure into an amorphous state took place under an external force 363 

and, thus, led to a change in the emitting color from bright green to orange. When 364 

fumed with DCM, sharp reflection peaks resemble to those of the as prepared powder 365 

emerge out, suggesting the ground sample can be readily converted back into an 366 

ordered crystalline lattice. In addition, the 1H NMR spectrum of TPE-NDB after 367 
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grinding treatment was shown in Fig. S13, the result is similar with that the as-368 

prepared sample obtained (Fig. S9), implying that TPE-NDB converts the emission 369 

color without changing its chemical structure during grinding process. Accordingly to 370 

these results, the mechanochromism of TPE-NDB should be attributed to the 371 

crystalline-amorphous phase transformations, which greatly influences photophysical 372 

properties.  373 

4. Conclusions 374 

In summary, an efficient strategy to design novel tetraphenylethene-based Schiff base 375 

ligand TPE-ND and the corresponding boron complex TPE-NDB were developed. 376 

The ligand TPE-ND showed a typical ICT characteristic in addition to an AIE 377 

behavior. The boron complex TPE-NDB resulted in enhanced and red-shifted 378 

emission, more dramatic solvatochromism, bright AIE phenomenon, and reversible 379 

high contrast MFC behavior due to the inhibition of C=N isomerization in ligands. 380 

Upon grinding the as-prepared sample of TPE-NDB, the emission color changed 381 

from bright green to orange, accompanied with the remarkable spectral shift from 498 382 

to 595 nm. It should be mentioned that such a large red-shift of 97 nm during MFC 383 

process has been rarely reported for organic compounds. Moreover, the ground 384 

powder of TPE-NDB that emitted orange could be switched into its as-prepared state 385 

emitting bright green light by fuming with DCM for 2 min. The results of this work 386 

will facilitate the rational design of new MFC dyes with high−contrast performance 387 

and the exploration of their potential applications in high-tech fields. 388 
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Highlights 

 

 

TPE-ND and TPE-NDB showed obvious AIE properties. 

 

TPE-NDB possesses distinct mechanofluorochromism with large spectral shift of 

97  nm. 

 

TPE-NDB fluorescence color can be reversibly switched by the grinding-fuming  

processes. 

 


