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ABSTRACT: Pesticides are chemicals widely used for agricultural
industry, despite their negative impact on health and environment.
Although various methods have been developed for pesticide
degradation to remedy such adverse effects, conventional materials
often take hours to days for complete decomposition and are
difficult to recycle. Here, we demonstrate the rapid degradation of
organophosphate pesticides with a Zr-based metal−organic
framework (MOF), showing complete degradation within 15
min. MOFs with different active site structures (Zr node
connectivity and geometry) were compared, and a porphyrin-
based MOF with six-connected Zr nodes showed remarkable
degradation efficiency with half-lives of a few minutes. Such a high efficiency was further confirmed in a simple flow system for
several cycles. This study reveals that MOFs can be highly potent heterogeneous catalysts for organophosphate pesticide
degradation, suggesting that coordination geometry of the Zr node significantly influences the catalytic activity.

■ INTRODUCTION

Although pesticides have contributed significantly to agricul-
tural production worldwide, most of them are toxic, leading to
increasing health and environmental concerns for humans and
other living organisms.1−9 A marked toxicity of pesticides can
be seen in recent reports showing that acute exposure to
pesticides has caused 110,000 fatalities globally each year by
self-poisoning.1,2 Among pesticide types, organophosphate-
based pesticides (OPs) are one of the most commercialized
classes.3 The acute toxicity of OPs is originated from the
inhibition of acetylcholinesterase, resulting in neurological
disorders.4 Although registered pesticides are verified not to
persist in the environment beyond the intended periods,
residues of OPs in groundwater have been found to range
between ng/L and low μg/L concentrations.5 Exposure of
nontarget ecosystems to OPs has caused serious health and
environmental issues, for example, surface water contamina-
tion,6 wildlife poisonings,3 brain anomalies in children,7

prenatal exposure,8 and adverse birth outcomes (Figure 1).9

Since the adverse effects of OPs are global threats, delivering
solutions to evaluate, sense, and detoxify OPs becomes an
extremely urgent issue.
An effective pesticide detoxification method is degradation

to nontoxic species, advantageous for complete toxicity
clearance. Conventional methods to detoxify pesticides include
ozonation,10 Fenton treatment,11 photocatalysis,12 and micro-
bial degradation.13,14 A number of different approaches and
materials, for example, oximes,4 surfactants,15 metal ox-
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Figure 1. Adverse effects of pesticides.
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ides,16−18 silica nanoparticles,19 organometallic com-
plexes,20−22 and enzymes,23 have been reported for the
degradation of OPs. However, conventional physicochemical
approaches are not cost-effective and often result in incomplete
conversions.10,11 Nucleophilic species, such as oximes and
surfactants, are difficult to recycle.4,15 Metal oxides often
require light sources or result in stoichiometric not catalytic
reactions.11,18 Enzymes are easily inactivated under non-
physiological conditions, and the process is accompanied by
high costs and difficulties in recovery. Therefore, heteroge-
neous catalysts with high catalytic activities and facile recycling
are appealing candidates for pesticide degradation.
Metal−organic frameworks (MOFs), porous materials

composed of metal clusters and organic linkers, are one of
the leading classes of heterogeneous catalysts due to the
tunable catalytic activities of metal clusters, diverse chemical
functionalization, and high density of active sites with regular
distributions.24−28 In particular, Zr-based MOFs with high
chemical stabilities have shown notable catalytic degradation of
organophosphate species, that is, chemical warfare agents.29−41

Nevertheless, only a few studies have explored MOFs for the
degradation of OPs.42−47 For example, paraoxon (POX) was
the only pesticide type studied with Zr-based MOFs.42

Here, we report the outstanding OP degradation with Zr-
based MOFs. Interestingly, a porphyrin-based MOF, PCN-
224, with six-connected Zr nodes reveals striking OP
degradation performance without significant activity variation,
depending on pesticide types. Furthermore, PCN-224 retained
high degradation efficiency for several cycles in a simple
continuous flow system. Such a high catalytic activity is
attributed to the active site structure: Zr node connectivity and
geometry, potential factors governing degradation efficiency.
This work represents a significant advance of conventional OP
degradation materials to a highly efficient MOF catalyst with
recycle capability, suggesting that coordination geometry of the
Zr active site is a crucial factor for enhancing the catalytic
activity of the Zr-based MOF.

■ EXPERIMENTAL SECTION
Synthesis of PCN-224. The PCN-224 sample was synthesized

following a reported recipe with some modifications.48 To a 100 mL
vial, ZrOCl2·8H2O (125 mg), meso-tetra(4-carboxyphenyl)porphine
(H4TCPP) (25 mg), DMF (50 mL), and acetic acid (12.5 mL) were
added. After sonication, the mixture was heated at 65 °C for 72 h in
an oven. The resulting powder was washed with DMF (20 mL ×3) for
2 d and acetone (20 mL ×9) for 4 d through centrifugation. After the
solvent was decanted, the powder was dried at 90 °C for 12 h. The
dried powder of PCN-224 was stored in a desiccator.
Synthesis of MOF-808. The synthesis of MOF-808 was based on

a reported method.49 To a 50 mL vial, ZrOCl2·8H2O (160 mg), 1,3,5-
benzenetricarboxylic acid (H3BTC) (110 mg), and a mixed solution
of DMF (20 mL) and formic acid (20 mL) were added. The sample
was heated at 100 °C for 7 d in an oven. The resulting powder was
washed with DMF (20 mL ×3) for 2 d and acetone (20 mL ×4) for 2
d through centrifugation. After the solvent was decanted, the powder
was dried at 80 °C for 3 h. The dried sample of MOF-808 was stored
in a desiccator.
Synthesis of NU-1000. The NU-1000 sample was synthesized

following a reported recipe.50 To a 20 mL vial, ZrOCl2·8H2O (97
mg), benzoic acid (2.7 g), and DMF (8 mL) were added. The mixture
was heated in an oven at 80 °C for 1 h. After heating, 1,3,6,8-
tetrakis(p-benzoic acid)pyrene (H4TBAPy) (40 mg) was added.
Then, the mixture was sonicated for 20 min. The sample was stirred at
100 °C for 24 h on a hot plate. The resulting solid was washed with
DMF (10 mL ×3) through centrifugation. After washing, acid

treatment was conducted to remove benzoate in the NU-1000 sample.
After the solvent was decanted, a mixed solution of DMF (12 mL)
and 8 M HCl (0.5 mL) was added. Then, the sample was heated in an
oven at 100 °C. The solid was washed with DMF (10 mL ×3) for 2 d
and acetone (10 mL ×3) for 2 d. The NU-1000 sample was stored in
acetone.

Pesticide Degradation Experiments. Degradation profiles of
organophosphate pesticides (OPs) were obtained by in situ 31P NMR
measurement at room temperature. PCN-224, MOF-808, and NU-
1000 samples were activated under vacuum at 100 °C for 12 h, 150
°C for 24 h, and 120°C for 12 h, respectively. The activated MOF
samples (0.75 μmol Zr6) of PCN-224 (1.6 mg), MOF-808 (1.1 mg),
and NU-1000 (1.7 mg) were dispersed in a buffer solution (1 mL) of
H2O (0.9 mL), D2O (0.1 mL), and 4-ethylmorpholine (50 μL)
through sonication for 1 min. Separately, 25 μmol OP [5.4 μL for
POX, 3.9 μL for dichlorvos (DDVP), and 4.9 μL for naled] was mixed
with acetonitrile (0.1 mL). Caution: OPs are highly toxic. Experi-
ments should be conducted with appropriate safety procedures. After
the OP solution (0.1 mL) was added to the dispersed MOF sample,
the mixture was shaken for 10 s and moved to an NMR tube. Then,
the immediate 31P NMR measurement was conducted. The NMR
spectra were collected every minute for 30 min. The first spectrum
was obtained at around 2.5 min after the OP solution was added to
the MOF sample.

DDVP Degradation with PCN-224 in a Simple Continuous
Flow System. A buffer solution of H2O (10 mL) and 4-
ethylmorpholine (0.5 mL) was prepared. PCN-224 (16.4 mg, 7.5
μmol Zr6) was homogeneously dispersed in the buffer solution (3
mL) through sonication for 1 min. The mixture was filtered through a
syringe filter (PTFE with 0.2 μm pore size; 13 mm diameter) so that
PCN-224 was loaded on the filter. The syringe filter was washed with
a new syringe containing the buffer solution (1 mL) on a syringe
pump (0.1 mL/min). Separately, DDVP solution for five injections
was prepared by mixing the buffer solution (5 mL), DDVP (9.75 μL,
62.5 μmol), and acetonitrile (0.5 mL). The DDVP solution (1 mL)
was injected through the MOF filter using the syringe pump (0.1 mL/
min). With the same MOF filter, five injections continuously
proceeded. For each injection, the filtrate was mixed with D2O (0.1
mL) and then analyzed with 31P NMR spectroscopy.

■ RESULTS AND DISCUSSION
We targeted three commercial pesticides, POX, DDVP, and
naled. POX has been extensively studied for its acute toxicity
to mammals.51 DDVP is one of the most widely used indoor
pesticides, but there are concerns about indoor air pollution
and toxicity to nontarget organisms, such as fish.52,53 Naled,
used for mosquito control, has adverse effects following
prenatal exposure.54 Regarding MOF candidates for efficient
OP degradation, we compared the structures of Zr-based
MOFs with high chemical stabilities, PCN-224,48 MOF-808,49

NU-1000,55 and UiO-66 (Figure 2).56 These MOFs have Zr6
clusters with different connectivities (12 for UiO-66, 8 for NU-
1000, and 6 for MOF-808 and PCN-224), derived from their
different organic linkers. Sites unoccupied by linkers typically
have solvents, H2O/OH, or monocarboxylate species, which
can be replaced with substrates. Hence, the lower connectivity
of the Zr6 node yields a larger number of potential catalytic
active sites. A previous study by Farha, Hupp, and co-workers
on organophosphate nerve agent hydrolysis has revealed that
Zr-based MOFs with lower node connectivities displayed
higher degradation efficiencies.38 A possible explanation is that
the Zr−OH2 bond strength becomes weaker with decreasing
connectivity, thus facilitating the replacement of water with
substrates.57,58 While MOF-808 has the lowest node
connectivity among the most investigated Zr-based MOFs
for nerve agent hydrolysis, we hypothesized that PCN-224,
also with six-node connectivity, could be a highly active OP
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degradation catalyst. Therefore, PCN-224, MOF-808, and NU-
1000 were prepared and their OP degradation efficiencies were
compared.
MOF-808 and NU-1000 samples were synthesized and

activated following previously reported procedures,49,50 while a
modified method was used to obtain the pure phase of PCN-
224. The structural integrity of the activated MOF samples was
confirmed with powder X-ray diffraction patterns (Figure 3a).
N2 adsorption analysis at 77 K at P/P0 = 1.0 revealed uptake
amounts of 840, 580, and 970 cm3/g for PCN-224, MOF-808,
and NU-1000, respectively (Figure 3b). The pore size
distribution data of PCN-224 and MOF-808 showed pore
sizes of 19 and 18 Å, respectively (Figure S1), while 12 and 29
Å pores were observed for NU-1000. The gas sorption results
corresponded to reported values for N2 uptake and pore size
distribution.48,49,55 The particle sizes of the as-synthesized
samples were confirmed by scanning electron microscopy
(Figure 3c). Particle sizes of ∼2.5, ∼10, and ∼2 μm were
observed for PCN-224, MOF-808, and NU-1000, respectively.
The characterization results revealed successful sample
preparation for OP degradation experiments.
Before degradation analysis, the formula weights of the

activated MOFs were determined from the 1H NMR spectra of
the digested MOF samples (Figures S2−S4). The activated
MOF sample (3 mol %, 0.75 μmol Zr6) was dispersed in water
buffered with N-ethylmorpholine. After the pesticide solution
in acetonitrile was added, hydrolysis progress was monitored
by 31P NMR spectroscopy. As the reaction proceeded, the
intensity of the peaks at approximately −6.8, −3.3, and −3.0
ppm for POX (Figures S5−S7), DDVP (Figures S8−S10), and
naled (Figures S11−S13), respectively, decreased in all the
MOF samples. During the POX degradation, a peak at ∼0.5

ppm, corresponding to diethyl phosphate (DEP), appeared.
During the degradation of DDVP and naled, peaks
corresponding to dimethyl phosphate (DMP), at 2.8 ppm,
were observed. The formation of DEP and DMP indicates that
the pesticides are hydrolyzed by the cleavage of P−O−C
bonds, a well-known mechanism for the degradation of nerve
agent simulants.35,59 Based on the NMR results, simple
hydrolysis schemes are shown in Scheme 1.
We compared the degradation efficiencies of PCN-224,

MOF-808, and NU-1000 for the three OPs (Figure 4).
Pesticide conversions were calculated from the integrated peak
ratios. Initial reaction rates and half-lives were calculated with a
first-order kinetic equation (Table 1 and Figures S14−S21).60
Interestingly, PCN-224 demonstrated rapid hydrolysis of all
the pesticides, while MOF-808 and NU-1000 showed relatively
slower degradation (Figure 4a−c). The initial half-lives of
degradation by PCN-224 were 2.1, <1, and 1.1 min for POX,
DDVP, and naled, respectively. However, MOF-808 and NU-
1000 showed half-lives of <5 min for only one pesticide. In
particular, the conversion of POX, DDVP, and naled by PCN-
224 reached almost 100% within 15 min, and the hydrolysis
rate of the respective pesticide did not vary significantly
(Figure 4a). In contrast, 68 and 38% conversions were
observed for DDVP and naled by MOF-808, respectively
(Figure 4b). NU-1000 showed conversions of 65% for DDVP
and 40% for POX (Figure 4c). When we rearranged the
degradation plots in terms of pesticide, PCN-224 showed the
highest activity for the three pesticides (Figure 4d−f). In the
case of DDVP, the degradation efficiency of PCN-224 was
notably greater than those of MOF-808 and NU-1000 (Figure
4e). As control experiments, we filtered MOF catalysts 1 min
after injection of pesticides. The filtrate samples were analyzed
with 31P NMR. POX, DDVP, and naled were not degraded in a
short time without MOF catalysts (Figure S22). We also
compared crystallinity of PCN-224, MOF-808, and NU-1000
after pesticide degradation (Figure S23). Powder X-ray
diffraction patterns of those MOFs showed that crystallinity
was retained after the catalytic reactions. Through an overall
comparison of the three MOFs, we confirmed that PCN-224
has a high catalytic activity for OP degradation, which is less
pesticide-type-dependent than those of MOF-808 and NU-
1000.
The remarkable OP degradation efficiency of PCN-224

motivated us to determine the factors influencing its high
activity. We first compared modulator amount in Zr6 nodes of
PCN-224, MOF-808, and NU-1000 because the number of
modulator ligands has a significant impact on node
accessibility, according to a recent report by Hupp, Lu, and
co-workers.41 1H NMR spectra of activated PCN-224, MOF-
808, and NU-1000 samples showed 5.6 acetate, 3.0 formate,
and 2.9 formate per Zr6 node, respectively, while maximum
potential active sites are 6, 6, and 4 for the MOFs (Figures
S24−S26). PCN-224 has the most modulator ligands among
the analyzed MOFs, thus meaning initially more blocked active
sites. We also identified that most of the acetate and formate
ligands were removed when the MOF samples were soaked in
N-ethylmorpholine solution following the OP degradation
experimental condition. Hence, the high catalytic activity of
PCN-224 is not simply explained with the effects of the
modulator ligand. Assuming that all Zr6 node active sites are
fully accessible by pesticide molecules, we focused on node
connectivity and geometry. For the degradation of the nerve
agent, less Zr node connectivity leads to higher degradation

Figure 2. Framework structures, Zr6 node connectivities, and
simplified node geometries of PCN-224, MOF-808, NU-1000, and
UiO-66.
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efficiency, possibly due to the increased number of active site
and the lower bond strength between Zr and coordinated H2O,
as described in the first paragraph of this section. While PCN-
224 and MOF-808 have the same six-node connectivity,
significantly different catalytic activities in OP degradation
suggest that other factors are involved in the efficiency.

Recently, Snurr and co-workers reported computational studies
on the effects of node connectivity and topology on the
binding of nerve agents.58 In the study, the binding energy of
coordinated H2O varies with node topology as well as
connectivity. For example, the binding energy of H2O within
the small pore is stronger than that within the large pore in
NU-1000. This indicates that node geometry is important for
water displacement, one of the potential rate-limiting steps.
Therefore, we compared the node topologies of PCN-224 and
MOF-808 (Figure 5). The Zr6 node of PCN-224 has six
equatorial linker-binding sites (Figure 5a). The remaining six
active sites are at the axial positions. In contrast, the node of
MOF-808 has six active sites at the equatorial positions and six
axial linker-binding sites (Figure 5b). We speculate that such
distinct node geometries lead to different free energies of water
displacement, the binding of the organophosphate, and the
displacement of the degraded product, which are three
potential rate-determining steps, as suggested in the computa-
tional works.58 Although quantitatively evaluating the degra-
dation efficiency of MOFs remains challenging, we suggest that
calculating the free energy differences of the PCN-224 model
for these steps will provide meaningful qualitative insights into
how Zr6 node geometry affects catalytic activity.

Figure 3. Characterizations of Zr-based MOFs to be used for pesticide degradation. (a) Simulated and experimental powder X-ray diffraction
patterns, (b) N2 isotherms at 77 K, and (c) scanning electron microscopy images of PCN-224, MOF-808, and NU-1000. Scale bars indicate 5 μm.

Scheme 1. Simple Degradation Schemes for the OPs, POX,
DDVP, and Naled
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To further assess the high catalytic activity of PCN-224,
degradation of DDVP was investigated using a simple
continuous flow system (Figure 6). The activated powder of
PCN-224 was dispersed in a buffer solution, loaded onto a
syringe filter by filtration, and washed with the buffer solution.
DDVP solution (1 mL) was then injected through the PCN-

224-loaded filter using a syringe pump (0.1 mL/min). The
next injection proceeded with a new DDVP solution. After
each respective injection, the filtrate was collected and
analyzed using 31P NMR spectroscopy. Almost 100%
conversion was observed after the first run, slightly decreasing
to 95% after 5 injections. During the flow system experiment,
the purple color of the filtrate was observed, indicating
leaching of tetrakis(4-carboxyphenyl)porphyrin (TCPP). The
amount of TCPP in the filtrate samples from MOF loading,

Figure 4. Degradation profiles of OPs. The conversion of POX, DDVP, and naled in the presence of (a) PCN-224, (b) MOF-808, and (c) NU-
1000. The rearranged graphs for comparing catalytic activities of PCN-224, MOF-808, and NU-1000 for (d) POX, (e) DDVP, and (f) naled.

Table 1. Initial Half-Lives (min) for OP Degradation by
PCN-224, MOF-808, and NU-1000

POX DDVP naled

PCN-224 2.1 <1 1.1
MOF-808 3.9 7.6 15.9
NU-1000 24.9 11.6 2.2

Figure 5. Zr6 node topologies of PCN-224 and MOF-808. The
structure and simplified model of the Zr6 node with peripheral linker
phenyl groups in (a) PCN-224 and (b) MOF-808, respectively. The
potential active sites are depicted with red rods on the respective node
of PCN-224 and MOF-808.

Figure 6. Degradation of DDVP with PCN-224 in a simple
continuous flow system. For each injection, the conversion of the
filtrate was confirmed with 31P NMR spectroscopy.

Inorganic Chemistry pubs.acs.org/IC Article

https://doi.org/10.1021/acs.inorgchem.1c00653
Inorg. Chem. 2021, 60, 10249−10256

10253

https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00653?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00653?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00653?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00653?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00653?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00653?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00653?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00653?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00653?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00653?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00653?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00653?fig=fig6&ref=pdf
pubs.acs.org/IC?ref=pdf
https://doi.org/10.1021/acs.inorgchem.1c00653?rel=cite-as&ref=PDF&jav=VoR


washing, and following five injection steps was identified using
UV−vis spectroscopy (Figure S27 and Table S1). After the
washing step, leaching of 2 mol % was observed, while <1 mol
% was found after the other steps (Figure S28). From the
second injection onward, the leaching amount of TCPP was
only ∼0.2 mol %. Based on these results, the high catalytic
activity of PCN-224 for DDVP degradation was confirmed in
the flow system, with reusability for several cycles.

■ CONCLUSIONS
In this work, we showed catalytic degradation of OPs, widely
used pesticides toxic to humans and other organisms. For three
commercial OPs, POX, DDVP, and naled, we investigated
degradation efficiencies of Zr-based MOFs, PCN-224, MOF-
808, and NU-1000, with different active site structures.
Compared to other MOFs, PCN-224 exhibited remarkable
conversion rates with POX, DDVP, and naled, showing half-
lives of a few minutes. Moreover, degradation efficiencies of
PCN-224 were not significantly varied depending on pesticide
types. The high activity of PCN-224 was further explored in a
simple continuous flow system, showing conversions of >95%
for several cycles. By comparing node connectivity and
geometry in Zr-based MOFs, we attribute the high activity
of PCN-224 to node coordination geometry, determined by
the positions of linker-binding sites. This work demonstrates
that Zr-based MOFs can be utilized as extremely efficient
heterogeneous catalysts for OP degradation, suggesting node
geometry as a critical factor governing organophosphate
degradation efficiency.
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